1
|
Fileva N, Bertamino M, Tortora D, Severino M. Arterial Ischemic Stroke in Children. Neuroimaging Clin N Am 2024; 34:579-599. [PMID: 39461766 DOI: 10.1016/j.nic.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Arterial ischemic stroke (AIS) in children has a high mortality and life-long disability rate in surviving patients. Diagnostic delays are longer and risk factors are different compared with AIS in the adult population. Congenital heart disease, cervical arterial dissection, and intracranial arteriopathies are the main causes of AIS in children. New revascularization time windows in children require the definition of diagnostic protocols for stroke in each referral center. In this article, we discuss the neuroimaging techniques and protocols, describe the main underlying causes, and review the current treatment options for pediatric and perinatal AIS.
Collapse
Affiliation(s)
- Nevena Fileva
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy; Diagnostic Imaging Department, UMHAT Aleksandrovska, Bul G.Sofiiski 1, Sofia 1431, Bulgaria
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Via Gaslini 5, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy.
| |
Collapse
|
2
|
Zhou J, Li G, Meng Y, Hu F, Wang W, Chen X. Analysis of the posterior cerebral perfusion status and clinical prognostic value in chronic unilateral middle cerebral artery occlusion using SWAN combined with 3D-ASL. Medicine (Baltimore) 2023; 102:e35836. [PMID: 37960815 PMCID: PMC10637506 DOI: 10.1097/md.0000000000035836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate the predictive value of T2 star-weighted angiography (SWAN) combined with 3-dimensional (3D) arterial spin labeling (3D-ASL) to assess cerebral perfusion status and clinical prognosis in chronic unilateral middle cerebral artery (MCA) M1 occlusion. This study included 55 patients diagnosed with chronic unilateral MCA M1 occlusion using 3D time-of-flight magnetic resonance angiography between January 2018 and July 2022. Based on the prominent vessel sign (PVS) shown in the SWAN sequence, the patients were divided into PVS-positive (n = 26) and PVS-negative (n = 29) groups. Cerebral blood flow (CBF) was selected in the affected regions of the frontal, parietal, and temporal lobes (regions of interest = 200 ± 20 mm2) using pseudo-color maps in the 3D-ASL sequence. Each patient was followed up for ischemic cerebrovascular disease within 12 months of diagnosis. The collected data were statistically analyzed to evaluate the predictive value of SWAN and 3D-ASL for the clinical prognosis of patients with chronic unilateral MCA M1 occlusion. Patients were divided into 2 groups based on the occurrence of an ischemic cerebrovascular event within 12 months (ischemic cerebrovascular event [acute ischemic stroke + transient ischemic attack] and non-ischemic cerebrovascular event groups, including 30 and 25 cases, respectively). The incidence of ischemic cerebrovascular events within 12 months was significantly higher in the PVS-positive group than in the PVS-negative group (92.31% vs 20.69%). Furthermore, the CBF values of the affected frontal, parietal, and temporal lobes were significantly lower in the ischemic cerebrovascular event group than in the non-ischemic cerebrovascular event group (P < .05). According to the receiver operating characteristic curve, the CBF values of the affected frontal, parietal, and temporal lobes in patients with chronic unilateral MCA M1 occlusion strongly correlated with ischemic cerebrovascular disease within 12 months. PVS-negative display and good collateral circulation were closely related to clinical prognosis in patients with chronic unilateral MCA M1 occlusion.
Collapse
Affiliation(s)
- Jianguo Zhou
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Guifen Li
- Department of Radiology, The Second People’s Hospital of Lianyungang City, Lianyungfang, Jiangsu, China
| | - Yun Meng
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Fangyun Hu
- Department of Radiology, Lianyungang City Chinese Medicine Hospital, Lianyungfang, Jiangsu, China
| | - Wei Wang
- Department of Radiology, The Peoples Hospital of Xuyi County, Huaian, Jiangsu, China
| | - Xunjun Chen
- Department of Radiology, The Peoples Hospital of Xuyi County, Huaian, Jiangsu, China
| |
Collapse
|
3
|
Ravula S, Patil C, Kumar Ks P, Kollu R, Shaik AR, Bandari R, Songa R, Battula V, Arelly SPD, Gopagoni R. A Study to Evaluate the Role of Three-Dimensional Pseudo-Continuous Arterial Spin Labelling in Acute Ischemic Stroke. Cureus 2023; 15:e44030. [PMID: 37746491 PMCID: PMC10517431 DOI: 10.7759/cureus.44030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Magnetic resonance imaging (MRI) is well known to detect ischemic brain tissue and evaluate the tissue vulnerable to infarction. Diffusion-weighted imaging (DWI) has been a mainstay of stroke evaluation but has a few shortcomings, as it generally indicates only the core of ischemia and does not provide information regarding the tissue at risk or the ischemic penumbra surrounding the infarct. Perfusion imaging identifies brain tissue that has reduced blood flow as a potential target for reperfusion therapy. Arterial spin labelling (ASL) is a new non-invasive, non-contrast MRI perfusion sequence used to detect areas of hypoperfusion qualitatively and quantitatively and also identify the area at risk, i.e., the penumbra, in acute ischemic stroke. The most important component of the imaging is to determine the ischemic penumbra. One of the working definitions of penumbra is brain tissue that is ischemic but not yet infarcted and is at risk of further damage unless the flow is rapidly restored. Hence, perfusion-diffusion mismatch provides a realistic target for potential intervention. The aim of our study is to assess the role of ASL imaging in identifying the penumbra and providing insight into the management of acute ischemic stroke. Materials and methods Patients who presented with symptoms of acute ischemic stroke were included in the study, and an MRI stroke protocol comprising DWI, fluid-attenuated inversion recovery (FLAIR), ASL, and magnetic resonance angiogram (MRA) sequences was done. Post-thrombolysis, a follow-up MRI was done using DWI, ASL, and MRA to see the restoration of perfusion in the ischemic penumbra. Three-dimensional pseudo-continuous ASL (in our study, ASL refers to pseudo-continuous ASL) is included in the stroke protocol in cases of acute ischemic stroke and assessed qualitatively. Results Our study included 43 patients (n = 43), of whom 39.5% (17 patients) belong to the age group of 51-60 years and 2.3% (one patient) are in the age group of 21-30 years. All 43 cases demonstrated DWI-FLAIR mismatch, suggestive of ischemic stroke within the window period, and all 43 cases showed DWI-ASL mismatch, suggestive of a large yet potentially salvageable peri-infarct ischemic penumbra. The most common territory involved was the middle cerebral artery (MCA), and the posterior cerebral artery (PCA) was the least commonly involved territory. We had one case involving the MCA-PCA watershed zone. Conclusion Arterial spin labelling is a novel, non-invasive, non-contrast MRI sequence with the capability to provide qualitative information regarding the salvageable ischemic penumbra, and timely management prevents the progression of the penumbra. The incorporation of ASL as part of the standard neuroimaging protocol aids in the management of acute stroke, giving insight into the prediction of outcome.
Collapse
Affiliation(s)
- Smitha Ravula
- Radiodiagnosis, Malla Reddy Medical College for Women, Hyderabad, IND
| | | | | | - Raja Kollu
- Radiology, New Medical Centre (NMC) Speciality Hospital, Abu Dhabi, ARE
| | | | - Rohit Bandari
- Neurology, Malla Reddy Narayana Multispeciality Hospital, Hyderabad, IND
| | - Rajesh Songa
- Neurology, Malla Reddy Narayana Multispeciality Hospital, Hyderabad, IND
| | | | | | - Ragini Gopagoni
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| |
Collapse
|
4
|
Abstract
Perinatal ischemic stroke is a common cause of lifelong disability.
Collapse
Affiliation(s)
- Nicholas V Stence
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Box 125, Aurora, CO 80045, USA.
| | - David M Mirsky
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Box 125, Aurora, CO 80045, USA
| | - Ilana Neuberger
- Department of Radiology, Children's Hospital Colorado, University of Colorado School of Medicine, 13123 East 16th Avenue, Box 125, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Golay X, Ho ML. Multidelay ASL of the pediatric brain. Br J Radiol 2022; 95:20220034. [PMID: 35451851 PMCID: PMC10996417 DOI: 10.1259/bjr.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Arterial spin labeling (ASL) is a powerful noncontrast MRI technique for evaluation of cerebral blood flow (CBF). A key parameter in single-delay ASL is the choice of postlabel delay (PLD), which refers to the timing between the labeling of arterial free water and measurement of flow into the brain. Multidelay ASL (MDASL) utilizes several PLDs to improve the accuracy of CBF calculations using arterial transit time (ATT) correction. This approach is particularly helpful in situations where ATT is unknown, including young subjects and slow-flow conditions. In this article, we discuss the technical considerations for MDASL, including labeling techniques, quantitative metrics, and technical artefacts. We then provide a practical summary of key clinical applications with real-life imaging examples in the pediatric brain, including stroke, vasculopathy, hypoxic-ischemic injury, epilepsy, migraine, tumor, infection, and metabolic disease.
Collapse
Affiliation(s)
- Xavier Golay
- MR Neurophysics and Translational Neuroscience, UCL Queen
Square Institute of Neurology London, London,
England, UK
| | - Mai-Lan Ho
- Radiology, Nationwide Children’s Hospital and The Ohio
State University, Columbus, OH,
USA
| |
Collapse
|
6
|
Expert consensus on the clinical practice of neonatal brain magnetic resonance imaging. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:14-25. [PMID: 35177171 PMCID: PMC8802390 DOI: 10.7499/j.issn.1008-8830.2110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In recent years, magnetic resonance imaging (MRI) has been widely used in evaluating neonatal brain development, diagnosing neonatal brain injury, and predicting neurodevelopmental prognosis. Based on current research evidence and clinical experience in China and overseas, the Neonatologist Society of Chinese Medical Doctor Association has developed a consensus on the indications and standardized clinical process of neonatal brain MRI. The consensus has the following main points. (1) Brain MRI should be performed for neonates suspected of hypoxic-ischemic encephalopathy, intracranial infection, stroke and unexplained convulsions; brain MRI is not considered a routine in the management of preterm infants, but it should be performed for further evaluation when cranial ultrasound finds evidence of brain injury; as for extremely preterm or extremely low birth weight infants without abnormal ultrasound findings, it is recommended that they should undergo MRI examination at term equivalent age once. (2) Neonates should undergo MRI examination in a non-sedated state if possible. (3) During MRI examination, vital signs should be closely monitored to ensure safety; the necessity of MRI examination should be strictly evaluated for critically ill neonates, and magnetic resonance compatible incubator and ventilator can be used. (4) At present, 1.5 T or 3.0 T equipment can be used for neonatal brain MRI examination, and the special coil for the neonatal head should be used to improve signal-to-noise ratio; routine neonatal brain MRI sequences should at least include axial T1 weighted image (T1WI), axial T2 weighted imaging (T2WI), diffusion-weighted imaging, and sagittal T1WI or T2WI. (5) It is recommended to use a structured and graded reporting system, and reports by at least two reviewers and multi-center collaboration are recommended to increase the reliability of the report.
Collapse
|
7
|
Yang N, He X, Yin C, Zhao L. Clinical analysis of 33 cases with neonatal cerebral infarction. Pak J Med Sci 2021; 37:1800-1807. [PMID: 34912398 PMCID: PMC8613021 DOI: 10.12669/pjms.37.7.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: To investigate the etiology, clinical manifestations, diagnosis, treatment and prognosis of neonatal cerebral infarction (NCI) to further improve the understanding of the disease. Methods: Clinical data and follow-up results of 33 cases of NCI in neonatal intensive care unit of a first-class hospital from September 2009 to September 2019 were retrospectively analyzed. Results: All 33 patients were diagnosed with NCI by MRI. Among them, 31 cases (93.94%) were full-term infants, 25 cases (75.76%) were mother’s first birth, and 18 (54.55%) cases were males. Pregnancy complications were reported in 18 cases (54.55%), and 19 cases (57.58%) had perinatal hypoxia history. Seizures were the most common first symptom and clinical manifestation in the course of disease (81.8%). There were 27 cases (81.82%) of patent foramen ovale (PFO) among NCI cohort. Ischemic cerebral infarction occurred in 32 cases (96.97%). The middle cerebral artery and its branches were more frequently involved, mainly on the left side. The acute stage of NCI was managed by symptomatic support treatment, and the recovery stage involved mainly rehabilitation treatment. Among the 33 cases, five cases were lost to follow-up, two patients died, 26 patients survived without complications, one case had cerebral palsy, one case had language retardation, and six cases had dyskinesia. Poor prognosis was associated with the involvement of deep gray matter nuclei or multiple lobes, and intrapartum complications. Vaginal mode of delivery and longer hospital stay were associated with better prognosis. Conclusions: Complications leading to placental circulation disorder during pregnancy and perinatal hypoxia are common high-risk factors of NCI. The seizure is the most common clinical manifestation. There is a possible correlation between PFO and NCI. Involvement of deep gray matter or multiple lobes and intrapartum complications may indicate poor prognosis, while vaginal delivery and prolonged hospitalizations are associated with better prognosis of NCI.
Collapse
Affiliation(s)
- Ning Yang
- Ning Yang, Neonatal Department, Dezhou People's Hospital, Dezhou 253000, Shandong, China
| | - Xiaojun He
- Xiaojun He, Neonate Department, Ningjin County People's Hospital, Dezhou 253400, Shandong, China
| | - Cuixia Yin
- Cuixia Yin, Neonate Department, Ningjin County People's Hospital, Dezhou 253400, Shandong, China
| | - Lihua Zhao
- Lihua Zhao, Neonate Department, Ningjin County People's Hospital, Dezhou 253400, Shandong, China
| |
Collapse
|
8
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
9
|
Feasibility and Safety of Neonatal Brain Contrast-Enhanced Ultrasound: A Prospective Study Using MRI as Reference Standard. AJR Am J Roentgenol 2021; 218:152-161. [PMID: 34286594 DOI: 10.2214/ajr.21.26274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background: MRI is the gold standard for neonatal brain imaging but is expensive, time-consuming, potentially limited by availability and accessibility, and may be contraindicated in some patients. Transfontanelle neonatal head ultrasound is an excellent alternative but may be less sensitive and specific than MRI. Contrast-enhanced ultrasound (CEUS) has the potential to improve ultrasound's capabilities. Objective: To prospectively evaluate the feasibility, safety, and diagnostic performance of transfontanelle neonatal brain contrast-enhanced ultrasound (CEUS), using MRI as the reference standard. Methods: Neonates in the institutional neonatal ICU undergoing MRI as part of clinical care were prospectively recruited to undergo portable brain ultrasound and CEUS for research purposes. Brain ultrasound and CEUS were performed portably, without moving the patient from the isolette or crib in the NICU. Adverse events were recorded. Two radiologists independently evaluated ultrasound and CEUS images for abnormalities and then reached consensus for discrepancies. A separate radiologist reviewed MRI examinations. Sensitivity, specificity, and inter-reader agreement were evaluated, using MRI as reference. Qualitative post hoc image review was performed. Results: Twenty-six neonates (9 boys, 17 girls; mean age 15.2 ± 14.0 days) were included. No significant alteration in patient vital signs or adverse reaction to the ultrasound contrast agent (UCA) occurred. Mean examination duration was significantly shorter for CEUS than MRI (21 ± 4.7 minutes vs 74 ± 34.8 minutes, p<.001). Inter-rater agreement for any abnormality was almost perfect for both ultrasound and CEUS (k= 0.92 and 0.85, respectively). Sensitivity for any abnormality was 86.7% for ultrasound and 93.0% for CEUS; specificity was 100.0% for both. CEUS exhibited sensitivity of 87.5% for acute or subacute ischemia and 100.0% for chronic ischemia, and specificity of 100.0% for acute or subacute ischemia and chronic ischemia. Sensitivity for subdural and intraparenchymal hemorrhage was poor (22.2%-50.0%) at both ultrasound and CEUS. Post hoc review demonstrated a case of post-ischemic hyperperfusion, confirmed by subsequent contrast-enhanced CT, on CEUS but not on MRI. Conclusion: Portable brain CEUS in neonates is feasible, safe, and more rapid than MRI. Clinical Impact: The potential diagnostic utility of brain neonatal CEUS relative to conventional ultrasound, particularly for ischemia, warrants further investigation.
Collapse
|
10
|
|
11
|
Biswas A, Mankad K, Shroff M, Hanagandi P, Krishnan P. Neuroimaging Perspectives of Perinatal Arterial Ischemic Stroke. Pediatr Neurol 2020; 113:56-65. [PMID: 33038575 DOI: 10.1016/j.pediatrneurol.2020.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
Perinatal stroke ranks second only to that of adult stroke in the overall stroke incidence. It is a major contributor to long-term neurological morbidity, which includes cognitive dysfunction, cerebral palsy and seizures. Risk factors for stroke in the perinatal period differ from those in children and tend to be multifactorial. Differences in territorial predilection, response to injury, and stroke evolution exist when compared with childhood and adult stroke, and also among differing gestation age groups in the perinatal period (i.e., extreme preterm versus preterm versus term). The role of imaging is to diagnose stroke, exclude stroke mimics, establish the nature of stroke (arterial versus venous), and aid in prognostication. Magnetic resonance imaging is the mainstay of neuroimaging in perinatal stroke. Advanced imaging techniques such as diffusion tensor imaging and perfusion-weighted imaging are emerging as useful supplements to conventional imaging sequences. Here we describe the neuroimaging of perinatal arterial ischemic stroke with emphasis on imaging techniques, imaging phenotypes, stroke evolution, role of advanced imaging, and differences between stroke in preterm and term neonates. We also briefly describe the emerging role of fetal magnetic resonance imaging in the diagnosis of in utero stroke.
Collapse
Affiliation(s)
- Asthik Biswas
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada.
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Manohar Shroff
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Prasad Hanagandi
- Department of Medical Imaging, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Pradeep Krishnan
- Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Carlson HL, Craig BT, Hilderley AJ, Hodge J, Rajashekar D, Mouches P, Forkert ND, Kirton A. Structural and functional connectivity of motor circuits after perinatal stroke: A machine learning study. Neuroimage Clin 2020; 28:102508. [PMID: 33395997 PMCID: PMC7704459 DOI: 10.1016/j.nicl.2020.102508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 10/19/2020] [Accepted: 11/15/2020] [Indexed: 11/15/2022]
Abstract
Developmental neuroplasticity allows young brains to adapt via experiences early in life and also to compensate after injury. Why certain individuals are more adaptable remains underexplored. Perinatal stroke is an ideal human model of neuroplasticity with focal lesions acquired near birth in a healthy brain. Machine learning can identify complex patterns in multi-dimensional datasets. We used machine learning to identify structural and functional connectivity biomarkers most predictive of motor function. Forty-nine children with perinatal stroke and 27 controls were studied. Functional connectivity was quantified by fluctuations in blood oxygen-level dependent (BOLD) signal between regions. White matter tractography of corticospinal tracts quantified structural connectivity. Motor function was assessed using validated bimanual and unimanual tests. RELIEFF feature selection and random forest regression models identified predictors of each motor outcome using neuroimaging and demographic features. Unilateral motor outcomes were predicted with highest accuracy (8/54 features r = 0.58, 11/54 features, r = 0.34) but bimanual function required more features (51/54 features, r = 0.38). Connectivity of both hemispheres had important roles as did cortical and subcortical regions. Lesion size, age at scan, and type of stroke were predictive but not highly ranked. Machine learning regression models may represent a powerful tool in identifying neuroimaging biomarkers associated with clinical motor function in perinatal stroke and may inform personalized targets for neuromodulation.
Collapse
Affiliation(s)
- Helen L Carlson
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Brandon T Craig
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Alicia J Hilderley
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jacquie Hodge
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada
| | - Deepthi Rajashekar
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Pauline Mouches
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Nils D Forkert
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Calgary Pediatric Stroke Program, Alberta Children's Hospital, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Department of Radiology, University of Calgary, Calgary, AB, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
13
|
Abstract
Abnormal brain perfusion is a key mechanism underlying neonatal brain injury. Understanding the mechanisms leading to brain perfusion changes in high-risk neonates and how these alterations may influence brain development is key to improve therapeutic strategies preventing brain injury and the neurodevelopmental outcome of these infants. To date, several studies demonstrated that Arterial Spin Labeling is a reliable tool to accurately and non-invasively analyze brain perfusion, facilitating the understanding of normal and pathological mechanisms underlying neonatal brain maturation and injury. This paper provides an overview of the normal pattern of brain perfusion on Arterial Spin Labeling in term and preterm neonates, and reviews perfusion abnormalities associated with common neonatal neurological disorders.
Collapse
Affiliation(s)
- Domenico Tortora
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy.
| | | | - Andrea Rossi
- Neuroradiology Unit IRCCS, Istituto Giannina Gaslini, Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
| |
Collapse
|
14
|
Imaging Developmental and Interventional Plasticity Following Perinatal Stroke. Can J Neurol Sci 2020; 48:157-171. [DOI: 10.1017/cjn.2020.166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ABSTRACT:Perinatal stroke occurs around the time of birth and leads to lifelong neurological disabilities including hemiparetic cerebral palsy. Magnetic resonance imaging (MRI) has revolutionized our understanding of developmental neuroplasticity following early injury, quantifying volumetric, structural, functional, and metabolic compensatory changes after perinatal stroke. Such techniques can also be used to investigate how the brain responds to treatment (interventional neuroplasticity). Here, we review the current state of knowledge of how established and emerging neuroimaging modalities are informing neuroplasticity models in children with perinatal stroke. Specifically, we review structural imaging characterizing lesion characteristics and volumetrics, diffusion tensor imaging investigating white matter tracts and networks, task-based functional MRI for localizing function, resting state functional imaging for characterizing functional connectomes, and spectroscopy examining neurometabolic changes. Key challenges and exciting avenues for future investigations are also considered.
Collapse
|
15
|
Narayanan S, Schmithorst V, Panigrahy A. Arterial Spin Labeling in Pediatric Neuroimaging. Semin Pediatr Neurol 2020; 33:100799. [PMID: 32331614 DOI: 10.1016/j.spen.2020.100799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Perfusion imaging using arterial spin labeling noninvasively evaluates cerebral blood flow utilizing arterial blood water as endogenous tracer. It does not require the need of radiotracer or intravenous contrast and offers unique complimentary information in the imaging of pediatric brain. Common clinical applications include neonatal hypoxic ischemic encephalopathy, pediatric stroke and vascular malformations, epilepsy and brain tumors. Future applications may include evaluation of silent ischemia in sickle cell patients, monitor changes in intracranial pressure in hydrocephalus, provide additional insights in nonaccidental trauma and chronic traumatic brain injury (TBI) and in functional Magnetic resonance imaging (MRI). The purpose of this review article is to evaluate the technical considerations including pitfalls, physiological variations, clinical applications and future directions of arterial spin labeling imaging.
Collapse
Affiliation(s)
- Srikala Narayanan
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA.
| | - Vincent Schmithorst
- Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ashok Panigrahy
- John F. Caffey Endowed Chair in Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
16
|
Carrasco M, Stafstrom CE, Tekes A, Parkinson C, Northington FJ. The Johns Hopkins Neurosciences Intensive Care Nursery Tenth Anniversary (2009-2019): A Historical Reflection and Vision for the Future. Child Neurol Open 2020; 7:2329048X20907761. [PMID: 32215280 PMCID: PMC7081468 DOI: 10.1177/2329048x20907761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/16/2019] [Accepted: 01/16/2020] [Indexed: 12/11/2022] Open
Abstract
Since 2009, the Neurosciences Intensive Care Nursery at Johns Hopkins Children’s Center has provided a multidisciplinary approach toward the care of newborns with neurological disorders. The program’s cornerstone is an interdisciplinary approach that involves the primary neonatology team plus experts from more than 10 specialties who convene at a weekly team conference at which newborns with neurological problems are discussed in detail. This interdisciplinary approach fosters in-depth discussion of clinical issues to optimize the management of neonates with neurological problems as well as the opportunity to generate research ideas and provide education about neonatal neuroscience at all levels (faculty, nurses, and trainees). The purpose of this article is to provide a 10-year reflection of our Neurosciences Intensive Care Nursery with a view toward expanding efforts in the 3 areas of our mission: clinical care, research, and education. We hope that our experience will enhance the spread of neonatal neuroscience education, care, and research as widely as possible.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Aylin Tekes
- Division of Pediatric Radiology and Pediatric Neuroradiology, Department of Radiology, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Charla Parkinson
- Division of Neonatology, Department of Pediatrics, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Frances J Northington
- Division of Neonatology, Department of Pediatrics, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
17
|
Proisy M, Corouge I, Legouhy A, Nicolas A, Charon V, Mazille N, Leroux S, Bruneau B, Barillot C, Ferré JC. Changes in brain perfusion in successive arterial spin labeling MRI scans in neonates with hypoxic-ischemic encephalopathy. Neuroimage Clin 2019; 24:101939. [PMID: 31362150 PMCID: PMC6664197 DOI: 10.1016/j.nicl.2019.101939] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 01/18/2023]
Abstract
The primary objective of this study was to evaluate changes in cerebral blood flow (CBF) using arterial spin labeling MRI between day 4 of life (DOL4) and day 11 of life (DOL11) in neonates with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia. The secondary objectives were to compare CBF values between the different regions of interest (ROIs) and between infants with ischemic lesions on MRI and infants with normal MRI findings. We prospectively included all consecutive neonates with HIE admitted to the neonatal intensive care unit of our institution who were eligible for therapeutic hypothermia. Each neonate systematically underwent two MRI examinations as close as possible to day 4 (early MRI) and day 11 (late MRI) of life. A custom processing pipeline of morphological and perfusion imaging data adapted to neonates was developed to perform automated ROI analysis. Twenty-eight neonates were included in the study between April 2015 and December 2017. There were 16 boys and 12 girls. Statistical analysis was finally performed on 37 MRIs, 17 early MRIs and 20 late MRIs. Eleven neonates had both early and late MRIs of good quality available. Eight out of 17 neonates (47%) had an abnormal on late MRI as performed and 7/20 neonates (35%) had an abnormal late MRI. CBF values in the basal ganglia and thalami (BGT) and temporal lobes were significantly higher on DOL4 than on DOL11. There were no significant differences between DOL4 and DOL11 for the other ROIs. CBF values were significantly higher in the BGT vs. the cortical GM, on both DOL4 and DOL11. On DOL4, the CBF was significantly higher in the cortical GM, the BGT, and the frontal and parietal lobes in subjects with an abnormal MRI compared to those with a normal MRI. On DOL11, CBF values in each ROI were not significantly different between the normal MRI group and the abnormal MRI group, except for the temporal lobes. This article proposes an innovative processing pipeline for morphological and ASL data suited to neonates that enable automated segmentation to obtain CBF values over ROIs. We evaluate CBF on two successive scans within the first 15 days of life in the same subjects. ASL imaging in asphyxiated neonates seems more relevant when used relatively early, in the first days of life. The correlation of intra-subject changes in cerebral perfusion between early and late MRI with neurodevelopmental outcome warrants investigation in a larger cohort, to determine whether the CBF pattern change can provide prognostic information beyond that provided by visible structural abnormalities on conventional MRI.
Collapse
Affiliation(s)
- Maïa Proisy
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France.
| | - Isabelle Corouge
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Antoine Legouhy
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Amélie Nicolas
- CHU Rennes, Radiology Department, F-35033 Rennes, France
| | - Valérie Charon
- CHU Rennes, Radiology Department, F-35033 Rennes, France
| | - Nadia Mazille
- CHU Rennes, Neonatology Department, F-35033 Rennes, France
| | | | | | - Christian Barillot
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France
| | - Jean-Christophe Ferré
- Univ Rennes, Inria, CNRS, INSERM, IRISA, Empenn ERL U-1228, F-35000 Rennes, France; CHU Rennes, Radiology Department, F-35033 Rennes, France
| |
Collapse
|
18
|
Spontaneous recanalization and hyperperfusion are relatively common at presentation in pediatric arterial ischemic stroke. Neuroradiology 2019; 61:629-632. [DOI: 10.1007/s00234-019-02213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/26/2022]
|
19
|
Abstract
The human cerebral vasculature originates in the fourth week of gestation and continues to expand and diversify well into the first few years of postnatal life. A key feature of this growth is smooth muscle differentiation, whereby smooth muscle cells within cerebral arteries transform from migratory to proliferative to synthetic and finally to contractile phenotypes. These phenotypic transformations can be reversed by pathophysiological perturbations such as hypoxia, which causes loss of contractile capacity in immature cerebral arteries. In turn, loss of contractility affects all whole-brain cerebrovascular responses, including those involved in flow-metabolism coupling, vasodilatory responses to acute hypoxia and hypercapnia, cerebral autoregulation, and reactivity to activation of perivascular nerves. Future strategies to minimize cerebral injury following hypoxia-ischemic insults in the immature brain might benefit by targeting treatments to preserve and promote contractile differentiation in the fetal cerebrovasculature. This could potentially be achieved through inhibition of receptor tyrosine kinase-mediated growth factors, such as vascular endothelial growth factor and platelet-derived growth factor, which are mobilized by hypoxic and ischemic injury and which facilitate contractile dedifferentiation. Interruption of the effects of other vascular mitogens, such as endothelin and angiotensin-II, and even some miRNA species, also could be beneficial. Future experimental work that addresses these possibilities offers promise to improve current clinical management of neonates who have suffered and survived hypoxic, ischemic, asphyxic, or inflammatory cerebrovascular insults.
Collapse
Affiliation(s)
- William J Pearce
- From the Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA.
| |
Collapse
|
20
|
Mahdi ES, Bouyssi-Kobar M, Jacobs MB, Murnick J, Chang T, Limperopoulos C. Cerebral Perfusion Is Perturbed by Preterm Birth and Brain Injury. AJNR Am J Neuroradiol 2018; 39:1330-1335. [PMID: 29748205 DOI: 10.3174/ajnr.a5669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/23/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Early disturbances in systemic and cerebral hemodynamics are thought to mediate prematurity-related brain injury. However, the extent to which CBF is perturbed by preterm birth is unknown. Our aim was to compare global and regional CBF in preterm infants with and without brain injury on conventional MR imaging using arterial spin-labeling during the third trimester of ex utero life and to examine the relationship between clinical risk factors and CBF. MATERIALS AND METHODS We prospectively enrolled preterm infants younger than 32 weeks' gestational age and <1500 g and performed arterial spin-labeling MR imaging studies. Global and regional CBF in the cerebral cortex, thalami, pons, and cerebellum was quantified. Preterm infants were stratified into those with and without structural brain injury. We further categorized preterm infants by brain injury severity: moderate-severe and mild. RESULTS We studied 78 preterm infants: 31 without brain injury and 47 with brain injury (29 with mild and 18 with moderate-severe injury). Global CBF showed a borderline significant increase with increasing gestational age at birth (P = .05) and trended lower in preterm infants with brain injury (P = .07). Similarly, regional CBF was significantly lower in the right thalamus and midpons (P < .05) and trended lower in the midtemporal, left thalamus, and anterior vermis regions (P < .1) in preterm infants with brain injury. Regional CBF in preterm infants with moderate-severe brain injury trended lower in the midpons, right cerebellar hemisphere, and dentate nuclei compared with mild brain injury (P < .1). In addition, a significant, lower regional CBF was associated with ventilation, sepsis, and cesarean delivery (P < .05). CONCLUSIONS We report early disturbances in global and regional CBF in preterm infants following brain injury. Regional cerebral perfusion alterations were evident in the thalamus and pons, suggesting regional vulnerability of the developing cerebro-cerebellar circuitry.
Collapse
Affiliation(s)
- E S Mahdi
- From the Developing Brain Research Program (E.S.M., M.B.-K., J.M., C.L.), Department of Diagnostic Imaging and Radiology
| | - M Bouyssi-Kobar
- From the Developing Brain Research Program (E.S.M., M.B.-K., J.M., C.L.), Department of Diagnostic Imaging and Radiology
- Department of Neurology (T.C.)
| | - M B Jacobs
- Department of Epidemiology and Biostatistics (M.B.J.), Children's Research Institute, Children's National Health System, Washington, DC
| | - J Murnick
- From the Developing Brain Research Program (E.S.M., M.B.-K., J.M., C.L.), Department of Diagnostic Imaging and Radiology
| | - T Chang
- Department of Neurology (T.C.)
| | - C Limperopoulos
- From the Developing Brain Research Program (E.S.M., M.B.-K., J.M., C.L.), Department of Diagnostic Imaging and Radiology
| |
Collapse
|
21
|
Castro Conde JR, Fuentes IQ, Campo CG, Sosa AJ, Millán BR, Expósito SH. EEG findings and outcomes of continuous video-EEG monitoring started prior to initiation of seizure treatment in the perinatal stroke. Early Hum Dev 2018; 120:1-9. [PMID: 29602053 DOI: 10.1016/j.earlhumdev.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/17/2018] [Accepted: 03/22/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND To analyze the findings in the background EEG activity of infants who suffered perinatal stroke. METHODS Eleven neonates born 2009-2014 diagnosed of ischemic stroke by MRI (three of them with multistroke) underwent continuous video-EEG monitoring. Visual and spectral (power spectrum and coherence) analyses of the background EEG was performed in three moments: 1) Onset of EEG recording (prior to initiate seizure treatment), 2) Post-ictal epoch (1-2 h after the last seizure), and 3) one-two days after seizure control. All children aged 2-6 years underwent neurodevelopmental assessment. RESULTS Discontinuity, asymmetry, asynchrony, transients, and relative power spectrum in δ and θ frequency bands increased significantly (p < 0.05) in the post-ictal epoch with respect to onset of EEG recording. After seizure control, discontinuity, asynchrony, and θ power spectrum no longer had significant differences with those found at onset of EEG recording. Significant differences between the ischemic and unaffected hemispheres were found in transients and in β coherence (p = 0.002; p = 0.001, respectively) exclusively in the post-ictal epoch. Seizure burden and time-to-control ranged 5-38 min and 0.5-40 h respectively. Currently, only one child is affected by spastic monoparesis. The intelligence quotients ranged 96-123. CONCLUSIONS The background EEG can undergo significant changes in the post-ictal epoch due to the seizure activity triggered by the perinatal stroke. Most of these EEG changes involve all brain activity and not exclusively the ischemic hemisphere. Many of these modifications in the EEG background reverse following the seizure control. Video-EEG monitoring allows accurate/immediate diagnosis and rapid/intensive treatment of the stroke-associated seizures.
Collapse
Affiliation(s)
- José R Castro Conde
- Department of Neonatology, Hospital Universitario de Canarias, Ofra s/n, 38320 La Laguna, Spain; Research Group on Nutrition, Growth, and Child Development, Spain(1).
| | - Itziar Quintero Fuentes
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Psychology, Campus de Guajara s/n, 38071 La Laguna, Universidad de La Laguna, Spain; Research Group on Developmental Neuropsychology, Spain(2).
| | | | | | - Beatriz Reyes Millán
- Department of Neonatology, Hospital Universitario Nuestra Señora de La Candelaria, Carretera del Rosario 145, 38010 S/C Tenerife, Spain.
| | - Sergio Hernández Expósito
- Department of Clinical Psychology, Psychobiology and Methodology, Faculty of Psychology, Campus de Guajara s/n, 38071 La Laguna, Universidad de La Laguna, Spain; Research Group on Developmental Neuropsychology, Spain(2).
| |
Collapse
|
22
|
Mabray P, Thewamit R, Whitehead MT, Kao A, Scafidi J, Gaillard WD, Chang T, Tsuchida TN. Increased cerebral blood flow on arterial spin labeling magnetic resonance imaging can localize to seizure focus in newborns: A report of 3 cases. Epilepsia 2018; 59:e63-e67. [PMID: 29600511 DOI: 10.1111/epi.14060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging (MRI) can assess cerebral blood flow (CBF) without using radiolabeled tracers. It is unknown whether regional increases in CBF on ASL MRI correlate with seizure location in newborns. We report 3 newborns with focal seizures localized on continuous video electroencephalogram (cEEG), anatomical brain MRI, and ASL MRI. Each patient underwent pseudocontinuous ASL with segmented 3-dimensional fast spin echo readout as part of standard care. Case 1 is a term male infant presenting with left temporal status epilepticus and recurrent cEEG seizures from an idiopathic large left intraventricular hemorrhage. ASL images demonstrated left mesial temporal lobe increased CBF. Case 2 is a late preterm male infant presenting with recurrent cEEG seizures due to focal right megalencephaly. Ictal EEG and ASL images coincided with the focal dysplasia. Case 3 is a dysmorphic term female infant with nonconvulsive partial status epilepticus identified by focal increased CBF of the left temporal lobe on ASL images. The area of increased CBF was within an area of extensive left hemisphere dysplasia. To our knowledge, this is the first report of regional increases in CBF on ASL MRI correlating with ictal cEEG in newborns.
Collapse
Affiliation(s)
- Patrick Mabray
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Rapeepat Thewamit
- Department of Neurology, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Matthew T Whitehead
- Department of Neuroradiology, Children's National Medical Center, Washington, DC, USA
| | - Amy Kao
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Joseph Scafidi
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - William D Gaillard
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Taeun Chang
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| | - Tammy N Tsuchida
- Department of Neurology, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
23
|
Bouyssi-Kobar M, Murnick J, Brossard-Racine M, Chang T, Mahdi E, Jacobs M, Limperopoulos C. Altered Cerebral Perfusion in Infants Born Preterm Compared with Infants Born Full Term. J Pediatr 2018; 193:54-61.e2. [PMID: 29212618 PMCID: PMC5794508 DOI: 10.1016/j.jpeds.2017.09.083] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/18/2017] [Accepted: 09/29/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To compare regional cerebral cortical blood flow (CBF) in infants born very preterm at term-equivalent age (TEA) and healthy newborns born full term and to examine the impact of clinical risk factors on CBF in the cohort born preterm. STUDY DESIGN This prospective, cross-sectional study included infants born very preterm (gestational age at birth <32 weeks; birth weight <1500 g) and healthy infants born full term. Using noninvasive 3T arterial spin labeling magnetic resonance imaging, we quantified regional CBF in the cerebral cortex: sensorimotor/auditory/visual cortex, superior medial/dorsolateral prefrontal cortex, anterior cingulate cortex (ACC)/posterior cingulate cortex, insula, and lateral posterior parietal cortex, as well as in the brainstem, and deep gray matter. Analyses were performed controlling for sex, gestational age, and age at magnetic resonance imaging. RESULTS We studied 202 infants: 98 born preterm and 104 born full term at TEA. Infants born preterm demonstrated greater global CBF (β = 9.03; P < .0001) and greater absolute regional CBF in all brain regions except the insula. Relative CBF in the insula, ACC and auditory cortex were decreased significantly in infants born preterm compared with their peers born at full term (P < .0001; P = .026; P = .036, respectively). In addition, the presence of parenchymal brain injury correlated with lower global and regional CBF (insula, ACC, sensorimotor, auditory, and visual cortices) whereas the need for cardiac vasopressor support correlated with lower regional CBF in the insula and visual cortex. CONCLUSIONS Altered regional cortical CBF in infants born very preterm at TEA may reflect early brain dysmaturation despite the absence of cerebral cortical injury. Furthermore, specific cerebral cortical areas may be vulnerable to early hemodynamic instability and parenchymal brain injury.
Collapse
Affiliation(s)
- Marine Bouyssi-Kobar
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC; Institute for Biomedical Sciences, George Washington University, Washington, DC
| | - Jonathan Murnick
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC
| | - Marie Brossard-Racine
- Department of Pediatrics Neurology, Montreal Children's Hospital-McGill University Health Center, Montreal, Québec, Canada
| | - Taeun Chang
- Department of Neurology, Children's National Health System, Washington, DC
| | - Eman Mahdi
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC
| | - Marni Jacobs
- Department of Epidemiology and Biostatistics, Children's Research Institute, Children's National Health System, Washington, DC
| | - Catherine Limperopoulos
- The Developing Brain Research Laboratory, Department of Diagnostic Imaging and Radiology, Children's National Health System, Washington, DC.
| |
Collapse
|
24
|
[Experts' consensus on the diagnosis and treatment of neonatal arterial ischemic stroke]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:611-613. [PMID: 28606224 PMCID: PMC7390298 DOI: 10.7499/j.issn.1008-8830.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
|
25
|
Abstract
PURPOSE To provide consensus-based, suggested imaging protocols to facilitate the accurate and timely diagnosis of a neonate with symptoms concerning for stroke. METHODS The Writing Group, an international collaboration of pediatric neurologists and neuroradiologists with expertise in perinatal and childhood stroke, participated in a series of pediatric stroke neuroimaging symposia. These discussions, in conjunction with extensive literature review, led to a consensus for imaging protocols to guide practitioners in the diagnosis of neonatal stroke subtypes as defined by the National Institute of Neurological Disorders and Stroke Common Data Elements. The epidemiology, clinical presentation, and associated risk factors for arterial ischemic stroke, cerebral sinovenous thrombosis, and hemorrhagic stroke are reviewed, with a focused discussion regarding the role of neuroimaging for each subtype. RESULTS In a neonate with suspected stroke, magnetic resonance imaging is the preferred modality, given the lack of X-irradiation, superior anatomic resolution, and sensitivity for acute ischemia. Core recommended sequences include diffusion-weighted imaging and apparent diffusion coefficient mapping to diagnose acute ischemia, gradient-recalled echo or susceptibility-weighted imaging to detect intracranial blood and its breakdown products, and T1- and T2-weighted imaging to assess for myelination, extra-axial blood, and edema. Magnetic resonance angiography of the brain may be useful to detect vascular abnormalities, with venography if venous sinus thrombosis is suspected. The application of more novel sequences, as well as the utility of follow up-imaging, is also discussed.
Collapse
|
26
|
Domi T, Vossough A, Stence NV, Felling RJ, Leung J, Krishnan P, Watson CG, Grant PE, Kassner A. The Potential for Advanced Magnetic Resonance Neuroimaging Techniques in Pediatric Stroke Research. Pediatr Neurol 2017; 69:24-36. [PMID: 28237248 DOI: 10.1016/j.pediatrneurol.2016.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND This article was written to provide clinicians and researchers with an overview of a number of advanced neuroimaging techniques in an effort to promote increased utility and the design of future studies using advanced neuroimaging in childhood stroke. The current capabilities of advanced magnetic resonance imaging techniques provide the opportunity to build on our knowledge of the consequences of stroke on the developing brain. These capabilities include providing information about the physiology, metabolism, structure, and function of the brain that are not routinely evaluated in the clinical setting. METHODS During the Proceedings of the Stroke Imaging Laboratory for Children Workshop in Toronto in June 2015, a subgroup of clinicians and imaging researchers discussed how the application of advanced neuroimaging techniques could further our understanding of the mechanisms of stroke injury and repair in the pediatric population. This subgroup was established based on their interest and commitment to design collaborative, advanced neuroimaging studies in the pediatric stroke population. RESULTS In working toward this goal, we first sought to describe here the magnetic resonance imaging techniques that are currently available for use, and how they have been applied in other stroke populations (e.g., adult and perinatal stroke). CONCLUSIONS With the continued improvement in advanced neuroimaging techniques, including shorter acquisition times, there is an opportunity to apply these techniques to their full potential in the research setting and learn more about the effects of stroke in the developing brain.
Collapse
Affiliation(s)
- Trish Domi
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas V Stence
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ryan J Felling
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jackie Leung
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pradeep Krishnan
- Department of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher G Watson
- Department of Computational Neuroscience, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts; Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - P Ellen Grant
- Division of Newborn Medicine, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Kassner
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
Dlamini N, Wintermark M, Fullerton H, Strother S, Lee W, Bjornson B, Guilliams KP, Miller S, Kirton A, Filippi CG, Linds A, Askalan R, deVeber G. Harnessing Neuroimaging Capability in Pediatric Stroke: Proceedings of the Stroke Imaging Laboratory for Children Workshop. Pediatr Neurol 2017; 69:3-10. [PMID: 28259513 DOI: 10.1016/j.pediatrneurol.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
On June 5, 2015 the International Pediatric Stroke Study and the Stroke Imaging Laboratory for Children cohosted a unique workshop focused on developing neuroimaging research in pediatric stroke. Pediatric neurologists, neuroradiologists, interventional neuroradiologists, physicists, nurse practitioners, neuropsychologists, and imaging research scientists from around the world attended this one-day meeting. Our objectives were to (1) establish a group of experts to collaborate in advancing pediatric neuroimaging for stroke, (2) develop consensus clinical and research magnetic resonance imaging protocols for pediatric stroke patients, and (3) develop imaging-based research strategies in pediatric ischemic stroke. This article provides a summary of the meeting proceedings focusing on identified challenges and solutions and outcomes from the meeting. Further details on the workshop contents and outcomes are provided in three additional articles in the current issue of Pediatric Neurology.
Collapse
Affiliation(s)
- Nomazulu Dlamini
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | - Max Wintermark
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, California
| | - Heather Fullerton
- Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen Strother
- Department of Medical Biophysics, Rotman Research Institute at Baycrest, University of Toronto, Toronto, Ontario, Canada
| | - Wayne Lee
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Bruce Bjornson
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; Developmental Neurosciences and Child Health, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - Kristin P Guilliams
- Division of Pediatric Neurology, Department of Neurology, Washington University in St. Louis, St. Louis, Missouri; Division of Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri
| | - Steven Miller
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Kirton
- Department of Pediatrics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Clinical Neurosciences, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christopher G Filippi
- Department of Radiology, Northwell Health, Manhasset, New York; Department of Neurology, University of Vermont Medical Center, Burlington, Vermont
| | - Alexandra Linds
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rand Askalan
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gabrielle deVeber
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|