1
|
Sun Z, Zhao H, Yang S, Liu R, Yi L, Gao J, Liu S, Chen Y, Zhang Z. Edaravone Dexborneol protects against blood-brain barrier disruption following cerebral ischemia/reperfusion by upregulating pericyte coverage via vitronectin-integrin and PDGFB/PDGFR-β signaling. Free Radic Biol Med 2024; 225:758-766. [PMID: 39486750 DOI: 10.1016/j.freeradbiomed.2024.10.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Recent advancements in brain cytoprotection therapies following cerebral ischemia-reperfusion (I/R) injury have become an emerging interest. Pericytes were vulnerable during the early stages of ischemia. This study aims to explore the protective effects of Edaravone borneol (Eda.B) on pericyte loss, as well as and the underlying mechanisms, given its potential in alleviating I/R injury. METHODS The rat transient middle cerebral artery occlusion (tMCAO) model was established. Rats were randomly divided into Sham group (Sham, n = 24), tMCAO group (tMCAO, n = 24), Edaravone group (Eda, n = 24), Dexborneol group (Dexborneol, n = 24), and Eda.B group (Eda.B, n = 24). Neurological function recovery, infarct volume, and blood-brain barrier (BBB) disruption were assessed using Zea-Longa scoring, TTC staining, and Evans Blue extravasation, respectively. Alterations in Basement membrane (BM) and pericyte coverage were assessed by transmission electron microscopy (TEM). The expression levels of pericyte marker NG2 and PDGFR-β in the ischemic region, as well as BBB transcellular transport-related proteins vitronectin (VTN), α5 and PDGFB were detected by western blotting. Furthermore, a specific inhibitor of PDGFB, MOR8457, was employed (Eda.B + MOR8457, n = 8) to explore the protective effects of Eda.B on pericyte injury via PDGFB/PDGFR-β. RESULTS Eda.B significantly reduced cerebral infarct volume and promoted neurological function recovery in comparison to the tMCAO, Eda and Dexborneol groups. Additionally, Eda.B significantly ameliorated BBB leakage, mitigated the decrease in pericyte coverage, and reduced vesicle density in endothelial cells and BM thickness following I/R. Mechanically, Eda.B inhibited the downregulation of NG2, PDGFB/PDGFR-β, VTN, while preventing upregulation of α5 protein expression in tMCAO rats. Blocking PDGFB with MOR8457 demonstrated that Eda.B improved pericyte loss and BBB permeability by activating PDGFB/PDGFR-β signaling. CONCLUSIONS We elucidated that vitronectin-integrin and PDGFB/PDGFR-β signaling contributed to Eda.B's protective effects against pericyte loss and BBB permeability following I/R injury, unraveling new insights into mechanisms of pericyte as a promising therapeutic target.
Collapse
Affiliation(s)
- Zhiyu Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Hanshu Zhao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Shanshan Yang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Ruijia Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Lian Yi
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Jiadi Gao
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Sihan Liu
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Yilin Chen
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China
| | - Zhongling Zhang
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, PR China.
| |
Collapse
|
2
|
Roth M, Carlsson R, Buizza C, Enström A, Paul G. Pericyte response to ischemic stroke precedes endothelial cell death and blood-brain barrier breakdown. J Cereb Blood Flow Metab 2024:271678X241261946. [PMID: 39053491 DOI: 10.1177/0271678x241261946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Stroke is one of the leading causes of death and disability, yet the cellular response to the ischemic insult is poorly understood limiting therapeutic options. Brain pericytes are crucial for maintaining blood-brain barrier (BBB) integrity and are known to be one of the first responders to ischemic stroke. The exact timeline of cellular events after stroke, however, remains elusive. Using the permanent middle cerebral artery occlusion stroke model, we established a detailed timeline of microvascular events after experimental stroke. Our results show that pericytes respond already within 1 hour after the ischemic insult. We find that approximately 30% of the pericyte population dies as early as 1 hour after stroke, while ca 50% express markers that indicate activation. A decrease of endothelial tight junctions, signs of endothelial cell death and reduction in blood vessel length are only detected at time points after the initial pericyte response. Consistently, markers of BBB leakage are observed several hours after pericyte cell death and/or vascular detachment. Our results suggest that the pericyte response to stroke occurs early and precedes both the endothelial response and the BBB breakdown. This highlights pericytes as an important target cell type to develop new diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Robert Carlsson
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Carolina Buizza
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
3
|
Arquizan C, Jovin T, Costalat V. Thrombectomy for Large Strokes. Reply. N Engl J Med 2024; 391:379. [PMID: 39047250 DOI: 10.1056/nejmc2406965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
|
4
|
Lénárt N, Cserép C, Császár E, Pósfai B, Dénes Á. Microglia-neuron-vascular interactions in ischemia. Glia 2024; 72:833-856. [PMID: 37964690 DOI: 10.1002/glia.24487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Cerebral ischemia is a devastating condition that results in impaired blood flow in the brain leading to acute brain injury. As the most common form of stroke, occlusion of cerebral arteries leads to a characteristic sequence of pathophysiological changes in the brain tissue. The mechanisms involved, and comorbidities that determine outcome after an ischemic event appear to be highly heterogeneous. On their own, the processes leading to neuronal injury in the absence of sufficient blood supply to meet the metabolic demand of the cells are complex and manifest at different temporal and spatial scales. While the contribution of non-neuronal cells to stroke pathophysiology is increasingly recognized, recent data show that microglia, the main immune cells of the central nervous system parenchyma, play previously unrecognized roles in basic physiological processes beyond their inflammatory functions, which markedly change during ischemic conditions. In this review, we aim to discuss some of the known microglia-neuron-vascular interactions assumed to contribute to the acute and delayed pathologies after cerebral ischemia. Because the mechanisms of neuronal injury have been extensively discussed in several excellent previous reviews, here we focus on some recently explored pathways that may directly or indirectly shape neuronal injury through microglia-related actions. These discoveries suggest that modulating gliovascular processes in different forms of stroke and other neurological disorders might have presently unexplored therapeutic potential in combination with neuroprotective and flow restoration strategies.
Collapse
Affiliation(s)
- Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Császár
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Irie F, Matsuo R, Mezuki S, Wakisaka Y, Kamouchi M, Kitazono T, Ago T. Effect of smoking status on clinical outcomes after reperfusion therapy for acute ischemic stroke. Sci Rep 2024; 14:9290. [PMID: 38654009 PMCID: PMC11039615 DOI: 10.1038/s41598-024-59508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Smoking has detrimental effects on the cardiovascular system; however, some studies have reported better clinical outcomes after thrombolysis for ischemic stroke in smokers than in nonsmokers, a phenomenon known as the smoking paradox. Therefore, this study aimed to examine the smoking paradox in patients with ischemic stroke receiving reperfusion therapy. Data were collected from a multicenter hospital-based acute stroke registry in Fukuoka, Japan. The 1148 study patients were categorized into current and noncurrent smokers. The association between smoking and clinical outcomes, including neurological improvement (≥ 4-point decrease in the National Institutes of Health Stroke Scale during hospitalization or 0 points at discharge) and good functional outcomes (modified Rankin Scale score of 0-2) at 3 months, was evaluated using logistic regression analysis and propensity score-matched analysis. Among the participants, 231 (20.1%) were current smokers. The odds ratios (ORs) of favorable outcomes after adjusting for potential confounders were not significantly increased in current smokers (OR 0.85, 95% confidence interval [CI] 0.60-1.22 for neurological improvement; OR 0.95, 95% CI 0.65-1.38 for good functional outcome). No significant association was found in the propensity score-matched cohorts. Smoking cessation is strongly recommended since current smoking was not associated with better outcomes after reperfusion therapy.
Collapse
Affiliation(s)
- Fumi Irie
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Ryu Matsuo
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan.
| | - Satomi Mezuki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
- Emergency and Clinical Care Center, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masahiro Kamouchi
- Department of Health Care Administration and Management, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Morris GP, Sutherland BA. The presence of functional blood vessels in the ischemic core provides a therapeutic target for stroke recovery. Neural Regen Res 2023; 18:2653-2654. [PMID: 37449607 DOI: 10.4103/1673-5374.373703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Affiliation(s)
- Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Zuin M, Piazza G, Barco S, Bikdeli B, Hobohm L, Giannakoulas G, Konstantinides S. Time-based reperfusion in haemodynamically unstable pulmonary embolism patients: does early reperfusion therapy improve survival? EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2023; 12:714-720. [PMID: 37421358 DOI: 10.1093/ehjacc/zuad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
High-risk pulmonary embolism (PE) is associated with significant morbidity and mortality. Systemic thrombolysis remains the most evidenced-based treatment for haemodynamically unstable PE, but in daily clinical practice, it remains largely underused. In addition, unlike acute myocardial infarction or stroke, a clear time window for reperfusion therapy, including fibrinolysis, for high-risk PE has not been defined either for fibrinolysis or for the more recently incorporated options of catheter-based thrombolysis or thrombectomy. The aim of the present article is to review the current evidence supporting the potential benefit of earlier administration of reperfusion in haemodynamically unstable PE patients and suggest some potential strategies to further explore this issue.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine, University of Ferrara, Azienda Ospedaliero-Universitaria S. Anna, Via Aldo Moro, 8, Ferrara, 44100, Italy
| | - Gregory Piazza
- Cardiovascular Medicine Division and Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefano Barco
- Department of Angiology, University Hospital Zurich, Zurich, Switzerland
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University, Mainz, Germany
| | - Behnood Bikdeli
- Cardiovascular Medicine Division and Thrombosis Research Group, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Yale/YNHH Center for Outcomes Research and Evaluation, New Haven, CT, USA
| | - Lukas Hobohm
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University, Mainz, Germany
| | - George Giannakoulas
- Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Konstantinides
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University, Mainz, Germany
- Department of Cardiology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
8
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Guo X, Liu R, Jia M, Wang Q, Wu J. Ischemia Reperfusion Injury Induced Blood Brain Barrier Dysfunction and the Involved Molecular Mechanism. Neurochem Res 2023:10.1007/s11064-023-03923-x. [PMID: 37017889 DOI: 10.1007/s11064-023-03923-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Stroke is characterized by the abrupt failure of blood flow to a specific brain region, resulting in insufficient supply of oxygen and glucose to the ischemic tissues. Timely reperfusion of blood flow can rescue dying tissue but can also lead to secondary damage to both the infarcted tissues and the blood-brain barrier, known as ischemia/reperfusion injury. Both primary and secondary damage result in biphasic opening of the blood-brain barrier, leading to blood-brain barrier dysfunction and vasogenic edema. Importantly, blood-brain barrier dysfunction, inflammation, and microglial activation are critical factors that worsen stroke outcomes. Activated microglia secrete numerous cytokines, chemokines, and inflammatory factors during neuroinflammation, contributing to the second opening of the blood-brain barrier and worsening the outcome of ischemic stroke. TNF-α, IL-1β, IL-6, and other microglia-derived molecules have been shown to be involved in the breakdown of blood-brain barrier. Additionally, other non-microglia-derived molecules such as RNA, HSPs, and transporter proteins also participate in the blood-brain barrier breakdown process after ischemic stroke, either in the primary damage stage directly influencing tight junction proteins and endothelial cells, or in the secondary damage stage participating in the following neuroinflammation. This review summarizes the cellular and molecular components of the blood-brain barrier and concludes the association of microglia-derived and non-microglia-derived molecules with blood-brain barrier dysfunction and its underlying mechanisms.
Collapse
Affiliation(s)
- Xi Guo
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Ru Liu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China
| | - Jianping Wu
- Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 10070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 10070, China.
| |
Collapse
|
10
|
Shibahara T, Nakamura K, Wakisaka Y, Shijo M, Yamanaka K, Takashima M, Takaki H, Hidaka M, Kitazono T, Ago T. PDGFR β-positive cell-mediated post-stroke remodeling of fibronectin and laminin α2 for tissue repair and functional recovery. J Cereb Blood Flow Metab 2023; 43:518-530. [PMID: 36514952 PMCID: PMC10063838 DOI: 10.1177/0271678x221145092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-stroke intra-infarct repair promotes peri-infarct neural reorganization leading to functional recovery. Herein, we examined the remodeling of extracellular matrix proteins (ECM) that constitute the intact basal membrane after permanent middle cerebral artery occlusion (pMCAO) in mice. Among ECM, collagen type IV remained localized on small vessel walls surrounding CD31-positive endothelial cells within infarct areas. Fibronectin was gradually deposited from peri-infarct areas to the ischemic core, in parallel with the accumulation of PDGFRβ-positive cells. Cultured PDGFRβ-positive pericytes produced fibronectin, which was enhanced by the treatment with PDGF-BB. Intra-infarct deposition of fibronectin was significantly attenuated in pericyte-deficient Pdgfrb+/-mice. Phagocytic activity of macrophages against myelin debris was significantly enhanced on fibronectin-coated dishes. In contrast, laminin α2, produced by GFAP- and aquaporin 4-positive astrocytes, accumulated strongly in the boundary of peri-infarct areas. Pericyte-conditioned medium increased the expression of laminin α2 in cultured astrocytes, partly through TGFβ1. Laminin α2 increased the differentiation of oligodendrocyte precursor cells into oligodendrocytes and the expression of myelin-associated proteins. Peri-infarct deposition of laminin α2 was significantly reduced in Pdgfrb+/-mice, with attenuated oligodendrogenesis in peri-infarct areas. Collectively, intra-infarct PDGFRβ-positive cells may orchestrate post-stroke remodeling of key ECM that create optimal environments promoting clearance of myelin debris and peri-infarct oligodendrogenesis.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Yamanaka K, Nakamura K, Shibahara T, Takashima M, Takaki H, Hidaka M, Komori M, Yoshikawa Y, Wakisaka Y, Ago T, Kitazono T. Deletion of Nox4 enhances remyelination following cuprizone-induced demyelination by increasing phagocytic capacity of microglia and macrophages in mice. Glia 2023; 71:541-559. [PMID: 36321558 DOI: 10.1002/glia.24292] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
NOX4 is a major reactive oxygen species-producing enzyme that modulates cell stress responses. We here examined the effect of Nox4 deletion on demyelination-remyelination, the most common pathological change in the brain. We used a model of cuprizone (CPZ)-associated demyelination-remyelination in wild-type and Nox4-deficient (Nox4-/- ) mice. While the CPZ-induced demyelination in the corpus callosum after 4 weeks of CPZ intoxication was slightly less pronounced in Nox4-/- mice than that in wild-type mice, remyelination following CPZ withdrawal was significantly enhanced in Nox4-/- mice with an increased accumulation of IBA1-positive microglia/macrophages in the demyelinating corpus callosum. Consistently, locomotor function, as assessed by the beam walking test, was significantly better during the remyelination phase in Nox4-/- mice. Nox4 deletion did not affect autonomous growth of primary-culture oligodendrocyte precursor cells. Although Nox4 expression was higher in cultured macrophages than in microglia, Nox4-/- microglia and macrophages both showed enhanced phagocytic capacity of myelin debris and produced increased amounts of trophic factors upon phagocytosis. The expression of trophic factors was higher, in parallel with the accumulation of IBA1-positive cells, in the corpus callosum in Nox4-/- mice than that in wild-type mice. Nox4 deletion suppressed phagocytosis-induced increase in mitochondrial membrane potential, enhancing phagocytic capacity of macrophages. Treatment with culture medium of Nox4-/- macrophages engulfing myelin debris, but not that of Nox4-/- astrocytes, enhanced cell growth and expression of myelin-associated proteins in cultured oligodendrocyte precursor cells. Collectively, Nox4 deletion promoted remyelination after CPZ-induced demyelination by enhancing microglia/macrophage-mediated clearance of myelin debris and the production of trophic factors leading to oligodendrogenesis.
Collapse
Affiliation(s)
- Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Komori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Yoshikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Morris GP, Gowing EK, Courtney J, Coombe HE, King NE, Rewell SSJ, Howells DW, Clarkson AN, Sutherland BA. Vascular perfusion differs in two distinct PDGFRβ-positive zones within the ischemic core of male mice 2 weeks following photothrombotic stroke. J Neurosci Res 2023; 101:278-292. [PMID: 36412274 PMCID: PMC10952185 DOI: 10.1002/jnr.25146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/07/2022] [Accepted: 11/06/2022] [Indexed: 11/23/2022]
Abstract
Stroke therapy has largely focused on preventing damage and encouraging repair outside the ischemic core, as the core is considered irreparable. Recently, several studies have suggested endogenous responses within the core are important for limiting the spread of damage and enhancing recovery, but the role of blood flow and capillary pericytes in this process is unknown. Using the Rose Bengal photothrombotic model of stroke, we illustrate blood vessels are present in the ischemic core and peri-lesional regions 2 weeks post stroke in male mice. A FITC-albumin gel cast of the vasculature revealed perfusion of these vessels, suggesting cerebral blood flow (CBF) may be partially present, without vascular leakage. The length of these vessels is significantly reduced compared to uninjured regions, but the average width is greater, suggesting they are either larger vessels that survived the initial injury, smaller vessels that have expanded in size (i.e., arteriogenesis), or that neovascularization begins with larger vessels. Concurrently, we observed an increase in platelet-derived growth factor receptor beta (PDGFRβ, a marker of pericytes) expression within the ischemic core in two distinct patterns, one which resembles pericyte-derived fibrotic scarring at the edge of the core, and one which is vessel associated and may represent blood vessel recovery. We find little evidence for dividing cells on these intralesional blood vessels 2 weeks post stroke. Our study provides evidence flow is present in PDGFRβ-positive vessels in the ischemic core 2 weeks post stroke. We hypothesize intralesional CBF is important for limiting injury and for encouraging endogenous repair following cerebral ischemia.
Collapse
Affiliation(s)
- Gary P. Morris
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Emma K. Gowing
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Jo‐Maree Courtney
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Hannah E. Coombe
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Natalie E. King
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Sarah S. J. Rewell
- Florey Institute of Neuroscience and Mental HealthMelbourne Brain Centre, Austin CampusHeidelbergVictoriaAustralia
| | - David W. Howells
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New ZealandUniversity of OtagoDunedinNew Zealand
| | - Brad A. Sutherland
- Tasmanian School of Medicine, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
13
|
Different Contacted Cell Types Contribute to Acquiring Different Properties in Brain Microglial Cells upon Intercellular Interaction. Int J Mol Sci 2023; 24:ijms24021774. [PMID: 36675286 PMCID: PMC9861207 DOI: 10.3390/ijms24021774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Microglial cells (MGs), originally derived from progenitor cells in a yolk sac during early development, are glial cells located in a physiological and pathological brain. Since the brain contains various cell types, MGs could frequently interact with different cells, such as astrocytes (ACs), pericytes (PCs), and endothelial cells (ECs). However, how microglial traits are regulated via cell-cell interactions by ACs, PCs, or ECs and how they are different depending on the contacted cell types is unclear. This study aimed to clarify these questions by coculturing MGs with ACs, PCs, or ECs using mouse brain-derived cells, and microglial phenotypic changes were investigated under culture conditions that enabled direct cell-cell contact. Our results showed that ACs or PCs dose-dependently increased the number of MG, while ECs decreased it. Microarray and gene ontology analysis showed that cell fate-related genes (e.g., cell cycle, proliferation, growth, death, and apoptosis) of MGs were altered after a cell-cell contact with ACs, PCs, and ECs. Notably, microarray analysis showed that several genes, such as gap junction protein alpha 1 (Gja1), were prominently upregulated in MGs after coincubation with ACs, PCs, or ECs, regardless of cell types. Similarly, immunohistochemistry showed that an increased Gja1 expression was observed in MGs after coincubation with ACs, PCs, or ECs. Immunofluorescent and fluorescence-activated cell sorting analysis also showed that calcein-AM was transferred into MGs after coincubation with ACs, PCs, or ECs, confirming that intercellular interactions occurred between these cells. However, while Gja1 inhibition reduced the number of MGs after coincubation with ACs and PCs, this was increased after coincubation with ECs; this indicates that ACs and PCs positively regulate microglial numbers via Gja1, while ECs decrease it. Results show that ACs, PCs, or ECs exert both common and specific cell type-dependent effects on MGs through intercellular interactions. These findings also suggest that brain microglial phenotypes are different depending on their surrounding cell types, such as ACs, PCs, or ECs.
Collapse
|
14
|
Takashima M, Nakamura K, Kiyohara T, Wakisaka Y, Hidaka M, Takaki H, Yamanaka K, Shibahara T, Wakisaka M, Ago T, Kitazono T. Low-dose sodium-glucose cotransporter 2 inhibitor ameliorates ischemic brain injury in mice through pericyte protection without glucose-lowering effects. Commun Biol 2022; 5:653. [PMID: 35780235 PMCID: PMC9250510 DOI: 10.1038/s42003-022-03605-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 06/20/2022] [Indexed: 12/11/2022] Open
Abstract
Antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors have attracted attention for their cardiorenal-protective properties beyond their glucose-lowering effect. However, their benefits in ischemic stroke remain controversial. Here we show the effects of luseogliflozin, a selective SGLT2 inhibitor, in acute ischemic stroke, using a permanent middle cerebral artery occlusion (pMCAO) model in non-diabetic mice. Pretreatment with low-dose luseogliflozin, which does not affect blood glucose levels, significantly attenuated infarct volume, blood-brain barrier disruption, and motor dysfunction after pMCAO. SGLT2 was expressed predominantly in brain pericytes and was upregulated in peri- and intra-infarct areas. Notably, luseogliflozin pretreatment reduced pericyte loss in ischemic areas. In cultured pericytes, luseogliflozin activated AMP-activated protein kinase α and increased mitochondrial transcription factor A expression and number of mitochondria, conferring resistance to oxygen-glucose deprivation. Collectively, pre-stroke inhibition of SGLT2 induces ischemic tolerance in brain pericytes independent of the glucose-lowering effect, contributing to the attenuation of ischemic brain injury. Pre-treatment of non-diabetic mice with the SGLT2 inhibitor, luseogliflozin, reduces brain damage and neurological dysfunction following middle cerebral artery occlusion by acquiring ischemic tolerance in pericytes.
Collapse
Affiliation(s)
- Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masanori Wakisaka
- Wakisaka Internal Medicine Clinic, 1-24-19 Fujisaki, Sawara-ku, Fukuoka, 814-0013, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
15
|
Sato K, Nakagawa S, Morofuji Y, Matsunaga Y, Fujimoto T, Watanabe D, Izumo T, Niwa M, Walter FR, Vigh JP, Santa-Maria AR, Deli MA, Matsuo T. Effects of fasudil on blood-brain barrier integrity. Fluids Barriers CNS 2022; 19:43. [PMID: 35659272 PMCID: PMC9166508 DOI: 10.1186/s12987-022-00336-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Cerebral infarction accounts for 85% of all stroke cases. Even in an era of rapid and effective recanalization using an intravascular approach, the majority of patients have poor functional outcomes. Thus, there is an urgent need for the development of therapeutic agents to treat acute ischemic stroke. We evaluated the effect of fasudil, a Rho kinase inhibitor, on blood brain barrier (BBB) functions under normoxia or oxygen–glucose deprivation (OGD) conditions using a primary cell-based in vitro BBB model. Methods BBB models from rat primary cultures (brain capillary endothelial cells, astrocytes, and pericytes) were subjected to either normoxia or 6 h OGD/24 h reoxygenation. To assess the effects of fasudil on BBB functions, we evaluated real time impedance, transendothelial electrical resistance (TEER), sodium fluorescein permeability, and tight junction protein expression using western blotting. Lastly, to understand the observed protective mechanism on BBB functions by fasudil we examined the role of cyclooxygenase-2 and thromboxane A2 receptor agonist U-46619 in BBB-forming cells. Results We found that treatment with 0.3–30 µM of fasudil increased cellular impedance. Fasudil enhanced barrier properties in a concentration-dependent manner, as measured by an increased (TEER) and decreased permeability. Fasudil also increased the expression of tight junction protein claudin-5. Reductions in TEER and increased permeability were observed after OGD/reoxygenation exposure in mono- and co-culture models. The improvement in BBB integrity by fasudil was confirmed in both of the models, but was significantly higher in the co-culture than in the monoculture model. Treatment with U-46619 did not show significant changes in TEER in the monoculture model, whereas it showed a significant reduction in TEER in the co-culture model. Fasudil significantly improved the U-46619-induced TEER reduction in the co-culture models. Pericytes and astrocytes have opposite effects on endothelial cells and may contribute to endothelial injury in hyperacute ischemic stroke. Overall, fasudil protects the integrity of BBB both by a direct protective effect on endothelial cells and by a pathway mediated via pericytes and astrocytes. Conclusions Our findings suggest that fasudil is a BBB-protective agent against acute ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00336-w.
Collapse
Affiliation(s)
- Kei Sato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Pharmaceutical Care and Health Sciences, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Yuki Matsunaga
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Takashi Fujimoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Daisuke Watanabe
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd, Nagasaki, 852-8135, Japan
| | - Fruzsina R Walter
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Judit P Vigh
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Ana Raquel Santa-Maria
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary.,Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA, 02115, USA
| | - Maria A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Szeged, 6726, Hungary
| | - Takayuki Matsuo
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
16
|
Li SY, Johnson R, Smyth LC, Dragunow M. Platelet-derived growth factor signalling in neurovascular function and disease. Int J Biochem Cell Biol 2022; 145:106187. [PMID: 35217189 DOI: 10.1016/j.biocel.2022.106187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/25/2022]
Abstract
Platelet-derived growth factors are critical for cerebrovascular development and homeostasis. Abnormalities in this signalling pathway are implicated in neurological diseases, especially those where neurovascular dysfunction and neuroinflammation plays a prominent role in disease pathologies, such as stroke and Alzheimer's disease; the angiogenic nature of this pathway also draws its significance in brain malignancies such as glioblastoma where tumour angiogenesis is profuse. In this review, we provide an updated overview of the actions of the platelet-derived growth factors on neurovascular function, their role in the regulation of perivascular cell types expressing the cognate receptors, neurological diseases associated with aberrance in signalling, and highlight the clinical relevance and therapeutic potentials of this pathway for central nervous system diseases.
Collapse
Affiliation(s)
- Susan Ys Li
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Rebecca Johnson
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| | - Leon Cd Smyth
- Center for Brain Immunology and Glia, Department of Pathology and Immunology, Washington University in St Louis, MO, USA.
| | - Mike Dragunow
- Department of Pharmacology and Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
17
|
Alia C, Cangi D, Massa V, Salluzzo M, Vignozzi L, Caleo M, Spalletti C. Cell-to-Cell Interactions Mediating Functional Recovery after Stroke. Cells 2021; 10:3050. [PMID: 34831273 PMCID: PMC8623942 DOI: 10.3390/cells10113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Ischemic damage in brain tissue triggers a cascade of molecular and structural plastic changes, thus influencing a wide range of cell-to-cell interactions. Understanding and manipulating this scenario of intercellular connections is the Holy Grail for post-stroke neurorehabilitation. Here, we discuss the main findings in the literature related to post-stroke alterations in cell-to-cell interactions, which may be either detrimental or supportive for functional recovery. We consider both neural and non-neural cells, starting from astrocytes and reactive astrogliosis and moving to the roles of the oligodendrocytes in the support of vulnerable neurons and sprouting inhibition. We discuss the controversial role of microglia in neural inflammation after injury and we conclude with the description of post-stroke alterations in pyramidal and GABAergic cells interactions. For all of these sections, we review not only the spontaneous evolution in cellular interactions after ischemic injury, but also the experimental strategies which have targeted these interactions and that are inspiring novel therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Claudia Alia
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Daniele Cangi
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Verediana Massa
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| | - Marco Salluzzo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Neurosciences, Psychology, Drugs and Child Health Area, School of Psychology, University of Florence, 50121 Florence, Italy;
| | - Livia Vignozzi
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
- Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy;
| | - Cristina Spalletti
- Neuroscience Institute, National Research Council (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy; (V.M.); (M.S.); (M.C.); (C.S.)
| |
Collapse
|
18
|
Takagishi S, Arimura K, Murata M, Iwaki K, Okuda T, Ido K, Nishimura A, Narahara S, Kawano T, Iihara K. Protein Nanoparticles Modified with PDGF-B as a Novel Therapy After Acute Cerebral Infarction. eNeuro 2021; 8:ENEURO.0098-21.2021. [PMID: 34462309 PMCID: PMC8445038 DOI: 10.1523/eneuro.0098-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment options for cerebral infarction beyond the time window of reperfusion therapy are limited, and novel approaches are needed. PDGF-B is considered neuroprotective; however, it is difficult to administer at effective concentrations to infarct areas. Nanoparticles (NPs) are small and stable; therefore, we modified PDGF-B to the surface of naturally occurring heat shock protein NPs (HSPNPs) to examine its therapeutic effect in cerebral infarction. PDGF-B modified HSPNPs (PDGF-B HSPNPs) were injected 1 d after transient middle cerebral artery occlusion (t-MCAO) in CB-17 model mice. We analyzed the infarct volume and motor functional recovery at 3 and 7 d. PDGF-B HSPNPs were specifically distributed in the infarct area, and compared with HSPNPs alone, they significantly reduced infarct volumes and improved neurologic function 3 and 7 d after administration. PDGF-B HSPNP administration was associated with strong phosphorylation of Akt in infarct areas and significantly increased neurotrophin (NT)-3 production as well as reduced cell apoptosis compared with HSPNPs alone. Moreover, astrogliosis in peri-infarct area was significantly upregulated with PDGF-B HSPNPs compared with HSPNPs alone. Treatment with PDGF-B HSPNPs might be a novel approach for treating cerebral infarction.
Collapse
Affiliation(s)
- Soh Takagishi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuma Iwaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomohiro Okuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Ido
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sayoko Narahara
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- National Cerebral and Cardiovascular Center, Suita, Japan, Osaka 564-8565, Japan
| |
Collapse
|
19
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
20
|
Yu S, Lam C, Shinde S, Kuczynski AM, Carlson HL, Dukelow SP, Brooks BL, Kirton A. Perilesional Gliosis Is Associated with Outcome after Perinatal Stroke. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractPerinatal ischemic stroke results in focal brain injury and life-long disability. Hemiplegic cerebral palsy and additional sequelae are common. With no prevention strategies, improving outcomes depends on understanding brain development. Reactive astrogliosis is a hallmark of brain injury that has been associated with outcomes but is unstudied in perinatal stroke. In this article, we hypothesized that gliosis was quantifiable and its extent would inversely correlate with clinical motor function. This was a population-based, retrospective, and cross-sectional study. Children with perinatal arterial ischemic stroke (AIS) or periventricular venous infarction (PVI) with magnetic resonance (MR) imaging were included. An image thresholding technique based on image intensity was utilized to quantify the degree of chronic gliosis on T2-weighted sequences. Gliosis scores were corrected for infarct volume and compared with the Assisting Hand and Melbourne Assessments (AHA and MA), neuropsychological profiles, and robotic measures. In total, 42 children were included: 25 with AIS and 17 with PVI (median = 14.0 years, range: 6.3–19 years, 63% males). Gliosis was quantifiable in all scans and scores were highly reliable. Gliosis scores as percentage of brain volume ranged from 0.3 to 3.2% and were comparable between stroke types. Higher gliosis scores were associated with better motor function for all three outcomes in the AIS group, but no association was observed for PVI. Gliosis can be objectively quantified in children with perinatal stroke. Associations with motor outcome in arterial but not venous strokes suggest differing glial responses may play a role in tissue remodeling and developmental plasticity following early focal brain injury.
Collapse
Affiliation(s)
- Sabrina Yu
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Charissa Lam
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | - Siddharth Shinde
- Department of Pediatrics, University of Calgary, Calgary, Canada
| | | | - Helen L. Carlson
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Brian L. Brooks
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Psychology, University of Calgary, Calgary, Canada
| | - Adam Kirton
- Department of Pediatrics, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
21
|
Isorhamnetin Alleviates High Glucose-Aggravated Inflammatory Response and Apoptosis in Oxygen-Glucose Deprivation and Reoxygenation-Induced HT22 Hippocampal Neurons Through Akt/SIRT1/Nrf2/HO-1 Signaling Pathway. Inflammation 2021; 44:1993-2005. [PMID: 33999329 DOI: 10.1007/s10753-021-01476-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
This study is aimed at exploring the potential of isorhamnetin in protection against diabetes-exacerbated ischemia/reperfusion-induced brain injury and elucidating its action mechanism. After establishment of the model of high glucose (HG)-aggravated oxygen-glucose deprivation and reoxygenation (OGD/R), HT22 cell viability was detected by CCK-8. Lactate dehydrogenase (LDH) activity, casapase-3 activity, and oxidative stress-related markers in HT22 cells were detected by corresponding commercial kits. The apoptosis of HG-treated HT22 cells following OGD/R was observed with TUNEL staining. The level of pro-inflammatory cytokines was examined by ELISA. The expression of Akt/SIRT1/Nrf2/HO-1 signaling-related proteins was assayed by Western blot. The results showed that HG noticeably worsened the OGD/R-induced apoptosis of HT22 cells. Isorhamnetin relieved the HG-aggravated OGD/R-induced apoptosis, inflammatory response, and oxidative stress of HT22 cells. Isorhamnetin alleviated the HG-aggravated OGD/R injury in HT22 cells through Akt/SIRT1/Nrf2/HO-1 signaling pathway. Meanwhile, treatment with Akt inhibitor LY294002 reversed the protective effects of isorhamnetin against HG-aggravated OGD/R injury in HT22 cells. In a conclusion, Isorhamnetin alleviates HG-aggravated OGD/R in HT22 hippocampal neurons through Akt/SIRT1/Nrf2/HO-1 signaling pathway.
Collapse
|
22
|
Tatebayashi K, Yoshimura S, Sakai N, Uchida K, Kageyama H, Yamagami H, Morimoto T. Relationship Between Acute Neurological Function and Long-Term Prognosis in Patients with Large Arterial Occlusions. J Stroke Cerebrovasc Dis 2021; 30:105625. [PMID: 33497935 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/17/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To clarify the relationship between early neurological symptoms and long-term functional outcomes of acute ischemic stroke, which would be beneficial for patient management and determining clinical study criteria of novel therapeutic interventions. MATERIALS AND METHODS We retrieved data from the Recovery by Endovascular Salvage for Cerebral Ultra-acute Embolism Japan Registry 2 (RESCUE-Japan Registry 2) and investigated the association between 24- and 72-hour National Institutes of Health Stroke Scale (NIHSS) and 90-day modified Rankin Scale (mRS) scores, stratified by the site of occlusion (carotid or vertebrobasilar circulatory large arterial occlusion [ACO or PCO, respectively]) and endovascular recanalization therapy (EVT) performance. We examined the correlation using Spearman's rank correlation coefficient (rho). Predictive accuracies of 24- and 72-hour NIHSS scores for good outcomes at 90 days (defined as mRS score of 0-2) were evaluated by receiver operating characteristic (ROC) analyses and the corresponding areas under the curves (AUCs). RESULTS Among the 2420 patients, 1745 had ACO (971 with EVT, 774 without EVT) and 263 had PCO (127 with EVT, 136 without EVT). The 24- and 72-hour NIHSS scores were significantly associated with 90-day mRS scores and accurately predicted good outcomes (all rhos ≥0.76, all AUCs ≥0.86). In the ACO group, there were differences in rho and AUC depending on EVT performance and the time from onset to NIHSS acquisition, but no differences were observed in the PCO group. CONCLUSIONS EVT performance and time frame should be considered when determining the criteria of novel therapeutic interventions, especially for patients with ACO.
Collapse
Affiliation(s)
- Kotaro Tatebayashi
- Hyogo College of Medicine, Department of Neurosurgery, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Shinichi Yoshimura
- Hyogo College of Medicine, Department of Neurosurgery, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Nobuyuki Sakai
- Kobe City Medical Center General Hospital, Department of Neurosurgery, Kobe City, Japan.
| | - Kazutaka Uchida
- Hyogo College of Medicine, Department of Neurosurgery, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroto Kageyama
- Hyogo College of Medicine, Department of Neurosurgery, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Hiroshi Yamagami
- National Hospital Organization Osaka National Hospital, Division of Stroke Medicine, Osaka, Japan.
| | - Takeshi Morimoto
- Department of Clinical Epidemiology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
23
|
Wang L, Xiong X, Zhang L, Shen J. Neurovascular Unit: A critical role in ischemic stroke. CNS Neurosci Ther 2021; 27:7-16. [PMID: 33389780 PMCID: PMC7804897 DOI: 10.1111/cns.13561] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke (IS), a common cerebrovascular disease, results from a sudden blockage of a blood vessel in the brain, thereby restricting blood supply to the area in question, and making a significantly negative impact on human health. Unfortunately, current treatments, that are mainly based on a recanalization of occluded blood vessels, are insufficient or inaccessible to many stroke patients. Recently, the profound influence of the neurovascular unit (NVU) on recanalization and the prognosis of IS have become better understood; in‐depth studies of the NVU have also provided novel approaches for IS treatment. In this article, we review the intimate connections between the changes in the NVU and IS outcomes, and discuss possible new management strategies having practical significance to IS. We discuss the concept of the NVU, as well as its roles in IS blood‐brain barrier regulation, cell preservation, inflammatory immune response, and neurovascular repair. Besides, we also summarize the influence of noncoding RNAs in NVU, and IS therapies targeting the NVU. We conclude that both the pathophysiological and neurovascular repair processes of IS are strongly associated with the homeostatic state of the NVU and that further research into therapies directed at the NVU could expand the range of treatments available for IS.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Neurosurgery, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luyuan Zhang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Shen
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Kuriakose D, Xiao Z. Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. Int J Mol Sci 2020; 21:E7609. [PMID: 33076218 PMCID: PMC7589849 DOI: 10.3390/ijms21207609] [Citation(s) in RCA: 457] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Stroke is the second leading cause of death and a major contributor to disability worldwide. The prevalence of stroke is highest in developing countries, with ischemic stroke being the most common type. Considerable progress has been made in our understanding of the pathophysiology of stroke and the underlying mechanisms leading to ischemic insult. Stroke therapy primarily focuses on restoring blood flow to the brain and treating stroke-induced neurological damage. Lack of success in recent clinical trials has led to significant refinement of animal models, focus-driven study design and use of new technologies in stroke research. Simultaneously, despite progress in stroke management, post-stroke care exerts a substantial impact on families, the healthcare system and the economy. Improvements in pre-clinical and clinical care are likely to underpin successful stroke treatment, recovery, rehabilitation and prevention. In this review, we focus on the pathophysiology of stroke, major advances in the identification of therapeutic targets and recent trends in stroke research.
Collapse
Affiliation(s)
| | - Zhicheng Xiao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
25
|
Shibahara T, Ago T, Tachibana M, Nakamura K, Yamanaka K, Kuroda J, Wakisaka Y, Kitazono T. Reciprocal Interaction Between Pericytes and Macrophage in Poststroke Tissue Repair and Functional Recovery. Stroke 2020; 51:3095-3106. [PMID: 32933419 DOI: 10.1161/strokeaha.120.029827] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Poststroke tissue repair, comprised of macrophage-mediated clearance of myelin debris and pericyte-mediated fibrotic response within the infarct area, is an important process for functional recovery. Herein, we investigated the reciprocal interaction between pericytes and macrophages during poststroke repair and functional recovery. METHODS We performed a permanent middle cerebral artery occlusion in both wild-type and pericyte-deficient PDGFRβ (platelet-derived growth factor receptor β) heterozygous knockout (Pdgfrb+/-) mice and compared histological changes and neurological functions between the 2 groups. We also examined the effects of conditioned medium harvested from cultured pericytes, or bone marrow-derived macrophages, on the functions of other cell types. RESULTS Localization of PDGFRβ-positive pericytes and F4/80-positive macrophages was temporally and spatially very similar following permanent middle cerebral artery occlusion. Intrainfarct accumulation of macrophages was significantly attenuated in Pdgfrb+/- mice. Intrainfarct pericytes expressed CCL2 (C-C motif ligand 2) and CSF1 (colony stimulating factor 1), both of which were significantly lower in Pdgfrb+/- mice. Cultured pericytes expressed Ccl2 and Csf1, both of which were significantly increased by PDGF-BB and suppressed by a PDGFRβ inhibitor. Pericyte conditioned medium significantly enhanced migration and proliferation of bone marrow-derived macrophages. Poststroke clearance of myelin debris was significantly attenuated in Pdgfrb+/- mice. Pericyte conditioned medium promoted phagocytic activity in bone marrow-derived macrophages, also enhancing both STAT3 (signal transducer and activator of transcription 3) phosphorylation and expression of scavenger receptors, Msr1 and Lrp1. Macrophages processing myelin debris produced trophic factors, enhancing PDGFRβ signaling in pericytes leading to the production of ECM (extracellular matrix) proteins and oligodendrogenesis. Functional recovery was significantly attenuated in Pdgfrb+/- mice, parallel with the extent of tissue repair. CONCLUSIONS A reciprocal interaction between pericytes and macrophages is important for poststroke tissue repair and functional recovery.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
26
|
Nakagomi T, Tanaka Y, Nakagomi N, Matsuyama T, Yoshimura S. How Long Are Reperfusion Therapies Beneficial for Patients after Stroke Onset? Lessons from Lethal Ischemia Following Early Reperfusion in a Mouse Model of Stroke. Int J Mol Sci 2020; 21:ijms21176360. [PMID: 32887241 PMCID: PMC7504064 DOI: 10.3390/ijms21176360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke caused by cerebral artery occlusion induces neurological deficits because of cell damage or death in the central nervous system. Given the recent therapeutic advances in reperfusion therapies, some patients can now recover from an ischemic stroke with no sequelae. Currently, reperfusion therapies focus on rescuing neural lineage cells that survive in spite of decreases in cerebral blood flow. However, vascular lineage cells are known to be more resistant to ischemia/hypoxia than neural lineage cells. This indicates that ischemic areas of the brain experience neural cell death but without vascular cell death. Emerging evidence suggests that if a vascular cell-mediated healing system is present within ischemic areas following reperfusion, the therapeutic time window can be extended for patients with stroke. In this review, we present our comments on this subject based upon recent findings from lethal ischemia following reperfusion in a mouse model of stroke.
Collapse
Affiliation(s)
- Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Correspondence: ; Tel.: +81-798-45-6821; Fax: +81-798-45-6823
| | - Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| | - Shinichi Yoshimura
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan;
| |
Collapse
|
27
|
Tanaka Y, Nakagomi N, Doe N, Nakano-Doi A, Sawano T, Takagi T, Matsuyama T, Yoshimura S, Nakagomi T. Early Reperfusion Following Ischemic Stroke Provides Beneficial Effects, Even After Lethal Ischemia with Mature Neural Cell Death. Cells 2020; 9:cells9061374. [PMID: 32492968 PMCID: PMC7349270 DOI: 10.3390/cells9061374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Ischemic stroke is a critical disease caused by cerebral artery occlusion in the central nervous system (CNS). Recent therapeutic advances, such as neuroendovascular intervention and thrombolytic therapy, have allowed recanalization of occluded brain arteries in an increasing number of stroke patients. Although previous studies have focused on rescuing neural cells that still survive despite decreased blood flow, expanding the therapeutic time window may allow more patients to undergo reperfusion in the near future, even after lethal ischemia, which is characterized by death of mature neural cells, such as neurons and glia. However, it remains unclear whether early reperfusion following lethal ischemia results in positive outcomes. The present study used two ischemic mouse models—90-min transient middle cerebral artery occlusion (t-MCAO) paired with reperfusion to induce lethal ischemia and permanent middle cerebral artery occlusion (p-MCAO)—to investigate the effect of early reperfusion up to 8 w following MCAO. Although early reperfusion following 90-min t-MCAO did not rescue mature neural cells, it preserved the vascular cells within the ischemic areas at 1 d following 90-min t-MCAO compared to that following p-MCAO. In addition, early reperfusion facilitated the healing processes, including not only vascular but also neural repair, during acute and chronic periods and improved recovery. Furthermore, compared with p-MCAO, early reperfusion after t-MCAO prevented behavioral symptoms of neurological deficits without increasing negative complications, including hemorrhagic transformation and mortality. These results indicate that early reperfusion provides beneficial effects presumably via cytoprotective and regenerative mechanisms in the CNS, suggesting that it may be useful for stroke patients that experienced lethal ischemia.
Collapse
Affiliation(s)
- Yasue Tanaka
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Nami Nakagomi
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Nobutaka Doe
- General Education Center, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo 650-8530, Japan;
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan;
| | - Toshinori Takagi
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
| | - Tomohiro Matsuyama
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan; (Y.T.); (T.T.)
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine, 1-1 Mukogawacho, Nishinomiya, Hyogo 663-8501, Japan;
- Correspondence: (S.Y.); (T.N.); Tel.: +81-798-45-6455 (S.Y.); +81-798-45-6821 (T.N.)
| |
Collapse
|
28
|
Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. eNeuro 2020; 7:ENEURO.0474-19.2020. [PMID: 32046974 PMCID: PMC7070447 DOI: 10.1523/eneuro.0474-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/16/2022] Open
Abstract
Post-stroke functional recovery can occur spontaneously during the subacute phase; however, how post-stroke fibrotic repair affects functional recovery is highly debated. Platelet-derived growth factor receptor β (PDGFRβ)-expressing pericytes are responsible for post-stroke fibrotic repair within infarct areas; therefore, we examined peri-infarct neural reorganization and functional recovery after permanent middle cerebral artery occlusion (pMCAO) using pericyte-deficient Pdgfrb+/- mice. Time-dependent reduction of infarct area sizes, i.e., repair, was significantly impaired in Pdgfrb+/- mice with recovery of cerebral blood flow (CBF) in ischemic areas attenuated by defective leptomeningeal arteriogenesis and intrainfarct angiogenesis. Peri-infarct astrogliosis, accompanied by increased STAT3 phosphorylation, was attenuated in Pdgfrb+/- mice. Pericyte-conditioned medium (PCM), particularly when treated with platelet-derived growth factor subunit B (PDGFB) homodimer (PDGF-BB; PCM/PDGF-BB), activated STAT3 and enhanced the proliferation and activity of cultured astrocytes. Although peri-infarct proliferation of oligodendrocyte (OL) precursor cells (OPCs) was induced promptly after pMCAO regardless of intrainfarct repair, OPC differentiation and remyelination were significantly attenuated in Pdgfrb+/- mice. Consistently, astrocyte-CM (ACM) promoted OPC differentiation and myelination, which were enhanced remarkably by adding PCM/PDGF-BB to the medium. Post-stroke functional recovery correlated well with the extent and process of intrainfarct repair and peri-infarct oligodendrogenesis. Overall, pericyte-mediated intrainfarct fibrotic repair through PDGFRβ may promote functional recovery through enhancement of peri-infarct oligodendrogenesis as well as astrogliosis after acute ischemic stroke.
Collapse
|
29
|
Matsuo R, Ago T, Kiyuna F, Sato N, Nakamura K, Kuroda J, Wakisaka Y, Kitazono T. Smoking Status and Functional Outcomes After Acute Ischemic Stroke. Stroke 2020; 51:846-852. [DOI: 10.1161/strokeaha.119.027230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background and Purpose—
Smoking is an established risk factor for stroke; however, it is uncertain whether prestroke smoking status affects clinical outcomes of acute ischemic stroke. This study aimed to elucidate the association between smoking status and functional outcomes after acute ischemic stroke.
Methods—
Using a multicenter hospital-based stroke registry in Japan, we investigated 10 825 patients with acute ischemic stroke hospitalized between July 2007 and December 2017 who had been independent before stroke onset. Smoking status was categorized into those who had never smoked (nonsmokers), former smokers, and current smokers. Clinical outcomes included poor functional outcome (modified Rankin Scale score ≥2) and functional dependence (modified Rankin Scale score 2–5) at 3 months. We adjusted for potential confounding factors using a logistic regression analysis.
Results—
The mean age of patients was 70.2±12.2 years, and 37.0% were women. There were 4396 (42.7%) nonsmokers, 3328 (32.4%) former smokers, and 2561 (24.9%) current smokers. The odds ratio (95% CI) for poor functional outcome after adjusting for confounders increased in current smokers (1.29 [1.11–1.49] versus nonsmokers) but not in former smokers (1.05 [0.92–1.21] versus nonsmokers). However, among the former smokers, the odds ratio of poor functional outcome was higher in those who quit smoking within 2 years of stroke onset (1.75 [1.15–2.66] versus nonsmokers). The risk of poor functional outcome tended to increase as the number of daily cigarettes increased in current smokers (
P
for trend=0.002). All these associations were maintained for functional dependence.
Conclusions—
Current and recent smoking is associated with an increased risk of unfavorable functional outcomes at 3 months after acute ischemic stroke.
Registration—
URL:
http://www.fukuoka-stroke.net/english/index.html
. Unique identifier: 000000800.
Collapse
Affiliation(s)
- Ryu Matsuo
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
- Department of Health Care Administration and Management, Kyushu University, Fukuoka, Japan. (R.M., F.K., N.S.)
| | - Tetsuro Ago
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
| | - Fumi Kiyuna
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
- Department of Health Care Administration and Management, Kyushu University, Fukuoka, Japan. (R.M., F.K., N.S.)
| | - Noriko Sato
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
- Department of Health Care Administration and Management, Kyushu University, Fukuoka, Japan. (R.M., F.K., N.S.)
| | - Kuniyuki Nakamura
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
| | - Junya Kuroda
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
| | - Yoshinobu Wakisaka
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
| | - Takanari Kitazono
- From the Department of Medicine and Clinical Science, Kyushu University, Fukuoka, Japan. (R.M., T.A., F.K., N.S., K.N., J.K., Y.W., T.K.)
- Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. (T.K.)
| | | |
Collapse
|
30
|
Ago T. [Why are pericytes important for brain functions?]. Rinsho Shinkeigaku 2019; 59:707-715. [PMID: 31656270 DOI: 10.5692/clinicalneurol.cn-001357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pericytes are mural cells embedded in the basal membrane surrounding endothelial cells in capillary and small vessels (from precapillary arterioles to postcapillary venules). They exist with a high coverage ratio to endothelial cells in the brain and play crucial roles in the formation and maintenance of the blood-brain barrier and the control of blood flow through a close interaction with endothelial cells. Thus, intactness of pericyte is absolutely needed for neuronal/brain functions. Ageing, life-style diseases, hypoperfusion/ischemia, drugs, and genetic factors can primarily cause pericyte dysfunctions, thereby leading to the development or progression of various brain disorders, including cerebrovascular diseases. Because pericytes also play an important role in tissue repair after brain injuries, they have received much attention as a therapeutic target even from the standpoint of functional recovery.
Collapse
Affiliation(s)
- Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
31
|
Hei Y, Zhang X, Chen R, Zhou Y, Gao D, Liu W. High-Mobility Group Box 1 Neutralization Prevents Chronic Cerebral Hypoperfusion-Induced Optic Tract Injuries in the White Matter Associated with Down-regulation of Inflammatory Responses. Cell Mol Neurobiol 2019; 39:1051-1060. [PMID: 31197745 DOI: 10.1007/s10571-019-00702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
Chronic cerebral hypoperfusion (CCH)-induced white matter lesions (WMLs) are region-specific with the optic tract (OT) displaying the most severe damages and leading to visual-based behavioral impairment. Previously we have demonstrated that anti-high-mobility group box 1 (HMGB1) neutralizing antibody (Ab) prevents CCH-induced hippocampal damages via inhibition of neuroinflammation. Here we tested the protective role of the Ab on CCH-induced OT injuries. Rats were treated with permanent occlusion of common carotid arteries (2-VO) or a sham surgery, and then administered with PBS, anti-HMGB1 Ab, or paired control Ab. Pupillary light reflex examination, visual water maze, and tapered beam-walking were performed 28 days post-surgery to investigate the behavioral deficits. Meanwhile, WMLs were measured by Klüver-Barrera (KB) and H&E staining, and glial activation was further assessed to evaluate inflammatory responses in OT. Results revealed that anti-HMGB1 Ab ameliorated the morphological damages (grade scores, vacuoles, and thickness) in OT area and preserved visual abilities. Additionally, the increased levels of inflammatory responses and expressions of TLR4 and NF-κB p65 and phosphorylated NF-κB p65 (p-p65) in OT area were partly down-regulated after anti-HMGB1 treatment. Taken together, these findings suggested that HMGB1 neutralization could ease OT injuries and visual-guided behavioral deficits via suppressing inflammatory responses.
Collapse
Affiliation(s)
- Yue Hei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Rong Chen
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Yuefei Zhou
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Dakuan Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China
| | - Weiping Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, No.17 Changle West Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
32
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
33
|
Nakamura K, Ikeuchi T, Nara K, Rhodes CS, Zhang P, Chiba Y, Kazuno S, Miura Y, Ago T, Arikawa-Hirasawa E, Mukouyama YS, Yamada Y. Perlecan regulates pericyte dynamics in the maintenance and repair of the blood-brain barrier. J Cell Biol 2019; 218:3506-3525. [PMID: 31541017 PMCID: PMC6781430 DOI: 10.1083/jcb.201807178] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/10/2019] [Accepted: 07/31/2019] [Indexed: 01/24/2023] Open
Abstract
Ischemic stroke causes blood-brain barrier (BBB) breakdown due to significant damage to the integrity of BBB components. Recent studies have highlighted the importance of pericytes in the repair process of BBB functions triggered by PDGFRβ up-regulation. Here, we show that perlecan, a major heparan sulfate proteoglycan of basement membranes, aids in BBB maintenance and repair through pericyte interactions. Using a transient middle cerebral artery occlusion model, we found larger infarct volumes and more BBB leakage in conditional perlecan (Hspg2)-deficient (Hspg2 - / - -TG) mice than in control mice. Control mice showed increased numbers of pericytes in the ischemic lesion, whereas Hspg2 - / - -TG mice did not. At the mechanistic level, pericytes attached to recombinant perlecan C-terminal domain V (perlecan DV, endorepellin). Perlecan DV enhanced the PDGF-BB-induced phosphorylation of PDGFRβ, SHP-2, and FAK partially through integrin α5β1 and promoted pericyte migration. Perlecan therefore appears to regulate pericyte recruitment through the cooperative functioning of PDGFRβ and integrin α5β1 to support BBB maintenance and repair following ischemic stroke.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD .,Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Ikeuchi
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Kazuki Nara
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD.,Tohoku University School of Medicine, Sendai, Japan
| | - Craig S Rhodes
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Yuta Chiba
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eri Arikawa-Hirasawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Affiliation(s)
- Turgay Dalkara
- From the Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; and Department of Radiology, Massachusetts General Hospital, Harvard University, Boston
| |
Collapse
|
35
|
Kang IN, Lee CY, Tan SC. Selection of best reference genes for qRT-PCR analysis of human neural stem cells preconditioned with hypoxia or baicalein-enriched fraction extracted from Oroxylum indicum medicinal plant. Heliyon 2019; 5:e02156. [PMID: 31388587 PMCID: PMC6676056 DOI: 10.1016/j.heliyon.2019.e02156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Whilst the potential of neural stem cell (NSC)-based treatment is recognized worldwide and seems to offer a promising therapeutic option for stroke treatments, there is currently no full understanding regarding the effects of hypoxic and baicalein-enriched fraction (BEF) preconditioning approaches on the therapeutic potential of these cells for stroke. The potential of preconditioned NSC can be determined based on the expression of several key neuroprotective genes using qRT-PCR technique. However, prior to that, it is imperative and extremely important to carefully select reference gene(s) for accurate qRT-PCR data normalization to avoid error in data interpretation. This study aimed to evaluate the stability of ten candidate reference genes via comprehensive analysis using three algorithms software: geNorm, NormFinder and BestKeeper. Our results revealed that HPRT1 and RPL13A were the most reliable reference genes for BEF-preconditioned NSCs, but ironically, HPRT1 was ranked as the least stable reference gene for hypoxic-preconditioned NSCs. On the other hand, RPLP1 and RPL13A were selected as the most stably expressed pair of reference genes for hypoxic-preconditioned NSCs. In conclusion, this study has pointed out the importance of identifying valid reference genes and has presented the first significant validation on best reference genes recommended for qRT-PCR study involves NSC preconditioned with hypoxia or with BEF extracted from Oroxylum indicum medicinal plant.
Collapse
Affiliation(s)
- In Nee Kang
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Chong Yew Lee
- School of Pharmaceutical Sciences, Main Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Suat Cheng Tan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
36
|
Faheem H, Mansour A, Elkordy A, Rashad S, Shebl M, Madi M, Elwy S, Niizuma K, Tominaga T. Neuroprotective effects of minocycline and progesterone on white matter injury after focal cerebral ischemia. J Clin Neurosci 2019; 64:206-213. [DOI: 10.1016/j.jocn.2019.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 04/12/2019] [Indexed: 11/25/2022]
|
37
|
Komori M, Ago T, Wakisaka Y, Nakamura K, Tachibana M, Yoshikawa Y, Shibahara T, Yamanaka K, Kuroda J, Kitazono T. Early initiation of a factor Xa inhibitor can attenuate tissue repair and neurorestoration after middle cerebral artery occlusion. Brain Res 2019; 1718:201-211. [PMID: 31103522 DOI: 10.1016/j.brainres.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
Abstract
The timing of anti-coagulation therapy initiation after acute cardioembolic stroke remains controversial. We investigated the effects of post-stroke administration of a factor Xa inhibitor in mice, focusing on tissue repair and functional restoration outcomes. We initiated administration of rivaroxaban, a Xa inhibitor, immediately after permanent distal middle cerebral artery occlusion (pMCAO) in CB-17 mice harboring few leptomeningeal anastomoses at baseline. Rivaroxaban initiated immediately after pMCAO hindered the recovery of blood flow in ischemic areas by inhibiting leptomeningeal anastomosis development, and led to impaired restoration of neurologic functions with less extensive peri-infarct astrogliosis. Within infarct areas, angiogenesis and fibrotic responses were attenuated in rivaroxaban-fed mice. Furthermore, inflammatory responses, including the accumulation of neutrophils and monocytes/macrophages, local secretion of pro-inflammatory cytokines, and breakdown of the blood-brain barrier, were enhanced in infarct areas in mice treated immediately with rivaroxaban following pMCAO. The detrimental effects were not found when rivaroxaban was initiated after transient MCAO or on day 7 after pMCAO. Collectively, early post-stroke initiation of a factor Xa inhibitor may suppress leptomeningeal anastomosis development and blood flow recovery in ischemic areas, thereby resulting in attenuated tissue repair and functional restoration unless occluded large arteries are successfully recanalized.
Collapse
Affiliation(s)
- Motohiro Komori
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoji Yoshikawa
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
38
|
Ravindran S, Kurian GA. Eventual analysis of global cerebral ischemia-reperfusion injury in rat brain: a paradigm of a shift in stress and its influence on cognitive functions. Cell Stress Chaperones 2019; 24:581-594. [PMID: 31025239 PMCID: PMC6527675 DOI: 10.1007/s12192-019-00990-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 12/31/2022] Open
Abstract
Cognitive issues in stroke arise as a result of reperfusion of a clogged artery, which is reported to exacerbate the injury in the brain leading to oxidative stress. Through the present work, we try to understand the regional variations across brain regions mainly cortex and striatum associated with the progression of ischemia-reperfusion injury (IRI). In a rat model of IRI, the influence of varying ischemia and reperfusion times on the biochemical phases across the brain regions were monitored. IRI resulted in the blood-brain barrier disruption and developed mild areas of risk. The brain's tolerance towards IRI indicated a progressive trend in the injury and apoptosis from ischemia to reperfusion that was supported by the activities of plasma lactate dehydrogenase and tissue caspase-3. Cognitive impairment in these rats was an implication of cellular oxidative stress (higher lipid peroxidation and lower antioxidant enzyme activity) that persisted by 24-h reperfusion. The oxidative stress was prominent in the cortex than the striatum and was supported by the lower ATP level. Upregulated Mn-SOD expression leading to a preserved mitochondria in the striatum could be attributed to the regional protection. Overall, a progression of IRI was observed from striatum to cortex leading to 5-day cognitive decline.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| | - Gino A. Kurian
- Vascular Biology Laboratory, SASTRA Deemed University, Thanjavur, Tamil Nadu 613401 India
| |
Collapse
|
39
|
McConnell HL, Li Z, Woltjer RL, Mishra A. Astrocyte dysfunction and neurovascular impairment in neurological disorders: Correlation or causation? Neurochem Int 2019; 128:70-84. [PMID: 30986503 DOI: 10.1016/j.neuint.2019.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The neurovascular unit, consisting of neurons, astrocytes, and vascular cells, has become the focus of much discussion in the last two decades and emerging literature now suggests an association between neurovascular dysfunction and neurological disorders. In this review, we synthesize the known and suspected contributions of astrocytes to neurovascular dysfunction in disease. Throughout the brain, astrocytes are centrally positioned to dynamically mediate interactions between neurons and the cerebral vasculature, and play key roles in blood-brain barrier maintenance and neurovascular coupling. It is increasingly apparent that the changes in astrocytes in response to a variety of insults to brain tissue -collectively referred to as "reactive astrogliosis" - are not just an epiphenomenon restricted to morphological alterations, but comprise functional changes in astrocytes that contribute to the phenotype of neurological diseases with both beneficial and detrimental effects. In the context of the neurovascular unit, astrocyte dysfunction accompanies, and may contribute to, blood-brain barrier impairment and neurovascular dysregulation, highlighting the need to determine the exact nature of the relationship between astrocyte dysfunction and neurovascular impairments. Targeting astrocytes may represent a new strategy in combinatorial therapeutics for preventing the mismatch of energy supply and demand that often accompanies neurological disorders.
Collapse
Affiliation(s)
- Heather L McConnell
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhou Li
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Randall L Woltjer
- Department of Neuropathology, Oregon Health & Science University, Portland, OR, United States
| | - Anusha Mishra
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
40
|
Carbone F, Busto G, Padroni M, Bernardoni A, Colagrande S, Dallegri F, Montecucco F, Fainardi E. Radiologic Cerebral Reperfusion at 24 h Predicts Good Clinical Outcome. Transl Stroke Res 2019; 10:178-188. [PMID: 29949087 DOI: 10.1007/s12975-018-0637-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/08/2018] [Accepted: 06/04/2018] [Indexed: 12/11/2022]
Abstract
Cerebral reperfusion and arterial recanalization are radiological features of the effectiveness of thrombolysis in acute ischemic stroke (AIS) patients. Here, an investigation of the prognostic role of early recanalization/reperfusion on clinical outcome was performed. In AIS patients (n = 55), baseline computerized tomography (CT) was performed ≤ 8 h from symptom onset, whereas CT determination of reperfusion/recanalization was assessed at 24 h. Multiple linear and logistic regression models were used to correlate reperfusion/recanalization with radiological (i.e., hemorrhagic transformation, ischemic core, and penumbra volumes) and clinical outcomes (assessed as National Institutes of Health Stroke Scale [NIHSS] reduction ≥ 8 points or a NIHSS ≤ 1 at 24 h and as modified Rankin Scale [mRS] < 2 at 90 days). At 24 h, patients achieving radiological reperfusion were n = 24, while the non-reperfused were n = 31. Among non-reperfused, n = 15 patients were recanalized. Radiological reperfusion vs. recanalization was also confirmed by early increased levels of circulating inflammatory biomarkers (i.e., serum osteopontin). In multivariate analysis, ischemic lesion volume reduction was associated with both recanalization (β = 0.265; p = 0.014) and reperfusion (β = 0.461; p < 0.001), but only reperfusion was independently associated with final infarct volume (β = - 0.333; p = 0.007). Only radiological reperfusion at 24 h predicted good clinical response at day 1 (adjusted OR 16.054 [1.423-181.158]; p = 0.025) and 90-day good functional outcome (adjusted OR 25.801 [1.483-448.840]; p = 0.026). At ROC curve analysis the AUC of reperfusion was 0.777 (p < 0.001) for the good clinical response at 24 h and 0.792 (p < 0.001) for 90-day clinical outcome. Twenty-four-hour radiological reperfusion assessed by CT is associated with good clinical response on day 1 and good functional outcome on day 90 in patients with ischemic stroke.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy.
| | - Giorgio Busto
- Struttura Organizzativa Dipartimentale di Radiodiagnostica 2, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| | - Marina Padroni
- Unità Operativa di Neurologia, Dipartimento di Scienze Biologiche, Psichiatriche e Psicologiche, Università di Ferrara, Arcispedale S. Anna, Ferrara, Italy
| | - Andrea Bernardoni
- Unità Operativa di Neuroradiologia, Dipartimento di Neuroscienze, Azienda Ospedaliero-Universitaria di Ferrara, Arcispedale S. Anna, 203 Corso della Giovecca, 44121, Ferrara, Italy
| | - Stefano Colagrande
- Struttura Organizzativa Dipartimentale di Radiodiagnostica 2, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy
- Ospedale Policlinico San Martino, 10 Largo Benzi, 16132, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, 6 viale Benedetto XV, 13132, Genoa, Italy
- Ospedale Policlinico San Martino, 10 Largo Benzi, 16132, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132, Genoa, Italy
| | - Enrico Fainardi
- Struttura Organizzativa Dipartimentale di Neuroradiologia, Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Azienda Ospedaliero-Universitaria Careggi, 3 Largo Brambilla, 50134, Florence, Italy
| |
Collapse
|
41
|
Ozaki T, Nakamura H, Kishima H. Therapeutic strategy against ischemic stroke with the concept of neurovascular unit. Neurochem Int 2019; 126:246-251. [PMID: 30946849 DOI: 10.1016/j.neuint.2019.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/05/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of death and disability globally. Although thrombolytic therapy by t-PA and mechanical thrombectomy have improved outcomes of ischemic stroke patients, both of these approaches are applicable to limited numbers of patients owing to their time constraints. Therefore, development of other treatment approaches such as developing neuroprotective drugs and nerve regeneration therapy is required to overcome ischemic stroke. The concept of the neurovascular unit (NVU) was formalized by the Stroke Progress Review Group of the National Institute of Neurological Disorders and Stroke in 2001. This concept emphasizes the importance not just of neurons but of the interactions between neurons, endothelial cells, astroglia, microglia and associated tissue matrix proteins to investigate the pathological condition of ischemic stroke. Many reports have been published about these interactions. This review focuses on the roles of cells that surround cerebral vasculature, especially endothelial cells, and reports therapeutic strategies against ischemic stroke from four points of view including angiogenesis, neurotrophic effects, protection of NVU components and regenerative therapy.
Collapse
Affiliation(s)
- Tomohiko Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan; Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Japan.
| | - Hajime Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Japan
| |
Collapse
|
42
|
Buscemi L, Price M, Bezzi P, Hirt L. Spatio-temporal overview of neuroinflammation in an experimental mouse stroke model. Sci Rep 2019; 9:507. [PMID: 30679481 PMCID: PMC6345915 DOI: 10.1038/s41598-018-36598-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
After ischemic stroke, in the lesion core as well as in the ischemic penumbra, evolution of tissue damage and repair is strongly affected by neuroinflammatory events that involve activation of local specialized glial cells, release of inflammatory mediators, recruiting of systemic cells and vascular remodelling. To take advantage of this intricate response in the quest to devise new protective therapeutic strategies we need a better understanding of the territorial and temporal interplay between stroke-triggered inflammatory and cell death-inducing processes in both parenchymal and vascular brain cells. Our goal is to describe structural rearrangements and functional modifications occurring in glial and vascular cells early after an acute ischemic stroke. Low and high scale mapping of the glial activation on brain sections of mice subjected to 30 minutes middle cerebral artery occlusion (MCAO) was correlated with that of the neuronal cell death, with markers for microvascular changes and with markers for pro-inflammatory (IL-1β) and reparative (TGFβ1) cytokines. Our results illustrate a time-course of the neuroinflammatory response starting at early time-points (1 h) and up to one week after MCAO injury in mice, with an accurate spatial distribution of the observed phenomena.
Collapse
Affiliation(s)
- Lara Buscemi
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011, Lausanne, Switzerland. .,Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.
| | - Melanie Price
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Lorenz Hirt
- Stroke Laboratory, Neurology Service, Department of Clinical Neurosciences, University Hospital Centre and University of Lausanne, CH-1011, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland
| |
Collapse
|
43
|
Schöniger S, Schütze E, Michalski D, Puchta J, Kaiser M, Härtig W. Neuropathological findings suggestive for a stroke in an alpaca (Vicugna pacos). Acta Vet Scand 2019; 61:1. [PMID: 30602394 PMCID: PMC6317207 DOI: 10.1186/s13028-018-0438-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This case report describes a focal brain lesion in an alpaca (Vicugna pacos). Although this is a restricted study based on a single animal, neuropathological features are reported that are most likely attributed to a vascular event with either ischemic or hemorrhagic pathology. Concerning translational issues, these findings extend neurovascular unit concept to the alpacas' brain and qualify a larger panel of stroke tissue markers for further exploration of ischemic or hemorrhagic consequences beyond the usually used small animal models in stroke research. CASE PRESENTATION A brain lesion indicative of a stroke was diagnosed in a 3-year-old female alpaca as an incidental finding during a post mortem examination. The rostral portion of the right frontal lobe contained a 1.0 × 1.5 × 1.7 cm lesion that extended immediately to the overlying leptomeninges. Microscopically, it was composed of liquefactive necrosis with cholesterol crystal deposition and associated granulomatous inflammation as well as vascularized fibrous connective tissue rimmed by proliferated astrocytes. Multiple fluorescence labeling of the affected brain regions revealed strong microgliosis as shown by immunostaining of the ionized calcium binding adapter molecule 1 and astrogliosis as demonstrated by enhanced immunoreactivity for glial fibrillary acidic protein. In parallel, a drastic neuronal loss was detected by considerably diminished immunolabeling of neuronal nuclei. Concomitantly, up-regulated immunoreactivities for collagen IV and neurofilament light chains were found in the affected tissues, indicating vascular and cytoskeletal reactions. CONCLUSIONS Driven by these neuropathological features, the incidental brain lesion found in this alpaca strongly suggests an ischemic or hemorrhagic etiology. However, since typical hallmarks became verifiable as previously described for other species affected by focal cerebral ischemia, the lesion is more likely related to an ischemic event. Nevertheless, as such cellular alterations might be difficult to distinguish from other brain lesions as for instance caused by inflammatory processes, adjuvant observations and species-related features need to be considered for etiological interpretations. Indeed, the lack of neurological deficits is likely attributed to the location of the lesion within the rostral aspect of the right frontal lobe of the alpacas' brain. Further, fibroblast migration from the meninges likely caused the intralesional scar formation.
Collapse
|
44
|
Schosserer M, Banks G, Dogan S, Dungel P, Fernandes A, Marolt Presen D, Matheu A, Osuchowski M, Potter P, Sanfeliu C, Tuna BG, Varela-Nieto I, Bellantuono I. Modelling physical resilience in ageing mice. Mech Ageing Dev 2018; 177:91-102. [PMID: 30290161 PMCID: PMC6445352 DOI: 10.1016/j.mad.2018.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/12/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023]
Abstract
Geroprotectors, a class of drugs targeting multiple deficits occurring with age, necessitate the development of new animal models to test their efficacy. The COST Action MouseAGE is a European network whose aim is to reach consensus on the translational path required for geroprotectors, interventions targeting the biology of ageing. In our previous work we identified frailty and loss of resilience as a potential target for geroprotectors. Frailty is the result of an accumulation of deficits, which occurs with age and reduces the ability to respond to adverse events (physical resilience). Modelling frailty and physical resilience in mice is challenging for many reasons. There is no consensus on the precise definition of frailty and resilience in patients or on how best to measure it. This makes it difficult to evaluate available mouse models. In addition, the characterization of those models is poor. Here we review potential models of physical resilience, focusing on those where there is some evidence that the administration of acute stressors requires integrative responses involving multiple tissues and where aged mice showed a delayed recovery or a worse outcome then young mice in response to the stressor. These models include sepsis, trauma, drug- and radiation exposure, kidney and brain ischemia, exposure to noise, heat and cold shock.
Collapse
Affiliation(s)
- Markus Schosserer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Vienna, Austria
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkey
| | - Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Adelaide Fernandes
- Neuron-Glia Biology in Health and Disease, iMed.ULisboa, Research Institute for Medicines, Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Ander Matheu
- Oncology Department, Biodonostia Research Institute, San Sebastián, Spain
| | - Marcin Osuchowski
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Vienna, Austria
| | - Paul Potter
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, United Kingdom
| | - Coral Sanfeliu
- Institute of Biomedical Research of Barcelona (IIBB) CSIC, IDIBAPS, CIBERESP, Barcelona, Spain
| | - Bilge Guvenc Tuna
- Department of Medical Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkey
| | | | - Ilaria Bellantuono
- MRC/Arthritis Research-UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Department of Oncology and Metabolism, The Medical School, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
45
|
Jackson CW, Escobar I, Xu J, Perez-Pinzon MA. Effects of ischemic preconditioning on mitochondrial and metabolic neruoprotection: 5' adenosine monophosphate-activated protein kinase and sirtuins. Brain Circ 2018; 4:54-61. [PMID: 30276337 PMCID: PMC6126241 DOI: 10.4103/bc.bc_7_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023] Open
Abstract
Stroke and cardiac arrest result in cerebral ischemia, a highly prevalent medical issue around the world, which is characterized by a reduction or loss of blood flow to the brain. The loss of adequate nutrient supply in the brain during ischemia results in neuronal cell death contributing to cognitive and motor deficits that are usually permanent. Current effective therapies for cerebral ischemia are only applicable after the fact. Thus, the development of preventative therapies of ischemia is imperative. A field of research that continues to show promise in developing therapies for cerebral ischemia is ischemic preconditioning (IPC). IPC is described as exposure to sublethal ischemic events, which induce adaptive changes that provide tolerance to future ischemic events. Through either transient sub-lethal ischemic events, or the actions of a preconditioning molecular mimetic, IPC typically results in augmented gene expression and cellular metabolism. A pivotal target of such changes in gene expression and metabolism is the mitochondrion. Direct and indirect effects on mitochondria by IPC can result in the activation of 5’ adenosine monophosphate-activated protein kinase (AMPK), a master regulator of cellular metabolism. Changes in the activity of the posttranslational modifiers, SIRT1 and SIRT5, also contribute to the overall adaptive processes in cellular metabolism and mitochondrial functioning. In this review, we present recently collected evidence to highlight the neuroprotective interactions of mitochondria with AMPK, SIRT1, and SIRT5 in IPC. To produce this review, we utilized PubMed and previous reviews to target and to consolidate the relevant studies and lines of evidence.
Collapse
Affiliation(s)
- Charles W Jackson
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Iris Escobar
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jing Xu
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Miguel A Perez-Pinzon
- Department of Neurology and Neuroscience Program, Cerebral Vascular Disease Research Laboratories, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
46
|
Dornbos D, Ding Y. Reperfusion injury in the age of revascularization. Brain Circ 2018; 4:40-42. [PMID: 30276335 PMCID: PMC6057702 DOI: 10.4103/bc.bc_5_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- David Dornbos
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yuchuan Ding
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
47
|
NADPH Oxidase-Related Pathophysiology in Experimental Models of Stroke. Int J Mol Sci 2017; 18:ijms18102123. [PMID: 29019942 PMCID: PMC5666805 DOI: 10.3390/ijms18102123] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
Several experimental studies have indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) exert detrimental effects on ischemic brain tissue; Nox-knockout mice generally exhibit resistance to damage due to experimental stroke following middle cerebral artery occlusion (MCAO). Furthermore, our previous MCAO study indicated that infarct size and blood-brain barrier breakdown are enhanced in mice with pericyte-specific overexpression of Nox4, relative to levels observed in controls. However, it remains unclear whether Nox affects the stroke outcome directly by increasing oxidative stress at the site of ischemia, or indirectly by modifying physiological variables such as blood pressure or cerebral blood flow (CBF). Because of technical problems in the measurement of physiological variables and CBF, it is often difficult to address this issue in mouse models due to their small body size; in our previous study, we examined the effects of Nox activity on focal ischemic injury in a novel congenic rat strain: stroke-prone spontaneously hypertensive rats with loss-of-function in Nox. In this review, we summarize the current literature regarding the role of Nox in focal ischemic injury and discuss critical issues that should be considered when investigating Nox-related pathophysiology in animal models of stroke.
Collapse
|