1
|
Abujaber AA, Yaseen S, Nashwan AJ, Akhtar N, Imam Y. Prediction of stroke-associated hospital-acquired pneumonia: Machine learning approach. J Stroke Cerebrovasc Dis 2025; 34:108200. [PMID: 39674434 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND Stroke-associated Hospital Acquired Pneumonia (HAP) significantly impacts patient outcomes. This study explores the utility of machine learning models in predicting HAP in stroke patients, leveraging national registry data and SHapley Additive exPlanations (SHAP) analysis to identify key predictive factors. METHODS We collected data from a national stroke registry covering January 2014 to July 2022, including 9,840 patients diagnosed with ischemic and hemorrhagic strokes. Five machine learning models were trained and evaluated: XGBoost, Random Forest, Support Vector Machine (SVM), Logistic Regression, and Artificial Neural Network (ANN). Performance was assessed using accuracy, precision, recall, F1-score, AUC, log loss, and Brier score. SHAP analysis was conducted to interpret model outputs. RESULTS The ANN model demonstrated superior performance, with an F1-score of 0.86 and an AUC of 0.94. SHAP analysis identified key predictors: stroke severity, admission location, Glasgow Coma score (GCS), systolic and diastolic blood pressure at admission, ethnicity, stroke type, mode of arrival, and age. Patients with higher stroke severity, dysphagia, and those arriving by ambulance were at increased risk for HAP. CONCLUSION This study enhances our understanding of early predictive factors for HAP in stroke patients and underlines the potential of machine learning to improve clinical decision-making and personalized care.
Collapse
Affiliation(s)
- Ahmad A Abujaber
- Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Said Yaseen
- School of Medicine, Jordan University of Science and Technology, Irbid, Jordan.
| | - Abdulqadir J Nashwan
- Nursing Department, Hamad Medical Corporation (HMC), Doha, Qatar; Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| | - Naveed Akhtar
- Neuroradiology Department, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar.
| | - Yahia Imam
- Neurology Section, Neuroscience Institute, Hamad Medical Corporation (HMC), Doha, Qatar.
| |
Collapse
|
2
|
Wang R, Gan C, Mao R, Chen Y, Yan R, Li G, Xiong T, Guo J. Rat models of postintracerebral hemorrhage pneumonia induced by nasal inoculation with Klebsiella pneumoniae or intratracheal inoculation with LPS. Front Immunol 2025; 15:1477902. [PMID: 39845950 PMCID: PMC11750689 DOI: 10.3389/fimmu.2024.1477902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background A stable and reproducible experimental bacterial pneumonia model postintracerebral hemorrhage (ICH) is necessary to help investigating the pathogenesis and novel treatments of Stroke-associated pneumonia (SAP). Aim To establish a Gram-negative bacterial pneumonia-complicating ICH rat model and an acute lung injury (ALI)-complicating ICH rat model. Methods We established two standardized models of post-ICH pneumonia by nasal inoculation with Klebsiella pneumoniae (Kp) or intratracheal inoculation with lipopolysaccharide (LPS). Survival and neurological scores were monitored. Magnetic resonance imaging was performed to evaluate hematoma volume. Abdominal aortic blood was collected for leukocyte counting, serum was isolated to determine concentrations of S100β and proinflammatory cytokines using ELISAs. Histopathological changes of brain, lung and gut were assessed using hematoxylin-eosin staining. Lung was isolated for immunofluorescence staining for myeloperoxidase (MPO). Bronchoalveolar lavage fluid was collected for leukocyte counting, and supernatant was prepared to measure MPO activity. Ileum was isolated for immunofluorescence staining for tight junction proteins ZO-1 and γδ TCRs/IL-17A and for Alcian blue-nuclear fast red staining of acidic mucins. Feces were collected, 16S rRNA sequencing, untargeted metabolomics and Spearman's correlation analyses were performed to explore changes of gut microbiota, metabolites and their interactions. Results In Kp-induced bacterial pneumonia-complicating ICH rats, we demonstrated that Kp challenge caused more severe neurological deficits, brain damage, neuroinflammation, and aggravated pneumonia and lung injury. Disruptions of the intestinal structure and gut barrier and the reductions of the protective intestinal IL-17A-producing γδT cells were also observed. Kp challenge exacerbated the gut microbiota dysbiosis and fecal metabolic profile disorders, which were characterized by abnormal sphingolipid metabolism especially elevated ceramide levels; increased levels of neurotoxic quinolinic acid and an upregulation of tryptophan (Trp)-serotonin-melatonin pathway. Spearman's correlation analyses further revealed that the reduction or depletion of some beneficial bacteria, such as Allobaculum and Faecalitalea, and the blooming of some opportunistic pathogens, such as Turicibacter, Dietzia, Corynebacterium and Clostridium_sensu_stricto_1 in Kp-induced SAP rats were associated with the disordered sphingolipid and Trp metabolism. Using an LPS-induced ALI complicating ICH model, we also characterized SAP-induced brain, lung and gut histopathology injuries; peripheral immune disorders and intense pulmonary inflammatory responses. Conclusions These two models may be highly useful for investigating the pathogenesis and screening and optimizing potential treatments for SAP. Moreover, the differential genera and sphingolipid or Trp metabolites identified above seem to be promising therapeutic targets.
Collapse
Affiliation(s)
- Ruihua Wang
- Research Team of Prevention and Treatment of Cerebral Hemorrhage Applying Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changlian Gan
- School of Traditional Dai Medicine, West Yunnan University of Applied Science, Xishuangbanna, China
| | - Rui Mao
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Chen
- Department of Bioinformatics, State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianqin Xiong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianwen Guo
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Department of Neurology, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Kumar S, Chou SHY, Smith CJ, Nallaparaju A, Laurido-Soto OJ, Leonard AD, Singla AK, Leonhardt-Caprio A, Stein DJ. Addressing Systemic Complications of Acute Stroke: A Scientific Statement From the American Heart Association. Stroke 2025; 56:e15-e29. [PMID: 39633600 DOI: 10.1161/str.0000000000000477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Systemic, nonneurological complications are common after ischemic and hemorrhagic strokes, affect different organ systems, and have a major impact on patient outcomes. Despite their obvious implications, this area in stroke management remains inadequately researched, and current literature offers fragmentary guidance for care. The purpose of this scientific statement is to elucidate the major systemic complications of strokes that occur during hospitalization, to synthesize evidence from current literature and existing guidelines, to address gaps in knowledge, and to provide a coherent set of suggestions for clinical care based on interpretation of existing evidence and expert opinion. This document advocates for improved interdisciplinary collaboration, team effort, and effective implementation strategies to reduce the burden of these events in clinical practice. It also calls for further research on strategies for preventing and managing systemic complications after stroke that improve outcomes in stroke survivors.
Collapse
|
4
|
Mohapatra S, Pathi BK, Mohapatra I, Singh N, Sahoo JP, Das NK, Pattnaik D. Bacteriological Profile of Patients With Stroke-Associated Pneumonia and Antimicrobial Susceptibility of Pathogens: A Cross-Sectional Study. Cureus 2024; 16:e74150. [PMID: 39712707 PMCID: PMC11663042 DOI: 10.7759/cureus.74150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Stroke-associated pneumonia (SAP) is the aftermath of aspiration of oropharyngeal secretions or stomach content. Mechanical ventilation and lowered immunity and consciousness facilitate the etiopathogenesis of SAP. Antibiotic prophylaxis and repeated culture and sensitivity testing dampen the drug susceptibility patterns of the pathogens. We accomplished this study to determine the bacteriological profile of patients with SAP and the antimicrobial susceptibility patterns of the pathogenic bacteria. METHODS This cross-sectional study was executed from August 2022 to May 2024 at Kalinga Institute of Medical Sciences (KIMS), Bhubaneswar, India. We included adult patients who endured treatment in the neurosurgery intensive care unit (ICU) throughout the study period due to a stroke and developed pneumonia within 48 hours of admission. The endotracheal tube (ET) aspirate and bronchoalveolar lavage (BAL) fluid specimens collected from the eligible participants were analyzed. Enriched and selective media such as 5% sheep blood agar, chocolate agar, and MacConkey agar were used to culture pathogenic bacteria. The VITEK 2 system was used to identify isolates and assess antimicrobial susceptibility testing (AST). The pathogenic bacteria and their antimicrobial susceptibility patterns were gauged. We leveraged R software (version 4.4.1) for data analysis. RESULTS Two hundred forty bacterial isolates were found in the 181 eligible patients. Forty-eight (26.52%) participants were females. The median age of the study population was 64.50 (58.74-70.24) years. Fifty-nine (32.60%) participants had two different isolates in their culture reports. We found the following non-fermenters: Acinetobacter baumannii (55, 22.92%), Pseudomonas aeruginosa (31, 12.92%), Burkholderia cepacia (6, 2.50%), and Elizabethkingia meningoseptica (4, 1.67%). Klebsiella pneumoniae (88, 36.67%) and Escherichia coli (15, 6.25%) were the most commonly noticed Enterobacterales. Other Enterobacterales were Proteus mirabilis (9, 3.75%), Serratia marcescens (8, 3.33%), Klebsiella oxytoca (3, 1.25%), Enterobacter aerogenes (1, 0.42%), Providentia stuartii (1, 0.42%), and Enterobacter cloacae complex (5, 2.08%). Staphylococcus aureus (14, 5.83%) was the only gram-positive cocci in our study population. The sensitivity of A. baumannii was maximum for minocycline. P. aeruginosa was highly sensitive to imipenem and completely resistant to tigecycline. Minocycline was the only effective drug against E. meningoseptica. Similarly, the Enterobacterales had the greatest sensitivity for tigecycline. All 14 specimens of S. aureus were sensitive to both vancomycin and linezolid. They were responsive to tigecycline as well. CONCLUSION The most common pathogenic bacteria in our study were K. pneumoniae, A. baumannii, P. aeruginosa, E. coli, and S. aureus. Enterobacterales were highly sensitive to tigecycline. A. baumannii and E. meningoseptica had maximum sensitivity for minocycline. All isolates of S. aureus were sensitive to both vancomycin and linezolid. We warrant further research with a larger sample size to investigate the bacteriological profile among other critically ill patients and their AST findings.
Collapse
Affiliation(s)
| | | | - Ipsa Mohapatra
- Community Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Nipa Singh
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | | | - Narendra Kumar Das
- Neurological Surgery, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Dipti Pattnaik
- Microbiology, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
5
|
Kishore AK, Heal C, Onochie-Williams A, Jamil H, Smith CJ. Evaluation of Physiological Variables Determining Time-to-Mortality after Stroke-Associated Pneumonia. Cerebrovasc Dis 2024:1-7. [PMID: 39413741 DOI: 10.1159/000540218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Stroke-associated pneumonia (SAP) frequently complicates stroke and is associated with significant mortality. Clinicians often use physiological variables within the National Early Warning Score (NEWS) when diagnosing and prescribing antibiotics for SAP, but little is known of its association with mortality. We investigated the relationship of the NEWS 2 score and its components (respiratory rate, heart rate, temperature, oxygen requirement, oxygen saturation, and alertness level) prior to antibiotic initiation, with time-to-mortality in SAP. METHODS We included patients with SAP (n = 389) from a single hyperacute stroke unit. Diagnosis of SAP was made if pneumonia occurred within 7 days of hospital admission. Kaplan-Meier survival curves were generated to assess NEWS 2 parameters influencing survival at pre-defined time periods (1 year and 5 years). The association of these parameters on time-to-mortality were analysed using multivariable Cox-regression models to account for a set of pre-specified potential confounders. RESULTS The median age was 80 years (71-87 years) and median NIHSS was 7 (IQR 4-17). Mortality within 1 year was 52.4% and 65.8% within 5 years. In the multivariable analyses, time-to-mortality was independently associated with respiratory rate (heart rate [HR] 1.04, 95% confidence intervals [CI] 1.01-1.08, p = 0.009) and total NEWS 2 score (HR 1.13, 95% CI 1.06-1.21, p < 0.001). CONCLUSIONS In patients with SAP, higher respiratory rate and total NEWS 2 score prior to antibiotic initiation were independently associated with time-to-mortality. Further studies are warranted to identify potential opportunities for intervention and ultimately guide treatment to improve outcomes in SAP patients.
Collapse
Affiliation(s)
- Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, Salford Royal, Salford, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Calvin Heal
- Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Anna Onochie-Williams
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, Salford Royal, Salford, UK
| | - Husam Jamil
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, Salford Royal, Salford, UK
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance, Salford Royal, Salford, UK
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Aboulfotooh AM, Aziz HSA, Zein MM, Sayed M, Ibrahim ARN, Abdelaty LN, Magdy R. Bacterial stroke-associated pneumonia: microbiological analysis and mortality outcome. BMC Neurol 2024; 24:265. [PMID: 39080572 PMCID: PMC11290281 DOI: 10.1186/s12883-024-03755-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Stroke-associated pneumonia (SAP) considerably burden healthcare systems. This study aimed to identify predictors of developing SAP in acute ischemic stroke patients admitted to the Stroke Unit at Manial Specialized Hospital factors with microbiological causality and impact on 30-day mortality. METHODS This was a retrospective cohort study. All patients with acute ischemic stroke admitted to the Stroke Unit at Manial Specialized Hospital (from February 2021 to August 2023) were divided into the SAP and non-SAP groups. Detailed clinical characteristics and microbiological results were recorded. RESULTS Five hundred twenty-two patients diagnosed with acute ischemic stroke (mean age of 55 ± 10) were included. One hundred sixty-nine (32.4%) of stroke patients developed SAP; Klebsiella pneumoniae was the most commonly detected pathogen (40.2%), followed by Pseudomonas aeruginosa (20.7%). Bacteremia was identified in nine cases (5.3%). The number of deaths was 11, all of whom were diagnosed with SAP, whereas none from the non-SAP group died (P < 0.001). The binary logistic regression model identified three independent predictors of the occurrence of SAP: previous history of TIA/stroke (OR = 3.014, 95%CI = 1.281-7.092), mechanical ventilation (OR = 4.883, 95%CI = 1.544-15.436), and bulbar dysfunction (OR = 200.460, 95%CI = 80.831-497.143). CONCLUSIONS Stroke-associated pneumonia was reported in one-third of patients with acute ischemic stroke, adversely affecting mortality outcomes. Findings showed that the main predictors of SAP were bulbar dysfunction, the use of mechanical ventilation and previous history of TIA/stroke. More attention to these vulnerable patients is necessary to reduce mortality.
Collapse
Affiliation(s)
| | - Heba Sherif Abdel Aziz
- Department of Clinical and Chemical Pathology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa M Zein
- Department of Public Health and Community Medicine, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - Mohamed Sayed
- Department of Internal Medicine, Kasr Al- Ainy Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed R N Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Lamiaa N Abdelaty
- Department of Clinical Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Rehab Magdy
- Department of Neurology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
7
|
Bao W, Sun Y, Wang J, Wei S, Mao L, Zheng J, Liu P, Yang X, Chen Z. Relationship Between the Gut Microbiota and Neurological Deficits in Patients With Cerebral Ischemic Stroke. Neurorehabil Neural Repair 2024; 38:527-538. [PMID: 38752465 DOI: 10.1177/15459683241252608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
OBJECTIVE The aim of the paper was to investigate the composition and structure of intestinal flora in patients with cerebral ischemic stroke (CIS), and to investigate the relationship between gut microbiota (GM) and different levels of stroke severity. METHODS In this study, 47 CIS patients (16 mild, 21 moderate, and 10 severe) and 15 healthy controls were included. General information, clinical data, and behavioral scores of the enrolled subjects were collected. Deoxyribonucleic acid in fecal intestinal flora was extracted and detected using high-throughput Illumina 16S ribosomal ribonucleic acid sequencing technology. Finally, the correlation between the community composition of intestinal microbiota and National Institutes of Health Stroke Scale (NIHSS) score in CIS patients was analyzed. RESULTS Compared with healthy controls, there was no statistically significant difference in Alpha diversity among CIS patients, but the principal coordinate analysis showed significant differences in the composition of the GM among stroke patients with different degrees of severity and controls. In CIS patients, Streptococcus was significantly enriched, and Eshibacter-Shigella, Bacteroides, and Agathobacter were significantly down-regulated (P < .05). In addition, the relative abundance of Blautia was negatively correlated with the NIHSS score. CONCLUSIONS Our results show that different degrees of CIS severity exert distinct effects on the intestinal microbiome. This study reveals the intestinal microecological changes after brain injury from the perspective of brain-gut axis. Intestinal microorganisms not only reveal the possible pathological process and indicate the severity of neurologic impairment, but also make targeted therapy possible for CIS patients.
Collapse
Affiliation(s)
- Wangxiao Bao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Sun
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juehan Wang
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjin Zheng
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Liu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Kell DB, Lip GYH, Pretorius E. Fibrinaloid Microclots and Atrial Fibrillation. Biomedicines 2024; 12:891. [PMID: 38672245 PMCID: PMC11048249 DOI: 10.3390/biomedicines12040891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool L7 8TX, UK;
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, 9220 Aalborg, Denmark
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
9
|
Zhang J, Ling L, Xiang L, Li W, Bao P, Yue W. Role of the gut microbiota in complications after ischemic stroke. Front Cell Infect Microbiol 2024; 14:1334581. [PMID: 38644963 PMCID: PMC11026644 DOI: 10.3389/fcimb.2024.1334581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Ischemic stroke (IS) is a serious central nervous system disease. Post-IS complications, such as post-stroke cognitive impairment (PSCI), post-stroke depression (PSD), hemorrhagic transformation (HT), gastrointestinal dysfunction, cardiovascular events, and post-stroke infection (PSI), result in neurological deficits. The microbiota-gut-brain axis (MGBA) facilitates bidirectional signal transduction and communication between the intestines and the brain. Recent studies have reported alterations in gut microbiota diversity post-IS, suggesting the involvement of gut microbiota in post-IS complications through various mechanisms such as bacterial translocation, immune regulation, and production of gut bacterial metabolites, thereby affecting disease prognosis. In this review, to provide insights into the prevention and treatment of post-IS complications and improvement of the long-term prognosis of IS, we summarize the interaction between the gut microbiota and IS, along with the effects of the gut microbiota on post-IS complications.
Collapse
Affiliation(s)
- Jinwei Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Ling Ling
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Lei Xiang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Wenxia Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Pengnan Bao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
10
|
Huang L, Tang J, Tian G, Tao H, Li Z. Risk Factors, Outcomes, and Predictions of Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Infections in Patients with Nervous System Diseases. Infect Drug Resist 2023; 16:7327-7337. [PMID: 38023397 PMCID: PMC10676724 DOI: 10.2147/idr.s439241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Acinetobacter baumannii has evolved to become a major pathogen of nosocomial infections, resulting in increased morbidity and mortality. This study aimed to investigate the risk factors, outcomes, and predictions of extensively drug-resistant (XDR)-A. baumannii nosocomial infections in patients with nervous system diseases (NSDs). Methods A retrospective study of patients infected with XDR-A. baumannii admitted to the Affiliated Hospital of Southwest Medical University (Luzhou, China) from January 2021 to December 2022 was conducted. Three multivariate regression models were used to assess the risk factors and predictive value for specific diagnostic and prognostic subgroups. Results A total of 190 patients were included, of which 84 were diagnosed with NSDs and 80% of those were due to stroke. The overall rates of all-cause mortality for XDR-A. baumannii nosocomial infections and those in NSDs were 38.9% and 40.5%, respectively. Firstly, hypertension, indwelling gastric tube, tracheotomy, deep puncture, bladder irrigation, and pulmonary infections were independent risk factors for XDR-A. baumannii nosocomial infections in patients with NSDs. Moreover, pulmonary infections, the aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio, and the neutrophil-to-lymphocyte ratio (NLR) were significantly associated with increased mortality rates in patients with nosocomial infections caused by XDR-A. baumannii. Thirdly, NLR and cardiovascular diseases accounted for a high risk of mortality for XDR-A. baumannii nosocomial infections in patients with NSDs. The area under the curves of results from each multivariate regression model were 0.827, 0.811, and 0.853, respectively. Conclusion This study reveals the risk factors of XDR-A. baumannii nosocomial infections in patients with NSDs, and proves their reliable predictive value. Early recognition of patients at high risk, sterilizing medical tools, and regular blood monitoring are all critical aspects for minimizing the nosocomial spread and mortality of A. baumannii infections.
Collapse
Affiliation(s)
- Li Huang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Jingyang Tang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Gang Tian
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Hualin Tao
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| | - Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, People’s Republic of China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, People’s Republic of China
| |
Collapse
|
11
|
Zawiah M, Hayat Khan A, Abu Farha R, Usman A, Sha’aban A, Abu Hammour K, Almuhsen Z. Diagnosis and treatment of stroke associated pneumonia: Qualitative exploration of clinicians’ practice. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2023. [DOI: 10.29333/ejgm/12849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
<b>Background:</b> Establishing and implementing a gold standard criteria for diagnosing and treating stroke-associated pneumonia (SAP) would have a significant positive impact on stroke outcomes and antibiotic stewardship. This study aimed to qualitatively explore current diagnostic and treatment practice for SAP among clinicians.<br />
<b>Methods: </b>A qualitative study was employed to conduct semi-structured interviews at the tertiary-care Jordan University Hospital. A purposive sampling technique was employed to recruit the participants, including respiratory consultants (n=3) and residents (n=9) practicing in the internal medicine wards and intensive care unit, where stroke patients are treated. The interviews were audio-recorded, transcribed verbatim, translated, and analyzed thematically using framework analysis.<br />
<b>Results:</b> Clinicians expressed their experiences, which were organized into two themes and eight emerged sub-themes: Terminology and diagnostic approach of SAP involved; no definite terminology, reliance on both clinical evidence and X-ray findings to decide, reliance on clinical evidence alone to suspect SAP and initiate empirical therapy, and SAP overdiagnosis. The treatment strategies include early treatment of SAP, treating SAP the same as CAP/HAP, predominant anaerobes coverage, and SAP overtreatment.<br />
<b>Conclusion:</b><i> </i>Our findings show a wide range of physician-based diagnostic and treatment approaches for SAP, with clinical criteria serving as the main driver for antibiotic initiation. Standard validated algorithmic-based criteria need to be established and implemented.
Collapse
Affiliation(s)
- Mohammed Zawiah
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
- Department of Pharmacy Practice, College of Clinical Pharmacy, Hodeidah University, Al Hodeidah, YEMEN
| | - Amer Hayat Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
| | - Rana Abu Farha
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, JORDAN
| | - Abubakar Usman
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
| | - Abubakar Sha’aban
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, MALAYSIA
- Division of Population Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4YS, Wales, UK
| | - Khawla Abu Hammour
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, JORDAN
| | - Zahraa Almuhsen
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, JORDAN
| |
Collapse
|
12
|
McCulloch L, Harris AJ, Malbon A, Daniels MJD, Younas M, Grainger JR, Allan SM, Smith CJ, McColl BW. Treatment with IgM-enriched intravenous immunoglobulins enhances clearance of stroke-associated bacterial lung infection. Immunology 2022; 167:558-575. [PMID: 35881080 PMCID: PMC11495265 DOI: 10.1111/imm.13553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Post-stroke infection is a common complication of stroke that is associated with poor outcome. We previously reported that stroke induces an ablation of multiple sub-populations of B cells and reduces levels of immunoglobulin M (IgM) antibody, which coincides with the development of spontaneous bacterial pneumonia. The loss of IgM after stroke could be an important determinant of infection susceptibility and highlights this pathway as a target for intervention. We treated mice with a replacement dose of IgM-enriched intravenous immunoglobulin (IgM-IVIg) prior to and 24 h after middle cerebral artery occlusion (MCAO) and allowed them to recover for 2- or 5-day post-surgery. Treatment with IgM-IVIg enhanced bacterial clearance from the lung after MCAO and improved lung pathology but did not impact brain infarct volume. IgM-IVIg treatment induced immunomodulatory effects systemically, including rescue of splenic plasma B cell numbers and endogenous mouse IgM and IgA circulating immunoglobulin concentrations that were reduced by MCAO. Treatment attenuated MCAO-induced elevation of selected pro-inflammatory cytokines in the lung. IgM-IVIg treatment did not increase the number of lung mononuclear phagocytes or directly modulate macrophage phagocytic capacity but enhanced phagocytosis of Staphylococcus aureus bioparticles in vitro. Low-dose IgM-IVIg contributes to increased clearance of spontaneous lung bacteria after MCAO likely via increasing availability of antibody in the lung to enhance opsonophagocytic activity. Immunomodulatory effects of IgM-IVIg treatment may also contribute to reduced levels of damage in the lung after MCAO. IgM-IVIg shows promise as an antibacterial and immunomodulatory agent to use in the treatment of post-stroke infection.
Collapse
Affiliation(s)
- Laura McCulloch
- Centre for Inflammation Research, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Alison J. Harris
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Alexandra Malbon
- Easter Bush Pathology, The Royal (Dick) School of Veterinary Studies and The Roslin InstituteUniversity of EdinburghEdinburghUK
| | | | - Mehwish Younas
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
| | - John R. Grainger
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
- Lydia Becker Institute of Immunology and Inflammation, Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Stuart M. Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
| | - Craig J. Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS GroupUniversity of ManchesterManchesterUK
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical NeurosciencesManchester Academic Health Science Centre, Salford Royal NHS Foundation TrustSalfordUK
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Barry W. McColl
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
13
|
Wang J, Zhang J, Ye Y, Xu Q, Li Y, Feng S, Xiong X, Jian Z, Gu L. Peripheral Organ Injury After Stroke. Front Immunol 2022; 13:901209. [PMID: 35720359 PMCID: PMC9200619 DOI: 10.3389/fimmu.2022.901209] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Stroke is a disease with high incidence, mortality and disability rates. It is also the main cause of adult disability in developed countries. Stroke is often caused by small emboli on the inner wall of the blood vessels supplying the brain, which can lead to arterial embolism, and can also be caused by cerebrovascular or thrombotic bleeding. With the exception of recombinant tissue plasminogen activator (rt-PA), which is a thrombolytic drug used to recanalize the occluded artery, most treatments have been demonstrated to be ineffective. Stroke can also induce peripheral organ damage. Most stroke patients have different degrees of injury to one or more organs, including the lung, heart, kidney, spleen, gastrointestinal tract and so on. In the acute phase of stroke, severe inflammation occurs in the brain, but there is strong immunosuppression in the peripheral organs, which greatly increases the risk of peripheral organ infection and aggravates organ damage. Nonneurological complications of stroke can affect treatment and prognosis, may cause serious short-term and long-term consequences and are associated with prolonged hospitalization and increased mortality. Many of these complications are preventable, and their adverse effects can be effectively mitigated by early detection and appropriate treatment with various medical measures. This article reviews the pathophysiological mechanism, clinical manifestations and treatment of peripheral organ injury after stroke.
Collapse
Affiliation(s)
- Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiehua Zhang
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shi Feng
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Wen J, Chen J, Chang J, Wei J. Pulmonary complications and respiratory management in neurocritical care: a narrative review. Chin Med J (Engl) 2022; 135:779-789. [PMID: 35671179 PMCID: PMC9276382 DOI: 10.1097/cm9.0000000000001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 11/25/2022] Open
Abstract
ABSTRACT Neurocritical care (NCC) is not only generally guided by principles of general intensive care, but also directed by specific goals and methods. This review summarizes the common pulmonary diseases and pathophysiology affecting NCC patients and the progress made in strategies of respiratory support in NCC. This review highlights the possible interactions and pathways that have been revealed between neurological injuries and respiratory diseases, including the catecholamine pathway, systemic inflammatory reactions, adrenergic hypersensitivity, and dopaminergic signaling. Pulmonary complications of neurocritical patients include pneumonia, neurological pulmonary edema, and respiratory distress. Specific aspects of respiratory management include prioritizing the protection of the brain, and the goal of respiratory management is to avoid inappropriate blood gas composition levels and intracranial hypertension. Compared with the traditional mode of protective mechanical ventilation with low tidal volume (Vt), high positive end-expiratory pressure (PEEP), and recruitment maneuvers, low PEEP might yield a potential benefit in closing and protecting the lung tissue. Multimodal neuromonitoring can ensure the safety of respiratory maneuvers in clinical and scientific practice. Future studies are required to develop guidelines for respiratory management in NCC.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing 100730, China
| | | | | | | |
Collapse
|
15
|
Westendorp WF, Dames C, Nederkoorn PJ, Meisel A. Immunodepression, Infections, and Functional Outcome in Ischemic Stroke. Stroke 2022; 53:1438-1448. [PMID: 35341322 DOI: 10.1161/strokeaha.122.038867] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Claudia Dames
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, the Netherlands (W.F.W., P.J.N.)
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Center for Stroke Research Berlin, NeuroCure Clinical Research Center, Germany (C.D., A.M.)
| |
Collapse
|
16
|
Westendorp WF, Vermeij JD, Smith CJ, Kishore AK, Hodsoll J, Kalra L, Meisel A, Chamorro A, Chang JJ, Rezaei Y, Amiri-Nikpour MR, DeFalco FA, Switzer JA, Blacker DJ, Dijkgraaf MG, Nederkoorn PJ, van de Beek D. Preventive antibiotic therapy in acute stroke patients: A systematic review and meta-analysis of individual patient data of randomized controlled trials. Eur Stroke J 2022; 6:385-394. [PMID: 35342808 PMCID: PMC8948510 DOI: 10.1177/23969873211056445] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Introduction Infection after stroke is associated with unfavorable outcome. Randomized
controlled studies did not show benefit of preventive antibiotics in stroke
but lacked power for subgroup analyses. Aim of this study is to assess
whether preventive antibiotic therapy after stroke improves functional
outcome for specific patient groups in an individual patient data
meta-analysis. Patients and methods We searched MEDLINE (1946–7 May 2021), Embase (1947–7 May 2021), CENTRAL
(17th September 2021), trial registries, cross-checked references and
contacted researchers for randomized controlled trials of preventive
antibiotic therapy versus placebo or standard care in ischemic or
hemorrhagic stroke patients. Meta-analysis was performed by a one-step and
two-step approach. Primary outcome was functional outcome adjusted for age
and stroke severity. Secondary outcomes were infections and mortality. Results 4197 patients from nine trials were included. Preventive antibiotic therapy
was not associated with a shift in functional outcome (mRS) at 3 months
(OR1.13, 95%CI 0.98–1.31) or unfavorable functional outcome (mRS 3–6)
(OR0.85, 95%CI 0.60–1.19). Preventive antibiotics did not improve functional
outcome in pre-defined subgroups (age, stroke severity, timing and type of
antibiotic therapy, pneumonia prediction scores, dysphagia, type of stroke,
and type of trial). Preventive antibiotics reduced infections (276/2066
(13.4%) in the preventive antibiotic group vs. 417/2059 (20.3%) in the
control group, OR 0.60, 95% CI 0.51–0.71, p < 0.001),
but not pneumonia (191/2066 (9.2%) in the preventive antibiotic group vs.
205/2061 (9.9%) in the control group (OR 0.92 (0.75–1.14),
p = 0.450). Discussion and conclusion Preventive antibiotic therapy did not benefit any subgroup of patients with
acute stroke and currently cannot be recommended.
Collapse
Affiliation(s)
- Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jan-Dirk Vermeij
- Department of Neurology, Sint Franciscusziekenhuis, Heusden-Zolder, Belgium
| | - Craig J Smith
- Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Amit K Kishore
- Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - John Hodsoll
- Biostatistics Department, NIHR Biomedical Research Centre for Mental Health and Institute of Psychiatry, Psychology and Neurosciences, King's College London, London, UK
| | - Lalit Kalra
- Clinical Neurosciences, King's College Hospital NHS Foundation Trust, London, UK
| | - Andreas Meisel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, NeuroCure Clinical Research Center, Center for Stroke Research Berlin, Berlin, Germany
| | - Angel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona and August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Jason J Chang
- Department of Critical Care Medicine, MedStar Washington Hospital Center, Washington, DC, USA
| | - Yousef Rezaei
- Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Cardiology, Seyyed-al-Shohada Heart Center, Urmia University of Medical Science, West Azerbaijan, Iran
| | | | | | - Jeffrey A Switzer
- Department of Neurology, Medical College of Georgia, Augusta, ME, USA
| | - David J Blacker
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia; Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine and Pharmacology, University of Western Australia
| | - Marcel Gw Dijkgraaf
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila-Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022; 10:microorganisms10020255. [PMID: 35208710 PMCID: PMC8879694 DOI: 10.3390/microorganisms10020255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Legionella pneumophila is defined as a bacterium that can cause severe pneumonia. It is found in the natural environment and in water, and is often found in water tanks. It can be an integral part of biofilms in nature, and the protozoa in which it can live provide it with food and protect it from harmful influences; therefore, it has the ability to move into a sustainable but uncultured state (VBNC). L. pneumophila has been shown to cause infections in dental practices. The most common transmission route is aerosol generated in dental office water systems, which can negatively affect patients and healthcare professionals. The most common way of becoming infected with L. pneumophila in a dental office is through water from dental instruments, and the dental unit. In addition to these bacteria, patients and the dental team may be exposed to other harmful bacteria and viruses. Therefore, it is vital that the dental team regularly maintains and decontaminates the dental unit, and sterilizes all accessories that come with it. In addition, regular water control in dental offices is necessary.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Erwin Frauenheim
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Matej Tomas
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Suzana Matić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, HR-31000 Osijek, Croatia
| | - Melita Jukić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- General Hospital Vukovar, Županijska 35, HR-32000 Vukovar, Croatia
| | - Marija Samardžić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, HR-31000 Osijek, Croatia; (J.T.); (E.F.); (M.J.); (M.T.); (S.M.); (M.J.); (M.S.)
- Correspondence:
| |
Collapse
|
18
|
Zhao J, Li LQ, Zhen NX, Du LL, Shan H, Yu Y, Zhang ZC, Cui W, Tian BP. Microbiology and Outcomes of Institutionalized Patients With Stroke-Associated Pneumonia: An Observational Cohort Study. Front Microbiol 2021; 12:720051. [PMID: 34925251 PMCID: PMC8678279 DOI: 10.3389/fmicb.2021.720051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022] Open
Abstract
Background: The attributable mortality and microbial etiology of stroke-associated pneumonia (SAP) vary among different studies and were inconsistent. Purpose: To determine the microbiology and outcomes of SAP in the lower respiratory tract (LRT) for patients with invasive mechanical ventilation (MV). Methods: In this observational study, included patients were divided into SAP and non-SAP based on a comprehensive analysis of symptom, imaging, and laboratory results. Baseline characteristics, clinical characteristics, microbiology, and outcomes were recorded and evaluated. Results: Of 200 patients, 42.5% developed SAP after the onset of stroke, and they had a lower proportion of non-smokers (p = 0.002), lower GCS score (p < 0.001), higher serum CRP (p < 0.001) at ICU admission, and a higher proportion of males (p < 0.001) and hypertension (p = 0.039) than patients with non-SAP. Gram-negative aerobic bacilli were the predominant organisms isolated (78.8%), followed by Gram-positive aerobic cocci (29.4%). The main pathogens included K. pneumoniae, S. aureus, H. influenzae, A. baumannii, P. aeruginosa, E. aerogenes, Serratia marcescens, and Burkholderia cepacia. SAP prolonged length of MV (p < 0.001), duration of ICU stay (p < 0.001) and hospital stay (p = 0.027), shortened MV-free days by 28 (p < 0.001), and caused elevated vasopressor application (p = 0.001) and 60-day mortality (p = 0.001). Logistic regression analysis suggested that patients with coma (p < 0.001) have a higher risk of developing SAP. Conclusion: The microbiology of SAP is similar to early phase of HAP and VAP. SAP prolongs the duration of MV and length of ICU and hospital stays, but also markedly increases 60-day mortality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Zhang H, Huang Y, Li X, Han X, Hu J, Wang B, Zhang L, Zhuang P, Zhang Y. Dynamic Process of Secondary Pulmonary Infection in Mice With Intracerebral Hemorrhage. Front Immunol 2021; 12:767155. [PMID: 34868020 PMCID: PMC8639885 DOI: 10.3389/fimmu.2021.767155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Stroke is a common central nervous system disease in clinical practice. Stroke patients often have infectious complications, such as pneumonia and infections of the urinary tract and gastrointestinal tract. Although it has been shown that translocation of the host gut microbiota to the lungs and immune dysfunction plays a vital role in the development of infection after ischemic stroke, the occurrence and mechanism of pulmonary infection at different time points after hemorrhagic cerebral remain unclear. In this study, the changes in the immune system and intestinal barrier function in mice during disease development were investigated at 1 day (M 1 d), 3 days (M 3 d) and 7 days (M 7 d) following hemorrhagic stroke to clarify the mechanism of secondary pulmonary infection. The experimental results revealed that after hemorrhagic stroke, model mice showed increased brain damage from day 1 to 3, followed by a trend of brain recovery from day 3 to 7 . After hemorrhagic stroke, the immune system was disturbed in model mice. Significant immunosuppression of the peripheral immune system was observed in the M 3 d group but improved in the M 7 d group. Staining of lung tissues with hematoxylin and eosin (H&E) and for inflammatory factors revealed considerable disease and immune disorders in the M 7 d group. Stroke seriously impaired intestinal barrier function in mice and significantly changed the small intestine structure. From 1 to 7 d after stroke, intestinal permeability was increased, whereas the levels of markers for intestinal tight junctions, mucus and immunoglobulin A were decreased. Analysis based on 16S rRNA suggested that the microflora in the lung and ileum was significantly altered after stroke. The composition of microflora in lung and ileum tissue was similar in the M 7d group, suggesting that intestinal bacteria had migrated to lung tissue and caused lung infection at this time point after hemorrhagic stroke. In stroke mice, the aggravation of intestinal barrier dysfunction and immune disorders after intracerebral hemorrhage, promoted the migration of enteric bacteria, and increased the risk of pneumonia poststroke. Our findings reveal the dynamic process of infection after hemorrhagic stroke and provide clues for the optimal timing of intervention for secondary pulmonary infection in stroke patients.
Collapse
Affiliation(s)
- Hanyu Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Huang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaojin Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Han
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Hu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
20
|
Chen Y, Yang H, Wei H, Chen Y, Lan M. Stroke-associated pneumonia: A bibliometric analysis of worldwide trends from 2003 to 2020. Medicine (Baltimore) 2021; 100:e27321. [PMID: 34559149 PMCID: PMC8462563 DOI: 10.1097/md.0000000000027321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Stroke-associated pneumonia (SAP) is a spectrum of pulmonary infections in patients within 7 days of stroke. Which is one of the most common complications after stroke and is significantly associated with a poor prognosis of stroke. To the best of our knowledge, a bibliometric method was not previously used to analyze the topic of SAP; we aim to describe the situation and evolution of SAP from 2003 to 2020, and to discuss the research hotspots and frontiers.A total of 151 articles were retrieved from the Scopus database. Bibliometric analysis was used to explore the dynamic trends of articles and the top subject areas, journals, institutes, citations, and co-keywords. VOS viewer software (version 1.6.15) was used to graphically map the hot topics of SAP based on the co-keywords.A total of 151 articles were identified. Articles have increased over the recent years and faster in the last 2 years (55 articles, 36.4%), the majority of subject areas are medicine (124 articles, 82.1%) and neuroscience (38 articles, 25.2%). The "Journal Of Stroke And Cerebrovascular Diseases" with 15 articles has been scored as the first rank followed by "Plos One." Regarding the geographical distribution of articles, China is the most productive country with 50 articles (33.1%), others are more prominent in Europe, and most institutes are universities. Citations have increased over time, the main country of the top five highly cited published articles are Germany and before 2008. The co-keywords are mainly divided into four aspects: risk factors, predictive scores, preventions, and outcomes.This study could provide practical sources for researchers to find the top subject areas, journals, institutes, citations, and co-keywords. Moreover, the study could pave the way for researchers to be engaged in studies potentially lead to more articles in this field.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Neurology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Yang
- Neurology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Wei
- Neurology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanqin Chen
- Neurology Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meijuan Lan
- Nursing Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Kishore AK, Devaraj A, Vail A, Ward K, Thomas PG, Sen D, Procter A, Win M, James N, Roffe C, Meisel A, Woodhead M, Smith CJ. Use of Pulmonary Computed Tomography for Evaluating Suspected Stroke-Associated Pneumonia. J Stroke Cerebrovasc Dis 2021; 30:105757. [PMID: 33873077 DOI: 10.1016/j.jstrokecerebrovasdis.2021.105757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Accurate and timely diagnosis of pneumonia complicating stroke remains challenging and the diagnostic accuracy of chest X-ray (CXR) in the setting of stroke-associated pneumonia (SAP) is uncertain. The overall objective of this study was to evaluate the use of pulmonary computed tomography (CT) in diagnosis of suspected SAP. MATERIALS AND METHODS Patients with acute ischemic stroke (IS) or intracerebral hemorrhage (ICH) were recruited within 24h of clinically suspected SAP and underwent non-contrast pulmonary CT within 48h of antibiotic initiation. CXR and pulmonary CT were reported by two radiologists. Pulmonary CT was used as the reference standard for final diagnosis of SAP. Sensitivity, specificity, positive and negative predictive values (PPV and NPV), and diagnostic odds ratio (OR) for CXR were calculated. RESULTS 40 patients (36 IS, 4 ICH) with a median age of 78y (range 44y-90y) and a median National Institute of Health Stroke Scale score of 13 (range 3-31) were included. All patients had at least one CXR and 35/40 patients (88%) underwent pulmonary CT. Changes consistent with pneumonia were present in 15/40 CXRs (38%) and 12/35 pulmonary CTs (34%). 9/35 pulmonary CTs (26%) were reported normal. CXR had a sensitivity of 58.3%, specificity of 73.9%, PPV of 53.8 %, NPV of 77.2 %, diagnostic OR of 3.7 (95% CI 0.7 - 22) and an accuracy of 68.5% (95% CI 50.7% -83.1%). DISCUSSION CXR has limited diagnostic accuracy in SAP. The majority of patients started on antibiotics had no evidence of pneumonia on pulmonary CT with potential implications for antibiotic stewardship. CONCLUSIONS Pulmonary CT could be applied as a reference standard for evaluation of clinical and biomarker diagnostic SAP algorithms in multi-center studies.
Collapse
Affiliation(s)
- Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK; Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.
| | - Anand Devaraj
- Department of Radiology, Royal Brompton and Harefield NHS Foundation Trust, UK and National Heart and Lung Institute, Imperial College London, UK
| | - Andy Vail
- Centre for Biostatistics, University of Manchester, Manchester Academic Health Science Centre, UK
| | - Kirsty Ward
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK
| | - Philip G Thomas
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK
| | - Dwaipayan Sen
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK
| | - Alex Procter
- Department of Radiology, Royal Brompton and Harefield NHS Foundation Trust, UK and National Heart and Lung Institute, Imperial College London, UK
| | - Maychaw Win
- Kings College Hospital, HEE London South and KSS, UK
| | - Natasha James
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK
| | - Christine Roffe
- Keele University Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent, UK
| | - Andreas Meisel
- NeuroCure Clinical Research Center, Center for Stroke Research Berlin, Department of Neurology, Charité Universitaetsmedizin Berlin, Germany
| | - Mark Woodhead
- Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Manchester Centre for Clinical Neurosciences, Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK; Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Chaves ML, Gittins M, Bray B, Vail A, Smith CJ. Variation of stroke-associated pneumonia in stroke units across England and Wales: A registry-based cohort study. Int J Stroke 2021; 17:155-162. [PMID: 33724106 PMCID: PMC8821977 DOI: 10.1177/17474930211006297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Pneumonia is common in stroke patients and is associated with worse clinical outcomes. Prevalence of stroke-associated pneumonia varies between studies, and reasons for this variation remain unclear. We aimed to describe the variation of observed stroke-associated pneumonia in England and Wales and explore the influence of patient baseline characteristics on this variation. Methods Patient data were obtained from the Sentinel Stroke National Audit Programme for all confirmed strokes between 1 April 2013 and 31 December 2018. Stroke-associated pneumonia was defined by new antibiotic initiation for pneumonia within the first seven days of admission. The probability of stroke-associated pneumonia occurrence within stroke units was estimated and compared using a multilevel mixed model with and without adjustment for patient-level characteristics at admission. Results Of the 413,133 patients included, median National Institutes of Health Stroke Scale was 4 (IQR: 2–10) and 42.3% were aged over 80 years. Stroke-associated pneumonia was identified in 8.5% of patients. The median within stroke unit stroke-associated pneumonia prevalence was 8.5% (IQR: 6.1–11.5%) with a maximum of 21.4%. The mean and variance of the predicted stroke-associated pneumonia probability across stroke units decreased from 0.08 (0.68) to 0.05 (0.63) when adjusting for patient admission characteristics. This difference in the variance suggests that clinical characteristics account for 5% of the observed variation in stroke-associated pneumonia between units. Conclusions Patient-level clinical characteristics contributed minimally to the observed variation of stroke-associated pneumonia between stroke units. Additional explanations for the observed variation in stroke-associated pneumonia need to be explored which could reduce variation in antibiotic use for stroke patients.
Collapse
Affiliation(s)
- Ma Lobo Chaves
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Matthew Gittins
- Centre for Biostatistics, University of Manchester, Manchester, UK
| | - Benjamin Bray
- School of Population Health and Environmental Sciences, King's College London, London, UK
| | - Andy Vail
- Centre for Biostatistics, University of Manchester, Manchester, UK
| | - Craig J Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, UK.,Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
23
|
Jagdmann S, Berchtold D, Gutbier B, Witzenrath M, Meisel A, Meisel C, Dames C. Efficacy and safety of intratracheal IFN-γ treatment to reverse stroke-induced susceptibility to pulmonary bacterial infections. J Neuroimmunol 2021; 355:577568. [PMID: 33862420 DOI: 10.1016/j.jneuroim.2021.577568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022]
Abstract
Stroke-induced immunosuppression contributes to the development of stroke-associated pneumonia (SAP). Experiments in mice demonstrated that apoptosis of IFN-γ producing cells and reduced IFN-γ secretion resulted in impaired immune responses and the development of pneumonia after middle cerebral artery occlusion (MCAo). In the present study, we investigated the efficacy of intratracheal IFN-γ treatment to prevent SAP and demonstrated that modest benefits on pulmonary cytokine response in IFN-γ treated stroke mice did not prevent spontaneously developing infections and even slightly reduced bacterial clearance of aspirated pneumococci. Our results suggest that pulmonary IFN-γ treatment is not an effective preventive measure for SAP.
Collapse
Affiliation(s)
- Sandra Jagdmann
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, Berlin 13353, Germany.
| | - Daniel Berchtold
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Experimental Neurology, Charitéplatz 1, Berlin 10117, Germany.
| | - Birgitt Gutbier
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Division of Pulmonary Inflammation, Charitéplatz 1, Berlin 10117, Germany.
| | - Martin Witzenrath
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Division of Pulmonary Inflammation, Charitéplatz 1, Berlin 10117, Germany; Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Infectious Diseases and Respiratory Medicine, Charitéplatz 1, Berlin 10117, Germany.
| | - Andreas Meisel
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Experimental Neurology, Charitéplatz 1, Berlin 10117, Germany; Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Center for Stroke Research Berlin, Charitéplatz 1, Berlin 10117, Germany; Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Neurocure Cluster of Excellence, Charitéplatz 1, Berlin 10117, Germany; Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Neurology, Charitéplatz 1, Berlin 10117, Germany.
| | - Christian Meisel
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, Berlin 13353, Germany; Labor Berlin-Charité Vivantes, Sylter Str. 2, Berlin 13353, Germany.
| | - Claudia Dames
- Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, Berlin 13353, Germany; Charité - Universitätsmedizin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Experimental Neurology, Charitéplatz 1, Berlin 10117, Germany.
| |
Collapse
|
24
|
Campbell P, Bain B, Furlanetto DL, Brady MC. Interventions for improving oral health in people after stroke. Cochrane Database Syst Rev 2020; 12:CD003864. [PMID: 33314046 PMCID: PMC8106870 DOI: 10.1002/14651858.cd003864.pub3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND For people with physical, sensory and cognitive limitations due to stroke, the routine practice of oral health care (OHC) may become a challenge. Evidence-based supported oral care intervention is essential for this patient group. OBJECTIVES To compare the effectiveness of OHC interventions with usual care or other treatment options for ensuring oral health in people after a stroke. SEARCH METHODS We searched the Cochrane Stroke Group and Cochrane Oral Health Group trials registers, CENTRAL, MEDLINE, Embase, and six other databases in February 2019. We scanned reference lists from relevant papers and contacted authors and researchers in the field. We handsearched the reference lists of relevant articles and contacted other researchers. There were no language restrictions. SELECTION CRITERIA We included randomised controlled trials (RCTs) that evaluated one or more interventions designed to improve the cleanliness and health of the mouth, tongue and teeth in people with a stroke who received assisted OHC led by healthcare staff. We included trials with a mixed population provided we could extract the stroke-specific data. The primary outcomes were dental plaque or denture plaque. Secondary outcomes included presence of oral disease, presence of related infection and oral opportunistic pathogens related to OHC and pneumonia, stroke survivor and providers' knowledge and attitudes to OHC, and patient satisfaction and quality of life. DATA COLLECTION AND ANALYSIS Two review authors independently screened abstracts and full-text articles according to prespecified selection criteria, extracted data and assessed the methodological quality using the Cochrane 'Risk of bias' tool. We sought clarification from investigators when required. Where suitable statistical data were available, we combined the selected outcome data in pooled meta-analyses. We used GRADE to assess the quality of evidence for each outcome. MAIN RESULTS Fifteen RCTs (22 randomised comparisons) involving 3631 participants with data for 1546 people with stroke met the selection criteria. OHC interventions compared with usual care Seven trials (2865 participants, with data for 903 participants with stroke, 1028 healthcare providers, 94 informal carers) investigated OHC interventions compared with usual care. Multi-component OHC interventions showed no evidence of a difference in the mean score (DMS) of dental plaque one month after the intervention was delivered (DMS -0.66, 95% CI -1.40 to 0.09; 2 trials, 83 participants; I2 = 83%; P = 0.08; very low-quality evidence). Stroke survivors had less plaque on their dentures when staff had access to the multi-component OHC intervention (DMS -1.31, 95% CI -1.96 to -0.66; 1 trial, 38 participants; P < 0.0001; low-quality evidence). There was no evidence of a difference in gingivitis (DMS -0.60, 95% CI -1.66 to 0.45; 2 trials, 83 participants; I2 = 93%; P = 0.26: very low-quality evidence) or denture-induced stomatitis (DMS -0.33, 95% CI -0.92 to 0.26; 1 trial, 38 participants; P = 0.69; low-quality evidence) among participants receiving the multi-component OHC protocol compared with usual care one month after the intervention. There was no difference in the incidence of pneumonia in participants receiving a multi-component OHC intervention (99 participants; 5 incidents of pneumonia) compared with those receiving usual care (105 participants; 1 incident of pneumonia) (OR 4.17, CI 95% 0.82 to 21.11; 1 trial, 204 participants; P = 0.08; low-quality evidence). OHC training for stroke survivors and healthcare providers significantly improved their OHC knowledge at one month after training (SMD 0.70, 95% CI 0.06 to 1.35; 3 trials, 728 participants; I2 = 94%; P = 0.03; very low-quality evidence). Pooled data one month after training also showed evidence of a difference between stroke survivor and providers' oral health attitudes (SMD 0.28, 95% CI 0.01 to 0.54; 3 trials, 728 participants; I2 = 65%; P = 0.06; very low-quality evidence). OHC interventions compared with placebo Three trials (394 participants, with data for 271 participants with stroke) compared an OHC intervention with placebo. There were no data for primary outcomes. There was no evidence of a difference in the incidence of pneumonia in participants receiving an OHC intervention compared with placebo (OR 0.39, CI 95% 0.14 to 1.09; 2 trials, 242 participants; I2 = 42%; P = 0.07; low-quality evidence). However, decontamination gel reduced the incidence of pneumonia among the intervention group compared with placebo gel group (OR 0.20, 95% CI 0.05 to 0.84; 1 trial, 203 participants; P = 0.028). There was no difference in the incidence of pneumonia in participants treated with povidone-iodine compared with a placebo (OR 0.81, 95% CI 0.18 to 3.51; 1 trial, 39 participants; P = 0.77). One OHC intervention compared with another OHC intervention Twelve trials (372 participants with stroke) compared one OHC intervention with another OHC intervention. There was no difference in dental plaque scores between those participants that received an enhanced multi-component OHC intervention compared with conventional OHC interventions at three months (MD -0.04, 95% CI -0.33 to 0.25; 1 trial, 61 participants; P = 0.78; low-quality evidence). There were no data for denture plaque. AUTHORS' CONCLUSIONS We found low- to very low-quality evidence suggesting that OHC interventions can improve the cleanliness of patient's dentures and stroke survivor and providers' knowledge and attitudes. There is limited low-quality evidence that selective decontamination gel may be more beneficial than placebo at reducing the incidence of pneumonia. Improvements in the cleanliness of a patient's own teeth was limited. We judged the quality of the evidence included within meta-analyses to be low or very low quality, and this limits our confidence in the results. We still lack high-quality evidence of the optimal approach to providing OHC to people after stroke.
Collapse
Affiliation(s)
- Pauline Campbell
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Glasgow, UK
| | - Brenda Bain
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Glasgow, UK
| | - Denise Lc Furlanetto
- Public Health Department, Health Sciences Faculty, University of Brasilia, Brasilia, Brazil
| | - Marian C Brady
- Nursing, Midwifery and Allied Health Professions Research Unit, Glasgow Caledonian University, Glasgow, UK
| |
Collapse
|
25
|
Gradek-Kwinta E, Czyzycki M, Weglarczyk K, Slowik A, Siedlar M, Dziedzic T. Ex vivo synthesized cytokines as a biomarker of stroke-associated pneumonia. Clin Chim Acta 2020; 510:260-263. [DOI: 10.1016/j.cca.2020.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
|
26
|
Yuan D, Zhang J, Wang X, Chen S, Wang Y. Intensified Oral Hygiene Care in Stroke-Associated Pneumonia: A Pilot Single-Blind Randomized Controlled Trial. INQUIRY: The Journal of Health Care Organization, Provision, and Financing 2020; 57:46958020968777. [PMID: 33124506 PMCID: PMC7607750 DOI: 10.1177/0046958020968777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this pilot, single-blind, randomized controlled trial, we investigated the effects of intensified oral hygiene care (IOHC) on reducing stroke-associated pneumonia (SAP) incidence. Patients admitted within 24 hours of stroke onset were recruited and randomized to receive IOHC or routine oral hygiene care. The occurrence of SAP was checked and oral swabs were obtained during the 7-day follow-up. The SAP incidence was lower, though not significantly, in the IOHC group than in the control group. IOHC successfully decreased SAP incidence among patients who were male, had higher National Institutes of Health Stroke Scale and Debris Index scores, and lower Glasgow Coma Scale and Gugging Swallowing Screen scores. Furthermore, IOHC significantly decreased the prevalence of oral suspected SAP pathogens. These results suggest that IOHC can decrease the incidence of SAP in the most vulnerable patient groups and lower the prevalence of suspected oral SAP pathogens.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Geriatric Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoxue Wang
- Department of Geriatric Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Su Chen
- Department of VIP Service, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- Department of Geriatric Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Elkind MSV, Boehme AK, Smith CJ, Meisel A, Buckwalter MS. Infection as a Stroke Risk Factor and Determinant of Outcome After Stroke. Stroke 2020; 51:3156-3168. [PMID: 32897811 DOI: 10.1161/strokeaha.120.030429] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the relationship between infection and stroke has taken on new urgency in the era of the coronavirus disease 2019 (COVID-19) pandemic. This association is not a new concept, as several infections have long been recognized to contribute to stroke risk. The association of infection and stroke is also bidirectional. Although infection can lead to stroke, stroke also induces immune suppression which increases risk of infection. Apart from their short-term effects, emerging evidence suggests that poststroke immune changes may also adversely affect long-term cognitive outcomes in patients with stroke, increasing the risk of poststroke neurodegeneration and dementia. Infections at the time of stroke may also increase immune dysregulation after the stroke, further exacerbating the risk of cognitive decline. This review will cover the role of acute infections, including respiratory infections such as COVID-19, as a trigger for stroke; the role of infectious burden, or the cumulative number of infections throughout life, as a contributor to long-term risk of atherosclerotic disease and stroke; immune dysregulation after stroke and its effect on the risk of stroke-associated infection; and the impact of infection at the time of a stroke on the immune reaction to brain injury and subsequent long-term cognitive and functional outcomes. Finally, we will present a model to conceptualize the many relationships among chronic and acute infections and their short- and long-term neurological consequences. This model will suggest several directions for future research.
Collapse
Affiliation(s)
- Mitchell S V Elkind
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY. (M.S.V.E., A.K.B.).,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY. (M.S.V.E., A.K.B.)
| | - Amelia K Boehme
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY. (M.S.V.E., A.K.B.).,Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY. (M.S.V.E., A.K.B.)
| | - Craig J Smith
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Centre for Clinical Neurosciences, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Manchester, United Kingdom (C.J.S.)
| | - Andreas Meisel
- Center for Stroke Research Berlin, Department for Experimental Neurology, Department of Neurology, NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, Germany (A.M.)
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University Medical Center, CA (M.S.B.)
| |
Collapse
|
28
|
Impact of Key Nicotinic AChR Subunits on Post-Stroke Pneumococcal Pneumonia. Vaccines (Basel) 2020; 8:vaccines8020253. [PMID: 32481512 PMCID: PMC7349987 DOI: 10.3390/vaccines8020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pneumonia is the most frequent severe medical complication after stroke. An overactivation of the cholinergic signaling after stroke contributes to immunosuppression and the development of spontaneous pneumonia caused by Gram-negative pathogens. The α7 nicotinic acetylcholine receptor (α7nAChR) has already been identified as an important mediator of the anti-inflammatory pathway after stroke. However, whether the α2, α5 and α9/10 nAChR expressed in the lung also play a role in suppression of pulmonary innate immunity after stroke is unknown. In the present study, we investigate the impact of various nAChRs on aspiration-induced pneumonia after stroke. Therefore, α2, α5, α7 and α9/10 nAChR knockout (KO) mice and wild type (WT) littermates were infected with Streptococcus pneumoniae (S. pneumoniae) three days after middle cerebral artery occlusion (MCAo). One day after infection pathogen clearance, cellularity in lung and spleen, cytokine secretion in bronchoalveolar lavage (BAL) and alveolar-capillary barrier were investigated. Here, we found that deficiency of various nAChRs does not contribute to an enhanced clearance of a Gram-positive pathogen causing post-stroke pneumonia in mice. In conclusion, these findings suggest that a single nAChR is not sufficient to mediate the impaired pulmonary defense against S. pneumoniae after experimental stroke.
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review provides the rationale for the development of new antibiotics to treat community-acquired pneumonia (CAP). It also provides an overview of the new antibiotics targeting CAP that have recently received approval by the regulatory agencies, and those antibiotics that are in the development pipeline. RECENT FINDINGS CAP is one of the most common reasons for hospitalization and carries a significant morbidity and risk of mortality. Increasing antibiotic resistance amongst the common bacterial pathogens associated with CAP, especially staphylococci and Streptococcus pneumoniae, has made the empiric treatment of this infection increasingly problematic. Moreover, failure of initial empiric therapy to cover the causative agents associated with CAP can be associated with worse clinical outcomes. There have been several antibiotics newly approved or in development for the treatment of CAP. These agents include delafloxacin, omadacycline, lefamulin, solithromycin, nemonoxacin, and ceftaroline. Their major advantages include activity against methicillin-resistant Staphylococcus aureus and macrolide-resistant Strep. pneumoniae. SUMMARY CAP continues to be an important infection because of its impact on patient outcomes especially in the elderly and immunocompromised hosts. The availability of new antibiotics offers an opportunity for enhanced empiric treatment of the antibiotic-resistant bacterial pathogens associated with CAP.
Collapse
|
30
|
Niederman MS, Nair GB, Matt U, Herold S, Pennington K, Crothers K, Cummings M, Schluger NW. Update in Lung Infections and Tuberculosis 2018. Am J Respir Crit Care Med 2020; 200:414-422. [PMID: 31042415 DOI: 10.1164/rccm.201903-0606up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Michael S Niederman
- 1Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Girish Balachandran Nair
- 2Division of Pulmonary and Critical Care Medicine, Beaumont Health, William Beaumont School of Medicine, Oakland University, Royal Oak, Michigan
| | - Ulrich Matt
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Susanne Herold
- 3Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Justus Liebig University, Giessen, Germany
| | - Kelly Pennington
- 4Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kristina Crothers
- 5Pulmonary, Critical Care and Sleep Medicine, VA Puget Sound Health Care System, Seattle, Washington.,6University of Washington, Seattle, Washington; and
| | | | - Neil W Schluger
- 7Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
31
|
Mariano PMMS, Rodrigues MDS, Santana LFE, Guimarães MP, Schwingel PA, Gomes OV, Moura JCD. Pneumonia risk factors in stroke patients. REVISTA CEFAC 2020. [DOI: 10.1590/1982-0216/20202269920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT Purpose: to assess the demographic and clinical characteristics associated with the development of pneumonia in post-stroke patients hospitalized in a tertiary hospital, located in the Vale do São Francisco, that covers the states of Pernambuco and Bahia, Brazil. Methods: a unicentric, observational, analytical, cross-sectional study, based on the medical records of patients diagnosed with stroke and included in the Stroke Registry (RAVESS study). The statistical analysis was made with the chi-square test, Fisher’s exact test, and the analysis of variance, with the Bonferroni’s post-test, and P≤0.05. Results: data from 69 patients presented with acute stroke were collected, aged 63.2±16.8 years; 37 (53.6%) were females; the prevalence of pneumonia during hospital stay was estimated at 31.9% (95% confidence interval: 21.2-44.2%). In the univariate analysis of predictors for post-stroke pneumonia, the following were identified: older age (72.6±17.9 vs. 58.8±14.5; P = 0.001), lower response signal to the Glasgow Coma Scale at admission (11.3±1.8 vs. 13.3±2.1; P = 0.001), and higher frequency of dysarthria at admission (61.9% vs. 27.9%; P = 0.009). Conclusion: pneumonia was a prevalent complication in post-stroke patients at a Brazilian tertiary hospital. It was related to the patient’s older age and the severity of the cerebral event.
Collapse
|
32
|
Farris BY, Monaghan KL, Zheng W, Amend CD, Hu H, Ammer AG, Coad JE, Ren X, Wan ECK. Ischemic stroke alters immune cell niche and chemokine profile in mice independent of spontaneous bacterial infection. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:326-341. [PMID: 31691533 PMCID: PMC6842816 DOI: 10.1002/iid3.277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 01/22/2023]
Abstract
Introduction Stroke‐associated pneumonia (SAP) is a major cause of mortality in patients who have suffered from severe ischemic stroke. Although multifactorial in nature, stroke‐induced immunosuppression plays a key role in the development of SAP. Previous studies using a murine model of transient middle cerebral artery occlusion (tMCAO) have shown that focal ischemic stroke induction results in functional defects of lymphocytes in the spleen, thymus, and peripheral blood, leading to spontaneous bacterial infection in the lungs without inoculation. However, how ischemic stroke alters immune cell niche and the expression of cytokines and chemokines in the lungs has not been fully characterized. Methods Ischemic stroke was induced in mice by tMCAO. Immune cell profiles in the brain and the lungs at 24‐ and 72‐hour time points were compared by flow cytometric analysis. Cytokine and chemokine expression in the lungs were determined by multiplex bead arrays. Tissue damage and bacterial burden in the lungs following tMCAO were evaluated. Results Ischemic stroke increases the percentage of alveolar macrophages, neutrophils, and CD11b+ dendritic cells, but reduces the percentage of CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and eosinophils in the lungs. The alteration of immune cell niche in the lungs coincides with a significant reduction in the levels of multiple chemokines in the lungs, including CCL3, CCL4, CCL5, CCL17, CCL20, CCL22, CXCL5, CXCL9, and CXCL10. Spontaneous bacterial infection and tissue damage following tMCAO, however, were not observed. Conclusion This is the first report to demonstrate a significant reduction of lymphocytes and multiple proinflammatory chemokines in the lungs following ischemic stroke in mice. These findings suggest that ischemic stroke directly impacts pulmonary immunity.
Collapse
Affiliation(s)
- Breanne Y Farris
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Kelly L Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Wen Zheng
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Courtney D Amend
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia.,Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Amanda G Ammer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - James E Coad
- Pathology Laboratory for Translational Medicine, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Xuefang Ren
- Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Edwin C K Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia.,Department of Neuroscience, West Virginia University School of Medicine, Morgantown, West Virginia.,Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
33
|
Kishore AK, Jeans AR, Garau J, Bustamante A, Kalra L, Langhorne P, Chamorro A, Urra X, Katan M, Napoli MD, Westendorp W, Nederkoorn PJ, van de Beek D, Roffe C, Woodhead M, Montaner J, Meisel A, Smith CJ. Antibiotic treatment for pneumonia complicating stroke: Recommendations from the pneumonia in stroke consensus (PISCES) group. Eur Stroke J 2019; 4:318-328. [PMID: 31903430 DOI: 10.1177/2396987319851335] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 01/26/2023] Open
Abstract
Purpose The microbiological aetiology of pneumonia complicating stroke is poorly characterised. In this second Pneumonia in Stroke ConsEnsuS statement, we propose a standardised approach to empirical antibiotic therapy in pneumonia complicating stroke, based on likely microbiological aetiology, to improve antibiotic stewardship. Methods Systematic literature searches of multiple databases were undertaken. An evidence review and a round of consensus consultation were completed prior to a final multi-disciplinary consensus meeting in September 2017, held in Barcelona, Spain. Consensus was approached using a modified Delphi technique and defined a priori as 75% agreement between the consensus group members.Findings: No randomised trials to guide antibiotic treatment of pneumonia complicating stroke were identified. Consensus was reached for the following: (1) Stroke-associated pneumonia may be caused by organisms associated with either community-acquired or hospital-acquired pneumonia; (2) Treatment for early stroke-associated pneumonia (<72 h of stroke onset) should cover community-acquired pneumonia organisms; (3) Treatment for late stroke-associated pneumonia (≥72 h and within seven days of stroke onset) should cover community-acquired pneumonia organisms plus coliforms +/- Pseudomonas spp. if risk factors; (4) No additional antimicrobial cover is required for patients with dysphagia or aspiration; (5) Pneumonia occurring after seven days from stroke onset should be treated as for hospital-acquired pneumonia; (6) Treatment should continue for at least seven days for each of these scenarios. Discussion Consensus recommendations for antibiotic treatment of the spectrum of pneumonia complicating stroke are proposed. However, there was limited evidence available to formulate consensus on choice of specific antibiotic class for pneumonia complicating stroke. Conclusion Further studies are required to inform evidence-based treatment of stroke-associated pneumonia including randomised trials of antibiotics and validation of candidate biomarkers.
Collapse
Affiliation(s)
- Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Adam R Jeans
- Centre for Biostatistics, University of Manchester, Salford Royal Foundation Trust, UK
| | - Javier Garau
- Department of Medicine, Hospital Universitari Mutua de Terrassa, Barcelona, Clinica Rotger Quironsalud, Palma of Mallorca, Spain
| | - Alejandro Bustamante
- Neurovascular Research Lab, Vall d'Hebron Research Institute, Barcelona, Spain, Spain
| | - Lalit Kalra
- Clinical Neurosciences, King's College Hospital NHS Foundation Trust, London, UK
| | - Peter Langhorne
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Angel Chamorro
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Xabier Urra
- Comprehensive Stroke Center, Department of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Mira Katan
- Department of Neurology, Stroke Center, University Hospital of Zurich, Zurich, Switzerland
| | - Mario Di Napoli
- Stroke Unit, San Camillo de' Lellis General Hospital, Rieti, Italy
| | - Willeke Westendorp
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Paul J Nederkoorn
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Christine Roffe
- Keele University Institute for Science and Technology in Medicine, Guy Hilton Research Centre, Stoke-on-Trent, UK
| | - Mark Woodhead
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Joan Montaner
- Neurovascular Research Lab, Vall d'Hebron Research Institute, Barcelona, Spain, Spain.,Institute de Biomedicine of Seville, IBiS/Hospitales Universitarios Virgen del Rocío y Macarena, University of Seville, Seville, Spain
| | - Andreas Meisel
- NeuroCure Clinical Research Center, Center for Stroke Research Berlin, Department of Neurology, Charité Universitaetsmedizin Berlin, Germany
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Manchester Academic Health Science Centre, Salford Royal Foundation Trust, UK.,Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Smith CJ, Heal C, Vail A, Jeans AR, Westendorp WF, Nederkoorn PJ, van de Beek D, Kalra L, Montaner J, Woodhead M, Meisel A. Antibiotic Class and Outcome in Post-stroke Infections: An Individual Participant Data Pooled Analysis of VISTA-Acute. Front Neurol 2019; 10:504. [PMID: 31156537 PMCID: PMC6527959 DOI: 10.3389/fneur.2019.00504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022] Open
Abstract
Introduction: Antibiotics used to treat post-stroke infections have differing antimicrobial and anti-inflammatory effects. Our aim was to investigate whether antibiotic class was associated with outcome after post-stroke infection. Methods: We analyzed pooled individual participant data from the Virtual International Stroke Trials Archive (VISTA)-Acute. Patients with ischemic stroke and with an infection treated with systemic antibiotic therapy during the first 2 weeks after stroke onset were eligible. Antibiotics were grouped into eight classes, according to antimicrobial mechanism and prevalence. The primary analysis investigated whether antibiotic class for any infection, or for pneumonia, was independently associated with a shift in 90 day modified Rankin Scale (mRS) using ordinal logistic regression. Results: 2,708 patients were eligible (median age [IQR] = 74 [65 to 80] y; 51% female; median [IQR] NIHSS score = 15 [11 to 19]). Pneumonia occurred in 35%. Treatment with macrolides (5% of any infections; 9% of pneumonias) was independently associated with more favorable mRS distribution for any infection [OR (95% CI) = 0.59 (0.42 to 0.83), p = 0.004] and for pneumonia [OR (95% CI) = 0.46 (0.29 to 0.73), p = 0.001]. Unfavorable mRS distribution was independently associated with treatment of any infection either with carbapenems, cephalosporins or monobactams [OR (95% CI) = 1.62 (1.33 to 1.97), p < 0.001], penicillin plus β-lactamase inhibitors [OR (95% CI) = 1.26 (1.03 to 1.54), p = 0.025] or with aminoglycosides [OR (95% CI) = 1.73 (1.22 to 2.46), p = 0.002]. Conclusion: This retrospective study has several limitations including effect modification and confounding by indication. Macrolides may have favorable immune-modulatory effects in stroke-associated infections. Prospective evaluation of the impact of antibiotic class on treatment of post-stroke infections is warranted.
Collapse
Affiliation(s)
- Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Manchester Academic Health Science Centre, Salford Royal NHS Foundation Trust, Salford, United Kingdom.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Calvin Heal
- Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andy Vail
- Centre for Biostatistics, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Adam R Jeans
- Division of Clinical Support Services and Tertiary Medicine, Department of Microbiology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Willeke F Westendorp
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Nederkoorn
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lalit Kalra
- Clinical Neurosciences, King's College Hospital NHS Foundation Trust London, London, United Kingdom
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d' Hebron Institute of Research, Barcelona, Spain.,Stroke Research Program, Department of Neurology, Institute de Biomedicine of Seville, Hospital Universitario Virgen Macarena, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Mark Woodhead
- Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Andreas Meisel
- Department of Neurology, NeuroCure Clinical Research Center, Center for Stroke Research Berlin, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Zapata-Arriaza E, Serrano-Gotarredona P, Navarro-Herrero S, Moniche F, Pardo-Galiana B, Pallisa E, Vega-Salvatierra Á, Mancha F, Escudero-Martínez I, Bustamante A, Montaner J. Chest Computed Tomography Findings and Validation of Clinical Criteria of Stroke Associated Pneumonia. J Stroke 2019; 21:217-219. [PMID: 30991796 PMCID: PMC6549062 DOI: 10.5853/jos.2018.03251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Affiliation(s)
- Elena Zapata-Arriaza
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | | | | | - Francisco Moniche
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Blanca Pardo-Galiana
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Esther Pallisa
- Department of Radiology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Ángela Vega-Salvatierra
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Fernando Mancha
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Irene Escudero-Martínez
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Joan Montaner
- Stroke Research Program, Institute of Biomedicine of Seville (IBIS)/ University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain.,Department of Neurology, University Hospital Virgen Macarena, Seville, Spain
| |
Collapse
|
36
|
Lee HS, Moon J, Shin HR, Ahn SJ, Kim TJ, Jun JS, Lee ST, Jung KH, Park KI, Jung KY, Kim M, Lee SK, Chu K. Pneumonia in hospitalized neurologic patients: trends in pathogen distribution and antibiotic susceptibility. Antimicrob Resist Infect Control 2019; 8:25. [PMID: 30733859 PMCID: PMC6359823 DOI: 10.1186/s13756-019-0475-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/21/2019] [Indexed: 01/19/2023] Open
Abstract
Background Bed-ridden state, dysphagia, altered mental state, or respiratory muscle weakness are common in neurologic patients and increase the risk of pneumonia. The major causes of pneumonia in neurologic patients may differ from those in the general population, resulting in a different pathogen distribution. We investigated the trends of pathogen distribution in culture-positive pneumonia in hospitalized neurologic patients and the related antibiotic resistance in those with hospital-acquired pneumonia (HAP). Methods A retrospective study was performed at Seoul National University Hospital, South Korea. Patients admitted to the Department of Neurology with a positive respiratory specimen culture between 2007 and 2016 were included. Pneumonia events in patients were screened by chronologically associating the date of respiratory specimen acquisition for culture studies and the date of antibiotics administration. Subgroup analyses regarding multidrug resistance in HAP were performed in different pneumonia categories, by presence of ≥1 risk factor and by time period (first half vs. second half of study period). Microbial resistance profiles of isolates from patients with pneumonia were analyzed. Results We identified 351 pneumonia cases in 227 patients involving 36 different pathogens. 232 cases were HAP, of which 70 cases were intensive care unit (ICU)-HAP. The leading pathogens were Stapylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Enterobacter aerogenes, which were isolated in 133 (37.9%), 72 (20.5%), 55 (15.7%), 44 (12.5%), 33 (9.4%), and 27 (7.7%) cases, respectively. Cases with HAP showed a higher proportion of P. aeruginosa and a lower proportion of S. pneumoniae (both, p < 0.05) than those with non-HAP. ICU-HAP isolates showed a higher multidrug resistance (MDR) rate than non-ICU-HAP isolates (p < 0.005) in those with ≥1 MDR risk factor. Non-susceptibility to imipenem (p < 0.0005), piperacillin-tazobactam (p < 0.001), cefepime (p < 0.005), and trimethoprim-sulfamethoxazole (p < 0.05) in Gram-negative pathogens increased over time in both ICU and non-ICU settings. Conclusions S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, S. pneumoniae, and E. aerogenes were the leading isolates in culture-positive pneumonia in hospitalized neurologic patients. Antimicrobial resistance of Gram-negative pathogens in neurologic patients with culture-positive HAP has recently increased. Electronic supplementary material The online version of this article (10.1186/s13756-019-0475-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Sang Lee
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Jangsup Moon
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea.,5Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Hye-Rim Shin
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Seon Jae Ahn
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Tae-Joon Kim
- 2Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jin-Sun Jun
- 3Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Soon-Tae Lee
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Keun-Hwa Jung
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Kyung-Il Park
- 4Department of Neurology, Seoul National University Healthcare System Gangnam Center, Seoul, South Korea
| | - Ki-Young Jung
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Manho Kim
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Sang Kun Lee
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| | - Kon Chu
- 1Department of Neurology, Laboratory for Neurotherapeutics, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744 South Korea
| |
Collapse
|
37
|
Tao M, Wu D. Letter by Tao and Wu Regarding Article, "High Neutrophil-to-Lymphocyte Ratio Predicts Stroke-Associated Pneumonia". Stroke 2018; 49:e320. [PMID: 30355221 DOI: 10.1161/strokeaha.118.022806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|