1
|
Xu S, Jia M, Guo J, He J, Chen X, Xu Y, Hu W, Wu D, Wu C, Ji X. Ticking Brain: Circadian Rhythm as a New Target for Cerebroprotection. Stroke 2024; 55:2385-2396. [PMID: 39011642 DOI: 10.1161/strokeaha.124.046684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Collapse
Affiliation(s)
- Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Jiaqi Guo
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Jiachen He
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital (X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Sahebi K, Foroozand H, Amirsoleymani M, Eslamzadeh S, Negahdaripour M, Tajbakhsh A, Rahimi Jaberi A, Savardashtaki A. Advancing stroke recovery: unlocking the potential of cellular dynamics in stroke recovery. Cell Death Discov 2024; 10:321. [PMID: 38992073 PMCID: PMC11239950 DOI: 10.1038/s41420-024-02049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024] Open
Abstract
Stroke stands as a predominant cause of mortality and morbidity worldwide, and there is a pressing need for effective therapies to improve outcomes and enhance the quality of life for stroke survivors. In this line, effective efferocytosis, the clearance of apoptotic cells, plays a crucial role in neuroprotection and immunoregulation. This process involves specialized phagocytes known as "professional phagocytes" and consists of four steps: "Find-Me," "Eat-Me," engulfment/digestion, and anti-inflammatory responses. Impaired efferocytosis can lead to secondary necrosis and inflammation, resulting in adverse outcomes following brain pathologies. Enhancing efferocytosis presents a potential avenue for improving post-stroke recovery. Several therapeutic targets have been identified, including osteopontin, cysteinyl leukotriene 2 receptor, the µ opioid receptor antagonist β-funaltrexamine, and PPARγ and RXR agonists. Ferroptosis, defined as iron-dependent cell death, is now emerging as a novel target to attenuate post-stroke tissue damage and neuronal loss. Additionally, several biomarkers, most importantly CD163, may serve as potential biomarkers and therapeutic targets for acute ischemic stroke, aiding in stroke diagnosis and prognosis. Non-pharmacological approaches involve physical rehabilitation, hypoxia, and hypothermia. Mitochondrial dysfunction is now recognized as a major contributor to the poor outcomes of brain stroke, and medications targeting mitochondria may exhibit beneficial effects. These strategies aim to polarize efferocytes toward an anti-inflammatory phenotype, limit the ingestion of distressed but viable neurons, and stimulate efferocytosis in the late phase of stroke to enhance post-stroke recovery. These findings highlight promising directions for future research and development of effective stroke recovery therapies.
Collapse
Affiliation(s)
- Keivan Sahebi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Saghi Eslamzadeh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Bánáti D, Hellman-Regen J, Mack I, Young HA, Benton D, Eggersdorfer M, Rohn S, Dulińska-Litewka J, Krężel W, Rühl R. Defining a vitamin A5/X specific deficiency - vitamin A5/X as a critical dietary factor for mental health. INT J VITAM NUTR RES 2024; 94:443-475. [PMID: 38904956 DOI: 10.1024/0300-9831/a000808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A healthy and balanced diet is an important factor to assure a good functioning of the central and peripheral nervous system. Retinoid X receptor (RXR)-mediated signaling was identified as an important mechanism of transmitting major diet-dependent physiological and nutritional signaling such as the control of myelination and dopamine signalling. Recently, vitamin A5/X, mainly present in vegetables as provitamin A5/X, was identified as a new concept of a vitamin which functions as the nutritional precursor for enabling RXR-mediated signaling. The active form of vitamin A5/X, 9-cis-13,14-dehydroretinoic acid (9CDHRA), induces RXR-activation, thereby acting as the central switch for enabling various heterodimer-RXR-signaling cascades involving various partner heterodimers like the fatty acid and eicosanoid receptors/peroxisome proliferator-activated receptors (PPARs), the cholesterol receptors/liver X receptors (LXRs), the vitamin D receptor (VDR), and the vitamin A(1) receptors/retinoic acid receptors (RARs). Thus, nutritional supply of vitamin A5/X might be a general nutritional-dependent switch for enabling this large cascade of hormonal signaling pathways and thus appears important to guarantee an overall organism homeostasis. RXR-mediated signaling was shown to be dependent on vitamin A5/X with direct effects for beneficial physiological and neuro-protective functions mediated systemically or directly in the brain. In summary, through control of dopamine signaling, amyloid β-clearance, neuro-protection and neuro-inflammation, the vitamin A5/X - RXR - RAR - vitamin A(1)-signaling might be "one of" or even "the" critical factor(s) necessary for good mental health, healthy brain aging, as well as for preventing drug addiction and prevention of a large array of nervous system diseases. Likewise, vitamin A5/X - RXR - non-RAR-dependent signaling relevant for myelination/re-myelination and phagocytosis/brain cleanup will contribute to such regulations too. In this review we discuss the basic scientific background, logical connections and nutritional/pharmacological expert recommendations for the nervous system especially considering the ageing brain.
Collapse
Affiliation(s)
- Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| | - Julian Hellman-Regen
- Department of Psychiatry, Charité-Campus Benjamin Franklin, Section Neurobiology, University Medicine Berlin, Germany
| | - Isabelle Mack
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Germany
| | - Hayley A Young
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - David Benton
- Faculty of Medicine, Health and Life Sciences, Swansea University, UK
| | - Manfred Eggersdorfer
- Department of Healthy Ageing, University Medical Center Groningen (UMCG), The Netherlands
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Germany
| | | | - Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
4
|
Huang J, Chen Y, Zhou L, Ren J, Tian M, Yang Q, Wang L, Wu Y, Wen J, Yang Q. M2a macrophages regulate fibrosis and affect the outcome after stroke via PU.1/mTOR pathway in fibroblasts. Neurochem Int 2024; 173:105674. [PMID: 38184171 DOI: 10.1016/j.neuint.2024.105674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The moderate formation of the fibrotic scar plays an important role in functional recovery after stroke. M2a macrophages have been identified as an important source of early fibrosis after cerebral ischemia. However, the underlying mechanisms by which macrophages interact with fibroblasts in this context remain largely unknown. Therefore, our study aimed to further investigate the potential mechanisms underlying the effects of macrophages on fibroblasts following ischemic stroke. In vitro and in vivo, recombinant rat interleukin 4 (IL4) was used to induce macrophages to polarize into M2a macrophages. In vitro, primary Sprague-Dawley newborn rat meningeal-derived fibroblasts were treated with PU.1 knockdown, the PU.1 inhibitor DB1976 or the mTOR inhibitor rapamycin, which were then co-cultured with M2a macrophage conditioned medium (MCM). In vivo, Sprague-Dawley adult rats were infected with negative control adenoviruses or PU.1-shRNA adenoviruses. Ten days after infection, an injury model of middle cerebral artery occlusion/reperfusion (MCAO/R) was constructed. Subsequently, IL4 was injected intracerebroventricularly to induce M2a macrophages polarization. In vitro, M2a MCM upregulated PU.1 expression and promoted the differentiation, proliferation, migration and extracellular matrix generation of fibroblasts, which could be reversed by treatment with the PU.1 inhibitor DB1976 or PU.1 knockdown. In vivo, PU.1 expression in fibroblasts was increased within ischemic core following MCAO/R, and this upregulation was further enhanced by exposure to IL4. Treatment with IL4 promoted fibrosis, increased angiogenesis, reduced apoptosis and infarct volume, as well as mitigated neurological deficits after MCAO/R, and these effects could be reversed by PU.1 knockdown. Furthermore, both in vivo and in vitro studies showed that IL4 treatment increased the levels of phosphorylated Akt and mTOR proteins, which were markedly decreased by PU.1 knockdown. Additionally, the use of an mTOR inhibitor rapamycin obviously suppressed the migration and differentiation of fibroblasts, and Col1 synthesis. In conclusion, our findings suggest for the first time that M2a macrophages, at least in part, regulate fibrosis and affect the outcome after cerebral ischemic stroke via the PU.1/mTOR signaling pathway in fibroblasts.
Collapse
Affiliation(s)
- Jiagui Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The Second People's Hospital of Yibin, Yibin, China
| | - Yue Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiangxia Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingfen Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghuan Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Jia J, Xu S, Hu J, Gan Y, Sun M, Xia S, Bao X, Zhang M, Xu Y. Growth arrest specific protein 6 alleviated white matter injury after experimental ischemic stroke. J Cereb Blood Flow Metab 2024; 44:77-93. [PMID: 37794790 PMCID: PMC10905636 DOI: 10.1177/0271678x231205078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Ischemic white matter injury leads to long-term neurological deficits and lacks effective medication. Growth arrest specific protein 6 (Gas6) clears myelin debris, which is hypothesized to promote white matter integrity in experimental stroke models. By the middle cerebral artery occlusion (MCAO) stroke model, we observed that Gas6 reduced infarcted volume and behavior deficits 4 weeks after MCAO. Compared with control mice, Gas6-treatment mice represented higher FA values in the ipsilateral external capsules by MRI DTI scan. The SMI32/MBP ratio of the ipsilateral cortex and striatum was profoundly alleviated by Gas6 administration. Gas6-treatment group manifested thicker myelin sheaths than the control group by electron microscopy. We observed that Gas6 mainly promoted OPC maturation, which was closely related to microglia. Mechanically, Gas6 accelerated microglia-mediated myelin debris clearance and cholesterol transport protein expression (abca1, abcg1, apoc1, apoe) in vivo and in vitro, accordingly less myelin debris and lipid deposited in Gas6 treated stroke mice. HX531 (RXR inhibitor) administration mitigated the functions of Gas6 in speeding up debris clearance and cholesterol transport protein expression. Generally, we concluded that Gas6 cleared myelin debris and promoted cholesterol transportation protein expression through activating RXR, which could be one critical mechanism contributing to white matter repair after stroke.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Jinglong Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yonghui Gan
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- Jiangsu Provincial medical key discipline, Nanjing, China
| |
Collapse
|
6
|
Yang T, Sun Y, Li Q, Alraqmany N, Zhang F. Effects of Ischemic Stroke on Interstitial Fluid Clearance in Mouse Brain: a Bead Study. Cell Mol Neurobiol 2023; 43:4141-4156. [PMID: 37634198 DOI: 10.1007/s10571-023-01400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The clearance of brain interstitial fluid (ISF) is important in maintaining brain homeostasis. ISF clearance impairment leads to toxic material accumulation in the brain, and ischemic stroke could impair ISF clearance. The present study investigates ISF clearance under normal and ischemic conditions. The carboxylate-modified FluoSpheres beads (0.04 μm in diameter) were injected into the striatum. Sham or transient middle cerebral artery occlusion surgeries were performed on the mice. The brain sections were immunostained with cell markers, and bead distribution at various time points was examined with a confocal microscope. Primary mouse neuronal cultures were incubated with the beads to explore in vitro endocytosis. Two physiological routes for ISF clearance were identified. The main one was to the lateral ventricle (LV) through the cleft between the striatum and the corpus callosum (CC)/external capsule (EC), where some beads were captured by the ependymal macrophages and choroid plexus. An alternative and minor route was to the subarachnoid space through the CC/EC and the cortex, where some of the beads were endocytosed by neurons. After ischemic stroke, a significant decrease in the main route and an increase in the minor route were observed. Additionally, microglia/macrophages engulfed the beads in the infarction. In conclusion, we report that the physiological clearance of ISF and beads mainly passes through the cleft between the CC/EC and striatum into the LV, or alternatively through the cortex into the subarachnoid space. Stroke delays the main route but enhances the minor route, and microglia/macrophages engulf the beads in the infarction. Ischemic stroke impairs the clearance of brain interstitial fluid/beads. Under physiological conditions, the main route ( ① ) of interstitial fluid clearance is to the lateral ventricle, and the minor one ( ② ) is to the subarachnoid space. Ischemic stroke weakens the main route ( ① ), enhances the minor one ( ② ), and leads to microglial/macrophage phagocytosis within the infarction ( ③ ).
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh Medical Center, 200 Lothrop St, Pittsburgh, PA, 15213, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Nour Alraqmany
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
7
|
Kirmizitas FC, Rivas D, Mallick S, DePope S, Das S. Magnetic Microrobots as a Platform for Cell Clean Up. ... INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS). INTERNATIONAL CONFERENCE ON MANIPULATION AUTOMATION AND ROBOTICS AT SMALL SCALES 2023; 2023:10.1109/marss58567.2023.10294141. [PMID: 39421403 PMCID: PMC11484213 DOI: 10.1109/marss58567.2023.10294141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mobile magnetic microrobots have been extensively used in a wide range of biomedical applications due to their numerous advantages. Magnetic microrobots in particular have been developed and shown great potential over the past two decades for the manipulation and migration of both single cells and cell aggregates. The efficient clearance of cell aggregates is crucial to prevent uncontrolled cell proliferation, tissue damage, and invasive surgeries, especially for those related to the vascular system. In this work, we showed cellular manipulation and mobility to achieve cellular clean up on Human Liver Cancer (HepG2) cells by using two types of untethered magnetic microrobots that are different in type and size. We performed the cellular clean up in the microchannel, which can demonstrate the closed working environment, and also on a glass slide to present an air-liquid interface. We showed that the microrobots could be able to move a cluster of cells in both conditions which could make them useful for sorting and separation applications. Furthermore, cell viability was assessed by using a trypan blue staining assay on HepG2 cells right after and 24 hours after microrobot actuation.
Collapse
Affiliation(s)
- Fatma Ceren Kirmizitas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716
| | - David Rivas
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sudipta Mallick
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Scott DePope
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
8
|
Liu Y, Wang P, Jin G, Shi P, Zhao Y, Guo J, Yin Y, Shao Q, Li P, Yang P. The novel function of bexarotene for neurological diseases. Ageing Res Rev 2023; 90:102021. [PMID: 37495118 DOI: 10.1016/j.arr.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Bexarotene, a retinoid X receptor (RXR) agonist, is approved by FDA to treat cutaneous T-cell lymphoma. However, it has also demonstrated promising therapeutic potential for neurological diseases such as stroke, traumatic brain injury, Parkinson's disease, and particularly Alzheimer's disease(AD). In AD, bexarotene inhibits the production and aggregation of amyloid β (Aβ), activates Liver X Receptor/RXR heterodimers to increase lipidated apolipoprotein E to remove Aβ, mitigates the negative impact of Aβ, regulates neuroinflammation, and ultimately improves cognitive function. For other neurological diseases, its mechanisms of action include inhibiting inflammatory responses, up-regulating microglial phagocytosis, and reducing misfolded protein aggregation, all of which aid in alleviating neurological damage. Here, we briefly discuss the characteristics, applications, and adverse effects of bexarotene, summarize its pharmacological mechanisms and therapeutic results in various neurological diseases, and elaborate on the problems encountered in preclinical research, with the aim of providing help for the further application of bexarotene in central nervous system diseases.
Collapse
Affiliation(s)
- Yangtao Liu
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; College of Third Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Weihui, China
| | - Guofang Jin
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Peijie Shi
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yonghui Zhao
- Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiayi Guo
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yaling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qianhang Shao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China.
| | - Peng Li
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| |
Collapse
|
9
|
Nakamura K, Ago T. Pericyte-Mediated Molecular Mechanisms Underlying Tissue Repair and Functional Recovery after Ischemic Stroke. J Atheroscler Thromb 2023; 30:1085-1094. [PMID: 37394570 PMCID: PMC10499454 DOI: 10.5551/jat.rv22007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 07/04/2023] Open
Abstract
There are still many patients suffering from ischemic stroke and related disabilities worldwide. To develop a treatment that promotes functional recovery after acute ischemic stroke, we need to elucidate endogenous tissue repair mechanisms. The concept of a neurovascular unit (NVU) indicates the importance of a complex orchestration of cell-cell interactions and their microenvironment in the physiology and pathophysiology of various central nervous system diseases, particularly ischemic stroke. In this concept, microvascular pericytes play a crucial role in regulating the blood-brain barrier integrity, cerebral blood flow (CBF), and vascular stability. Recent evidence suggests that pericytes are also involved in the tissue repair leading to functional recovery following acute ischemic stroke through the interaction with other cell types constituting the NVU; pericytes may organize CBF recovery, macrophage-mediated clearance of myelin debris, intrainfarct fibrosis, and periinfarct astrogliosis and remyelination. In this review, we will discuss the physiological and pathophysiological functions of pericytes, their involvement in the molecular mechanisms underlying tissue repair and functional recovery after ischemic stroke, and a therapeutic strategy to promote endogenous regeneration.
Collapse
Affiliation(s)
- Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Novorolsky RJ, Kasheke GDS, Hakim A, Foldvari M, Dorighello GG, Sekler I, Vuligonda V, Sanders ME, Renden RB, Wilson JJ, Robertson GS. Preserving and enhancing mitochondrial function after stroke to protect and repair the neurovascular unit: novel opportunities for nanoparticle-based drug delivery. Front Cell Neurosci 2023; 17:1226630. [PMID: 37484823 PMCID: PMC10360135 DOI: 10.3389/fncel.2023.1226630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
The neurovascular unit (NVU) is composed of vascular cells, glia, and neurons that form the basic component of the blood brain barrier. This intricate structure rapidly adjusts cerebral blood flow to match the metabolic needs of brain activity. However, the NVU is exquisitely sensitive to damage and displays limited repair after a stroke. To effectively treat stroke, it is therefore considered crucial to both protect and repair the NVU. Mitochondrial calcium (Ca2+) uptake supports NVU function by buffering Ca2+ and stimulating energy production. However, excessive mitochondrial Ca2+ uptake causes toxic mitochondrial Ca2+ overloading that triggers numerous cell death pathways which destroy the NVU. Mitochondrial damage is one of the earliest pathological events in stroke. Drugs that preserve mitochondrial integrity and function should therefore confer profound NVU protection by blocking the initiation of numerous injury events. We have shown that mitochondrial Ca2+ uptake and efflux in the brain are mediated by the mitochondrial Ca2+ uniporter complex (MCUcx) and sodium/Ca2+/lithium exchanger (NCLX), respectively. Moreover, our recent pharmacological studies have demonstrated that MCUcx inhibition and NCLX activation suppress ischemic and excitotoxic neuronal cell death by blocking mitochondrial Ca2+ overloading. These findings suggest that combining MCUcx inhibition with NCLX activation should markedly protect the NVU. In terms of promoting NVU repair, nuclear hormone receptor activation is a promising approach. Retinoid X receptor (RXR) and thyroid hormone receptor (TR) agonists activate complementary transcriptional programs that stimulate mitochondrial biogenesis, suppress inflammation, and enhance the production of new vascular cells, glia, and neurons. RXR and TR agonism should thus further improve the clinical benefits of MCUcx inhibition and NCLX activation by increasing NVU repair. However, drugs that either inhibit the MCUcx, or stimulate the NCLX, or activate the RXR or TR, suffer from adverse effects caused by undesired actions on healthy tissues. To overcome this problem, we describe the use of nanoparticle drug formulations that preferentially target metabolically compromised and damaged NVUs after an ischemic or hemorrhagic stroke. These nanoparticle-based approaches have the potential to improve clinical safety and efficacy by maximizing drug delivery to diseased NVUs and minimizing drug exposure in healthy brain and peripheral tissues.
Collapse
Affiliation(s)
- Robyn J. Novorolsky
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Gracious D. S. Kasheke
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Antoine Hakim
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Marianna Foldvari
- School of Pharmacy, Faculty of Science, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel G. Dorighello
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben Gurion University, Beersheva, Israel
| | | | | | - Robert B. Renden
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, NY, United States
| | - George S. Robertson
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Brain Repair Centre, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Shibahara T, Nakamura K, Wakisaka Y, Shijo M, Yamanaka K, Takashima M, Takaki H, Hidaka M, Kitazono T, Ago T. PDGFR β-positive cell-mediated post-stroke remodeling of fibronectin and laminin α2 for tissue repair and functional recovery. J Cereb Blood Flow Metab 2023; 43:518-530. [PMID: 36514952 PMCID: PMC10063838 DOI: 10.1177/0271678x221145092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-stroke intra-infarct repair promotes peri-infarct neural reorganization leading to functional recovery. Herein, we examined the remodeling of extracellular matrix proteins (ECM) that constitute the intact basal membrane after permanent middle cerebral artery occlusion (pMCAO) in mice. Among ECM, collagen type IV remained localized on small vessel walls surrounding CD31-positive endothelial cells within infarct areas. Fibronectin was gradually deposited from peri-infarct areas to the ischemic core, in parallel with the accumulation of PDGFRβ-positive cells. Cultured PDGFRβ-positive pericytes produced fibronectin, which was enhanced by the treatment with PDGF-BB. Intra-infarct deposition of fibronectin was significantly attenuated in pericyte-deficient Pdgfrb+/-mice. Phagocytic activity of macrophages against myelin debris was significantly enhanced on fibronectin-coated dishes. In contrast, laminin α2, produced by GFAP- and aquaporin 4-positive astrocytes, accumulated strongly in the boundary of peri-infarct areas. Pericyte-conditioned medium increased the expression of laminin α2 in cultured astrocytes, partly through TGFβ1. Laminin α2 increased the differentiation of oligodendrocyte precursor cells into oligodendrocytes and the expression of myelin-associated proteins. Peri-infarct deposition of laminin α2 was significantly reduced in Pdgfrb+/-mice, with attenuated oligodendrogenesis in peri-infarct areas. Collectively, intra-infarct PDGFRβ-positive cells may orchestrate post-stroke remodeling of key ECM that create optimal environments promoting clearance of myelin debris and peri-infarct oligodendrogenesis.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Shijo
- Department of Internal Medicine, Fukuoka Dental College Medical and Dental Hospital, Fukuoka, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masamitsu Takashima
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hayato Takaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaoki Hidaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Ohashi SN, DeLong JH, Kozberg MG, Mazur-Hart DJ, van Veluw SJ, Alkayed NJ, Sansing LH. Role of Inflammatory Processes in Hemorrhagic Stroke. Stroke 2023; 54:605-619. [PMID: 36601948 DOI: 10.1161/strokeaha.122.037155] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemorrhagic stroke is the deadliest form of stroke and includes the subtypes of intracerebral hemorrhage and subarachnoid hemorrhage. A common cause of hemorrhagic stroke in older individuals is cerebral amyloid angiopathy. Intracerebral hemorrhage and subarachnoid hemorrhage both lead to the rapid collection of blood in the central nervous system and generate inflammatory immune responses that involve both brain resident and infiltrating immune cells. These responses are complex and can contribute to both tissue recovery and tissue injury. Despite the interconnectedness of these major subtypes of hemorrhagic stroke, few reviews have discussed them collectively. The present review provides an update on inflammatory processes that occur in response to intracerebral hemorrhage and subarachnoid hemorrhage, and the role of inflammation in the pathophysiology of cerebral amyloid angiopathy-related hemorrhage. The goal is to highlight inflammatory processes that underlie disease pathology and recovery. We aim to discuss recent advances in our understanding of these conditions and identify gaps in knowledge with the potential to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Sarah N Ohashi
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Jonathan H DeLong
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| | - Mariel G Kozberg
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - David J Mazur-Hart
- Department of Neurological Surgery (D.J.M.-H.), Oregon Health and Science University (OHSU), Portland
| | - Susanne J van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital/ Harvard Medical School, Boston (M.G.K., S.J.v.V.)
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown (M.G.K., S.J.v.V.)
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute (N.J.A.), Oregon Health and Science University (OHSU), Portland
| | - Lauren H Sansing
- Department of Neurology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
- Department of Immunobiology (S.N.O., J.H.D., L.H.S.), Yale School of Medicine, New Haven, CT
| |
Collapse
|
13
|
Wang M, Yang Y, Xu Y. Brain nuclear receptors and cardiovascular function. Cell Biosci 2023; 13:14. [PMID: 36670468 PMCID: PMC9854230 DOI: 10.1186/s13578-023-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Brain-heart interaction has raised up increasing attentions. Nuclear receptors (NRs) are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of cardiovascular diseases (CVDs), including hypertension, heart failure, atherosclerosis, etc. In this review, we will elaborate recent findings that have established the physiological relevance of brain NRs in the context of cardiovascular function. In addition, we will discuss the currently available evidence regarding the distinct neuronal populations that respond to brain NRs in the cardiovascular control. These findings suggest connections between cardiac control and brain dynamics through NR signaling, which may lead to novel tools for the treatment of pathological changes in the CVDs.
Collapse
Affiliation(s)
- Mengjie Wang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yongjie Yang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
| | - Yong Xu
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
14
|
Tomas-Roig J, Ramasamy S, Zbarsky D, Havemann-Reinecke U, Hoyer-Fender S. Psychosocial stress and cannabinoid drugs affect acetylation of α-tubulin (K40) and gene expression in the prefrontal cortex of adult mice. PLoS One 2022; 17:e0274352. [PMID: 36129937 PMCID: PMC9491557 DOI: 10.1371/journal.pone.0274352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
The dynamics of neuronal microtubules are essential for brain plasticity. Vesicular transport and synaptic transmission, additionally, requires acetylation of α-tubulin, and aberrant tubulin acetylation and neurobiological deficits are associated. Prolonged exposure to a stressor or consumption of drugs of abuse, like marihuana, lead to neurological changes and psychotic disorders. Here, we studied the effect of psychosocial stress and the administration of cannabinoid receptor type 1 drugs on α-tubulin acetylation in different brain regions of mice. We found significantly decreased tubulin acetylation in the prefrontal cortex in stressed mice. The impact of cannabinoid drugs on stress-induced microtubule disturbance was investigated by administration of the cannabinoid receptor agonist WIN55,212–2 and/or antagonist rimonabant. In both, control and stressed mice, the administration of WIN55,212–2 slightly increased the tubulin acetylation in the prefrontal cortex whereas administration of rimonabant acted antagonistically indicating a cannabinoid receptor type 1 mediated effect. The analysis of gene expression in the prefrontal cortex showed a consistent expression of ApoE attributable to either psychosocial stress or administration of the cannabinoid agonist. Additionally, ApoE expression inversely correlated with acetylated tubulin levels when comparing controls and stressed mice treated with WIN55,212–2 whereas rimonabant treatment showed the opposite.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| | - Shyam Ramasamy
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Diana Zbarsky
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Sigrid Hoyer-Fender
- Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology–Developmental Biology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail: (JTR); (SHF)
| |
Collapse
|
15
|
Ju H, Park KW, Kim ID, Cave JW, Cho S. Phagocytosis converts infiltrated monocytes to microglia-like phenotype in experimental brain ischemia. J Neuroinflammation 2022; 19:190. [PMID: 35850727 PMCID: PMC9295522 DOI: 10.1186/s12974-022-02552-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Monocyte-derived macrophages (MDMs) and microglia elicit neural inflammation and clear debris for subsequent tissue repair and remodeling. The role of infiltrating MDMs in the injured brain, however, has been controversial due to overlapping antigen expression with microglia. In this study, we define the origin and function of MDMs in cerebral ischemia. METHODS Using adoptive transfer of GFP+ splenocytes into adult asplenic mice subjected to transient middle cerebral artery occlusion, we compared the role of CD11b+/CD45+/NK1.1-/Ly6G- MDMs and microglia in the ischemic brain. The phagocytic activities of MDMs and microglia were measured by the uptake of fluorescent beads both in vivo with mice infused with GFP+ splenocytes and ex vivo with cultures of isolated brain immune cells. RESULTS Stroke induced an infiltration of MDMs [GFP+] into the ipsilateral hemisphere at acute (3 days) and sub-acute phases (7 days) of post-stroke. At 7 days, the infiltrating MDMs contained both CD45High and CD45Low subsets. The CD45High MDMs in the injured hemisphere exhibited a significantly higher proliferation capacity (Ki-67 expression levels) as well as higher expression levels of CD11c when compared to CD45Low MDMs. The CD45High and CD45Low MDM subsets in the injured hemisphere were approximately equal populations, indicating that CD45High MDMs infiltrating the ischemic brain changes their phenotype to CD45Low microglia-like phenotype. Studies with fluorescent beads reveal high levels of MDM phagocytic activity in the post-stroke brain, but this phagocytic activity was exclusive to post-ischemic brain tissue and was not detected in circulating monocytes. By contrast, CD45Low microglia-like cells had low levels of phagocytic activity when compared to CD45High cells. Both in vivo and ex vivo studies also show that the phagocytic activity in CD45High MDMs is associated with an increase in the CD45Low/CD45High ratio, indicating that phagocytosis promotes MDM phenotype conversion. CONCLUSIONS This study demonstrates that MDMs are the predominant phagocytes in the post-ischemic brain, with the CD45High subset having the highest phagocytic activity levels. Upon phagocytosis, CD45High MDMs in the post-ischemic brain adopt a CD45Low phenotype that is microglia-like. Together, these studies reveal key roles for MDMs and their phagocytic function in tissue repair and remodeling following cerebral ischemia.
Collapse
Affiliation(s)
- Hyunwoo Ju
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | - Keun Woo Park
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Il-Doo Kim
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA
| | | | - Sunghee Cho
- Burke Neurological Institute, 785 Mamaroneck Ave, White Plains, NY, 10605, USA.
- Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, Zhou LQ, Chen M, Tian DS, Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:215. [PMID: 35794095 PMCID: PMC9259607 DOI: 10.1038/s41392-022-01064-1] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Ischemic stroke is caused primarily by an interruption in cerebral blood flow, which induces severe neural injuries, and is one of the leading causes of death and disability worldwide. Thus, it is of great necessity to further detailly elucidate the mechanisms of ischemic stroke and find out new therapies against the disease. In recent years, efforts have been made to understand the pathophysiology of ischemic stroke, including cellular excitotoxicity, oxidative stress, cell death processes, and neuroinflammation. In the meantime, a plethora of signaling pathways, either detrimental or neuroprotective, are also highly involved in the forementioned pathophysiology. These pathways are closely intertwined and form a complex signaling network. Also, these signaling pathways reveal therapeutic potential, as targeting these signaling pathways could possibly serve as therapeutic approaches against ischemic stroke. In this review, we describe the signaling pathways involved in ischemic stroke and categorize them based on the pathophysiological processes they participate in. Therapeutic approaches targeting these signaling pathways, which are associated with the pathophysiology mentioned above, are also discussed. Meanwhile, clinical trials regarding ischemic stroke, which potentially target the pathophysiology and the signaling pathways involved, are summarized in details. Conclusively, this review elucidated potential molecular mechanisms and related signaling pathways underlying ischemic stroke, and summarize the therapeutic approaches targeted various pathophysiology, with particular reference to clinical trials and future prospects for treating ischemic stroke.
Collapse
Affiliation(s)
- Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Man Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Modulation of Rxrα Expression in Mononuclear Phagocytes Impacts on Cardiac Remodeling after Ischemia-Reperfusion Injury. Biomedicines 2022; 10:biomedicines10061274. [PMID: 35740296 PMCID: PMC9219801 DOI: 10.3390/biomedicines10061274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Retinoid X receptors (RXRs), as members of the steroid/thyroid hormone superfamily of nuclear receptors, are crucial regulators of immune response during health and disease. RXR subtype expression is dependent on tissue and cell type, RXRα being the relevant isoform in monocytes and macrophages. Previous studies have assessed different functions of RXRs and positive implications of RXR agonists on outcomes after ischemic injuries have been described. However, the impact of a reduced Rxrα expression in mononuclear phagocytes on cardiac remodeling after myocardial infarction (MI) has not been investigated to date. Here, we use a temporally controlled deletion of Rxrα in monocytes and macrophages to determine its role in ischemia-reperfusion injury. We show that reduced expression of Rxrα in mononuclear phagocytes leads to a decreased phagocytic activity and an accumulation of apoptotic cells in the myocardium, reduces angiogenesis and cardiac macrophage proliferation in the infarct border zone/infarct area, and has an impact on monocyte/macrophage subset composition. These changes are associated with a greater myocardial defect 30 days after ischemia/reperfusion injury. Overall, the reduction of Rxrα levels in monocytes and macrophages negatively impacts cardiac remodeling after myocardial infarction. Thus, RXRα might represent a therapeutic target to regulate the immune response after MI in order to improve cardiac remodeling.
Collapse
|
18
|
Guo X, Cheng B. Clinical Effects of Acupuncture for Stroke Patients Recovery. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9962421. [PMID: 35222902 PMCID: PMC8872684 DOI: 10.1155/2022/9962421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Stroke is assumed as one of the common cerebrovascular diseases that endangers human health and life. Its incidence and mortality rates are high, while survivors (50% to 70%) suffer from different degrees of disability. Hemiplegia is a common disability after stroke, mainly manifested as muscle weakness of the affected side, limb spasm, and limited activity, which severely impacts a patient's daily life. There are various rehabilitation methods for stroke hemiplegia, including modern rehabilitation medicine, motor therapy, acupuncture, and rehabilitation robot. The cost and effect of different rehabilitation methods are not the same. It is the focus to find an economical and effective rehabilitation method. In this paper, 128 stroke patients aged 41 to 73 hospitalized between January 2019 and January 2021 were analyzed. The intervention group used standard physical therapy and traditional acupuncture therapy, and the control group only used standard physical therapy. We used RStudio 1.1.419 (RStudio Corporation) for analysis. Experimental results show that the short-term efficacy of the intervention group is better than that of the control group. The intervention group was better than the control group in recovery from injury during rehabilitation, degree of muscle spasm, self-care ability in daily life, and overall degree of damage. In the long-term efficacy analysis, we can see that with the increase in the number of acupuncture, the efficacy of the intervention group is still better than that of the control group. Compared with physical rehabilitation alone, acupuncture has better short-term, and long-term clinical effects for stroke patients improves motor dysfunction and improves the quality of life and independence of stroke patients. With the increase in the number of acupuncture treatments, the patient's rehabilitation effect will be better.
Collapse
Affiliation(s)
- Xia Guo
- Rehabilitation Department of Traditional Chinese Medicine, Hanyang Hospital of Wuhan University of Science and Technology, Wuhan 430050, China
| | - Bingjie Cheng
- Traditional Chinese Medicine Department, Hubei No. 3 People's Hospital of Jianghan University, Wuhan 430033, China
| |
Collapse
|
19
|
Liu J, Zhu Z, Leung GKK. Erythrophagocytosis by Microglia/Macrophage in Intracerebral Hemorrhage: From Mechanisms to Translation. Front Cell Neurosci 2022; 16:818602. [PMID: 35237132 PMCID: PMC8882619 DOI: 10.3389/fncel.2022.818602] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition characterized by hematoma related mass effect. Microglia/macrophage (M φ) are rapidly recruited in order to remove the red blood cells through erythrophagocytosis. Efficient erythrophagocytosis can detoxify hemolytic products and facilitate neurological recovery after ICH. The underlying mechanisms include modulation of inflammatory response and oxidative stress, among others. It is a dynamic process mediated by a cascade of signal transduction, including “find-me” signals, “eat-me” signals and a set of phagocytotic receptors-ligand pairs that may be exploited as therapeutic targets. This review summarizes mechanistic signaling pathways of erythrophagocytosis and highlights the potential of harnessing M φ-mediated phagocytosis for ICH treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Gilberto Ka-Kit Leung,
| |
Collapse
|
20
|
Jia J, Yang L, Chen Y, Zheng L, Chen Y, Xu Y, Zhang M. The Role of Microglial Phagocytosis in Ischemic Stroke. Front Immunol 2022; 12:790201. [PMID: 35082781 PMCID: PMC8784388 DOI: 10.3389/fimmu.2021.790201] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system that exert diverse roles in the pathogenesis of ischemic stroke. During the past decades, microglial polarization and chemotactic properties have been well-studied, whereas less attention has been paid to phagocytic phenotypes of microglia in stroke. Generally, whether phagocytosis mediated by microglia plays a beneficial or detrimental role in stroke remains controversial, which calls for further investigations. Most researchers are in favor of the former proposal currently since efficient clearance of tissue debris promotes tissue reconstruction and neuronal network reorganization in part. Other scholars propose that excessively activated microglia engulf live or stressed neuronal cells, which results in neurological deficits and brain atrophy. Upon ischemia challenge, the microglia infiltrate injured brain tissue and engulf live/dead neurons, myelin debris, apoptotic cell debris, endothelial cells, and leukocytes. Cell phagocytosis is provoked by the exposure of "eat-me" signals or the loss of "don't eat-me" signals. We supposed that microglial phagocytosis could be initiated by the specific "eat-me" signal and its corresponding receptor on the specific cell type under pathological circumstances. In this review, we will summarize phagocytic characterizations of microglia after stroke and the potential receptors responsible for this programmed biological progress. Understanding these questions precisely may help to develop appropriate phagocytic regulatory molecules, which are promoting self-limiting inflammation without damaging functional cells.
Collapse
Affiliation(s)
- Junqiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lixuan Yang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yan Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Lili Zheng
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yanting Chen
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Meijuan Zhang
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing Neuropsychiatry Clinic Medical Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Sharma S, Shen T, Chitranshi N, Gupta V, Basavarajappa D, Mirzaei M, You Y, Krezel W, Graham SL, Gupta V. Retinoid X Receptor: Cellular and Biochemical Roles of Nuclear Receptor with a Focus on Neuropathological Involvement. Mol Neurobiol 2022; 59:2027-2050. [PMID: 35015251 PMCID: PMC9015987 DOI: 10.1007/s12035-021-02709-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Retinoid X receptors (RXRs) present a subgroup of the nuclear receptor superfamily with particularly high evolutionary conservation of ligand binding domain. The receptor exists in α, β, and γ isotypes that form homo-/heterodimeric complexes with other permissive and non-permissive receptors. While research has identified the biochemical roles of several nuclear receptor family members, the roles of RXRs in various neurological disorders remain relatively under-investigated. RXR acts as ligand-regulated transcription factor, modulating the expression of genes that plays a critical role in mediating several developmental, metabolic, and biochemical processes. Cumulative evidence indicates that abnormal RXR signalling affects neuronal stress and neuroinflammatory networks in several neuropathological conditions. Protective effects of targeting RXRs through pharmacological ligands have been established in various cell and animal models of neuronal injury including Alzheimer disease, Parkinson disease, glaucoma, multiple sclerosis, and stroke. This review summarises the existing knowledge about the roles of RXR, its interacting partners, and ligands in CNS disorders. Future research will determine the importance of structural and functional heterogeneity amongst various RXR isotypes as well as elucidate functional links between RXR homo- or heterodimers and specific physiological conditions to increase drug targeting efficiency in pathological conditions.
Collapse
Affiliation(s)
- Samridhi Sharma
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Ting Shen
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Wojciech Krezel
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire, INSERM U1258, CNRS UMR 7104, Unistra, 67404, Illkirch-Graffenstaden, France
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
22
|
Yuan M, Wang Y, Wang S, Huang Z, Jin F, Zou Q, Li J, Pu Y, Cai Z. Bioenergetic Impairment in the Neuro-Glia-Vascular Unit: An Emerging Physiopathology during Aging. Aging Dis 2021; 12:2080-2095. [PMID: 34881087 PMCID: PMC8612602 DOI: 10.14336/ad.2021.04017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/17/2021] [Indexed: 12/28/2022] Open
Abstract
An emerging concept termed the "neuro-glia-vascular unit" (NGVU) has been established in recent years to understand the complicated mechanism of multicellular interactions among vascular cells, glial cells, and neurons. It has been proverbially reported that the NGVU is significantly associated with neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Physiological aging is an inevitable progression associated with oxidative damage, bioenergetic alterations, mitochondrial dysfunction, and neuroinflammation, which is partially similar to the pathology of AD. Thus, senescence is regarded as the background for the development of neurodegenerative diseases. With the exacerbation of global aging, senescence is an increasingly serious problem in the medical field. In this review, the coupling of each component, including neurons, glial cells, and vascular cells, in the NGVU is described in detail. Then, various mechanisms of age-dependent impairment in each part of the NGVU are discussed. Moreover, the potential bioenergetic alterations between different cell types in the NGVU are highlighted, which seems to be an emerging physiopathology associated with the aged brain. Bioenergetic intervention in the NGVU may be a new direction for studies on delaying or diminishing aging in the future.
Collapse
Affiliation(s)
- Minghao Yuan
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Yangyang Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Shengyuan Wang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| | - Zhenting Huang
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Feng Jin
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Qian Zou
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Jing Li
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Yinshuang Pu
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China
| | - Zhiyou Cai
- 1Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, Chongqing, China.,2Chongqing School, University of Chinese Academy of Sciences, Chongqing, China.,3Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, Chongqing, China.,4Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Zhao J, Zhang W, Wu T, Wang H, Mao J, Liu J, Zhou Z, Lin X, Yan H, Wang Q. Efferocytosis in the Central Nervous System. Front Cell Dev Biol 2021; 9:773344. [PMID: 34926460 PMCID: PMC8678611 DOI: 10.3389/fcell.2021.773344] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
The effective clearance of apoptotic cells is essential for maintaining central nervous system (CNS) homeostasis and restoring homeostasis after injury. In most cases of physiological apoptotic cell death, efferocytosis prevents inflammation and other pathological conditions. When apoptotic cells are not effectively cleared, destruction of the integrity of the apoptotic cell membrane integrity, leakage of intracellular contents, and secondary necrosis may occur. Efferocytosis is the mechanism by which efferocytes quickly remove apoptotic cells from tissues before they undergo secondary necrosis. Cells with efferocytosis functions, mainly microglia, help to eliminate apoptotic cells from the CNS. Here, we discuss the impacts of efferocytosis on homeostasis, the mechanism of efferocytosis, the associations of efferocytosis failure and CNS diseases, and the current clinical applications of efferocytosis. We also identify efferocytosis as a novel potential target for exploring the causes and treatments of CNS diseases.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Anesthesia, Zhejiang Hospital, Hangzhou, China
| | - Weiqi Zhang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongyi Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jialiang Mao
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Liu
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ziheng Zhou
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huige Yan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
25
|
Microglia as the Critical Regulators of Neuroprotection and Functional Recovery in Cerebral Ischemia. Cell Mol Neurobiol 2021; 42:2505-2525. [PMID: 34460037 DOI: 10.1007/s10571-021-01145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Microglial activation is considered as the critical pathogenic event in diverse central nervous system disorders including cerebral ischemia. Proinflammatory responses of activated microglia have been well reported in the ischemic brain and neuroinflammatory responses of activated microglia have been believed to be the potential therapeutic strategy. However, despite having proinflammatory roles, microglia can have significant anti-inflammatory roles and they are associated with the production of growth factors which are responsible for neuroprotection and recovery after ischemic injury. Microglia can directly promote neuroprotection by preventing ischemic infarct expansion and promoting functional outcomes. Indirectly, microglia are involved in promoting anti-inflammatory responses, neurogenesis, and angiogenesis in the ischemic brain which are crucial pathophysiological events for ischemic recovery. In fact, anti-inflammatory cytokines and growth factors produced by microglia can promote neuroprotection and attenuate neurobehavioral deficits. In addition, microglia regulate phagocytosis, axonal regeneration, blood-brain barrier protection, white matter integrity, and synaptic remodeling, which are essential for ischemic recovery. Microglia can also regulate crosstalk with neurons and other cell types to promote neuroprotection and ischemic recovery. This review mainly focuses on the roles of microglia in neuroprotection and recovery following ischemic injury. Furthermore, this review also sheds the light on the therapeutic potential of microglia in stroke patients.
Collapse
|
26
|
Vitamin A5/X controls stress-adaptation and prevents depressive-like behaviors in a mouse model of chronic stress. Neurobiol Stress 2021; 15:100375. [PMID: 34401411 PMCID: PMC8355947 DOI: 10.1016/j.ynstr.2021.100375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022] Open
Abstract
9-cis-13,14-dihydroretinoic acid (9CDHRA), acts as an endogenous ligand of the retinoid X receptors (RXRs), and is an active form of a suggested new vitamin, vitamin A5/X. Nutritional-relevance of this pathway as well as its detailed role in vertebrate physiology, remain largely unknown. Since recent GWAS data and experimental studies associated RXR-mediated signaling with depression, we explored here the relevance of RXR and vitamin A5/X-mediated signaling in the control of stress adaptation and depressive-like behaviors in mice. We found that compromised availability of 9CDHRA in Rbp1−/− mice was associated with increased despair in the forced swim and anhedonia in the sucrose preference test. 9CDHRA similarly to synthetic RXR agonist, BMS649, normalized despair behaviors in Rbp1−/− but not Rxrγ−/− mice, supporting involvement of RXR signaling in anti-despair activity of these ligands. Importantly, similarly to BMS649, the 9CDHRA and its nutritional-precursor, 9-cis-13,14-dihydroretinol (vitamin A5/X alcohol), prevented development of depressive-like behaviors in mice exposed to chronic social defeat stress, revealing the beneficial role of RXRs and its endogenous ligand in stress adaptation process. These data point to the need for relevant nutritional, biochemical and pharmacological studies of this signaling pathway in human, both in physiological conditions and in pathologies of stress-related disorders.
Collapse
|
27
|
Xu C, Chen H, Zhou S, Sun C, Xia X, Peng Y, Zhuang J, Fu X, Zeng H, Zhou H, Cao Y, Yu Q, Li Y, Hu L, Zhou G, Yan F, Chen G, Li J. Pharmacological Activation of RXR-α Promotes Hematoma Absorption via a PPAR-γ-dependent Pathway After Intracerebral Hemorrhage. Neurosci Bull 2021; 37:1412-1426. [PMID: 34142331 DOI: 10.1007/s12264-021-00735-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
Endogenously eliminating the hematoma is a favorable strategy in addressing intracerebral hemorrhage (ICH). This study sought to determine the role of retinoid X receptor-α (RXR-α) in the context of hematoma absorption after ICH. Our results showed that pharmacologically activating RXR-α with bexarotene significantly accelerated hematoma clearance and alleviated neurological dysfunction after ICH. RXR-α was expressed in microglia/macrophages, neurons, and astrocytes. Mechanistically, bexarotene promoted the nuclear translocation of RXR-α and PPAR-γ, as well as reducing neuroinflammation by modulating microglia/macrophage reprograming from the M1 into the M2 phenotype. Furthermore, all the beneficial effects of RXR-α in ICH were reversed by the PPAR-γ inhibitor GW9662. In conclusion, the pharmacological activation of RXR-α confers robust neuroprotection against ICH by accelerating hematoma clearance and repolarizing microglia/macrophages towards the M2 phenotype through PPAR-γ-related mechanisms. Our data support the notion that RXR-α might be a promising therapeutic target for ICH.
Collapse
Affiliation(s)
- Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Huaijun Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Shengjun Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chenjun Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiaolong Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jianfeng Zhuang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiongjie Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qian Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Libin Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Guoyang Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jianru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
28
|
Mike JK, Ferriero DM. Efferocytosis Mediated Modulation of Injury after Neonatal Brain Hypoxia-Ischemia. Cells 2021; 10:1025. [PMID: 33925299 PMCID: PMC8146813 DOI: 10.3390/cells10051025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neonatal brain hypoxia-ischemia (HI) is a leading cause of morbidity and long-term disabilities in children. While we have made significant progress in describing HI mechanisms, the limited therapies currently offered for HI treatment in the clinical setting stress the importance of discovering new targetable pathways. Efferocytosis is an immunoregulatory and homeostatic process of clearance of apoptotic cells (AC) and cellular debris, best described in the brain during neurodevelopment. The therapeutic potential of stimulating defective efferocytosis has been recognized in neurodegenerative diseases. In this review, we will explore the involvement of efferocytosis after a stroke and HI as a promising target for new HI therapies.
Collapse
Affiliation(s)
- Jana Krystofova Mike
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Donna Marie Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Neurology Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
29
|
Hu M, Lin Y, Men X, Wang S, Sun X, Zhu Q, Lu D, Liu S, Zhang B, Cai W, Lu Z. High-salt diet downregulates TREM2 expression and blunts efferocytosis of macrophages after acute ischemic stroke. J Neuroinflammation 2021; 18:90. [PMID: 33845849 PMCID: PMC8040220 DOI: 10.1186/s12974-021-02144-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background A high-salt diet (HSD) is one of the major risk factors for acute ischemic stroke (AIS). As a potential mechanism, surplus salt intake primes macrophages towards a proinflammatory phenotype. In this study, whether HSD could blunt the efferocytic capability of macrophages after ischemic stroke, thus exacerbating post-stroke neural inflammation, was investigated. Methods Wild-type male C57BL/6 mice were fed with fodder containing 8% sodium chloride for 4 weeks and subjected to transient middle cerebral occlusion (tMCAO). Disease severity, macrophage polarization as well as efferocytic capability were evaluated. Bone marrow-derived macrophages were cultured in vitro, and the impact of high salinity on their efferocytic activity, as well as their expression of phagocytic molecules, were analyzed. The relationships among sodium concentration, macrophage phenotype, and disease severity in AIS patients were explored. Results HSD-fed mice displayed increased infarct volume and aggravated neurological deficiency. Mice fed with HSD suffered exacerbated neural inflammation as shown by higher inflammatory mediator expression and immune cell infiltration levels. Infiltrated macrophages within stroke lesions in HSD-fed mice exhibited a shift towards proinflammatory phenotype and impaired efferocytic capability. As assessed with a PCR array, the expression of triggering receptor expressed on myeloid cells 2 (TREM2), a receptor relevant to phagocytosis, was downregulated in high-salt-treated bone marrow-derived macrophages. Enhancement of TREM2 signaling restored the efferocytic capacity and cellular inflammation resolution of macrophages in a high salinity environment in vitro and in vivo. A high concentration of urine sodium in AIS patients was found to be correlated with lower TREM2 expression and detrimental stroke outcomes. Conclusions HSD inhibited the efferocytic capacity of macrophages by downregulating TREM2 expression, thus impeding inflammation resolution after ischemic stroke. Enhancing TREM2 signaling in monocytes/macrophages could be a promising therapeutic strategy to enhance efferocytosis and promote post-stroke inflammation resolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02144-9.
Collapse
Affiliation(s)
- Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Yinyao Lin
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xuejiao Men
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Xiaobo Sun
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Qiang Zhu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Sanxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Bingjun Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China. .,Center of Clinical Immunology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China.
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong, 510630, People's Republic of China.
| |
Collapse
|
30
|
Zhou G, Wang T, Zha XM. RNA-Seq analysis of knocking out the neuroprotective proton-sensitive GPR68 on basal and acute ischemia-induced transcriptome changes and signaling in mouse brain. FASEB J 2021; 35:e21461. [PMID: 33724568 PMCID: PMC7970445 DOI: 10.1096/fj.202002511r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022]
Abstract
Brain acid signaling plays important roles in both physiological and disease conditions. One key neuronal metabotropic proton receptor in the brain is GPR68, which contributes to hippocampal long-term potentiation (LTP) and mediates neuroprotection in acidotic and ischemic conditions. Here, to gain greater understanding of GPR68 function in the brain, we performed mRNA-Seq analysis in mice. First, we studied sham-operated animals to determine baseline expression. Compared to wild type (WT), GPR68-/- (KO) brain downregulated genes that are enriched in Gene Ontology (GO) terms of misfolding protein binding, response to organic cyclic compounds, and endoplasmic reticulum chaperone complex. Next, we examined the expression profile following transient middle cerebral artery occlusion (tMCAO). tMCAO-upregulated genes cluster to cytokine/chemokine-related functions and immune responses, while tMCAO-downregulated genes cluster to channel activities and synaptic signaling. For proton-sensitive receptors, tMCAO downregulated ASIC1a and upregulated GPR4 and GPR65, but had no effect on ASIC2, PAC, or GPR68. GPR68 deletion did not alter the expression of these proton receptors, either at baseline or after ischemia. Lastly, we performed GeneVenn analysis of differential genes at baseline and post-tMCAO. Ischemia upregulated the expression of three hemoglobin genes, along with H2-Aa, Ppbp, Siglece, and Tagln, in WT but not in KO. Immunostaining showed that tMCAO-induced hemoglobin localized to neurons. Western blot analysis further showed that hemoglobin induction is GPR68-dependent. Together, these data suggest that GPR68 deletion at baseline disrupts chaperone functions and cellular signaling responses and imply a contribution of hemoglobin-mediated antioxidant mechanism to GPR68-dependent neuroprotection in ischemia.
Collapse
Affiliation(s)
- Guokun Zhou
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Tao Wang
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| | - Xiang-Ming Zha
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, USA
| |
Collapse
|
31
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
32
|
Kim E, Cho S. CNS and peripheral immunity in cerebral ischemia: partition and interaction. Exp Neurol 2021; 335:113508. [PMID: 33065078 PMCID: PMC7750306 DOI: 10.1016/j.expneurol.2020.113508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Stroke elicits excessive immune activation in the injured brain tissue. This well-recognized neural inflammation in the brain is not just an intrinsic organ response but also a result of additional intricate interactions between infiltrating peripheral immune cells and the resident immune cells in the affected areas. Given that there is a finite number of immune cells in the organism at the time of stroke, the partitioned immune systems of the central nervous system (CNS) and periphery must appropriately distribute the limited pool of immune cells between the two domains, mounting a necessary post-stroke inflammatory response by supplying a sufficient number of immune cells into the brain while maintaining peripheral immunity. Stroke pathophysiology has mainly been neurocentric in focus, but understanding the distinct roles of the CNS and peripheral immunity in their concerted action against ischemic insults is crucial. This review will discuss stroke-induced influences of the peripheral immune system on CNS injury/repair and of neural inflammation on peripheral immunity, and how comorbidity influences each.
Collapse
Affiliation(s)
- Eunhee Kim
- Vivian L. Smith Department of Neurosurgery at University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Sunghee Cho
- Burke Neurological Institute, White Plains, NY, United States of America; Feil Brain Mind Research Institute, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
33
|
Shibahara T, Ago T, Tachibana M, Nakamura K, Yamanaka K, Kuroda J, Wakisaka Y, Kitazono T. Reciprocal Interaction Between Pericytes and Macrophage in Poststroke Tissue Repair and Functional Recovery. Stroke 2020; 51:3095-3106. [PMID: 32933419 DOI: 10.1161/strokeaha.120.029827] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Poststroke tissue repair, comprised of macrophage-mediated clearance of myelin debris and pericyte-mediated fibrotic response within the infarct area, is an important process for functional recovery. Herein, we investigated the reciprocal interaction between pericytes and macrophages during poststroke repair and functional recovery. METHODS We performed a permanent middle cerebral artery occlusion in both wild-type and pericyte-deficient PDGFRβ (platelet-derived growth factor receptor β) heterozygous knockout (Pdgfrb+/-) mice and compared histological changes and neurological functions between the 2 groups. We also examined the effects of conditioned medium harvested from cultured pericytes, or bone marrow-derived macrophages, on the functions of other cell types. RESULTS Localization of PDGFRβ-positive pericytes and F4/80-positive macrophages was temporally and spatially very similar following permanent middle cerebral artery occlusion. Intrainfarct accumulation of macrophages was significantly attenuated in Pdgfrb+/- mice. Intrainfarct pericytes expressed CCL2 (C-C motif ligand 2) and CSF1 (colony stimulating factor 1), both of which were significantly lower in Pdgfrb+/- mice. Cultured pericytes expressed Ccl2 and Csf1, both of which were significantly increased by PDGF-BB and suppressed by a PDGFRβ inhibitor. Pericyte conditioned medium significantly enhanced migration and proliferation of bone marrow-derived macrophages. Poststroke clearance of myelin debris was significantly attenuated in Pdgfrb+/- mice. Pericyte conditioned medium promoted phagocytic activity in bone marrow-derived macrophages, also enhancing both STAT3 (signal transducer and activator of transcription 3) phosphorylation and expression of scavenger receptors, Msr1 and Lrp1. Macrophages processing myelin debris produced trophic factors, enhancing PDGFRβ signaling in pericytes leading to the production of ECM (extracellular matrix) proteins and oligodendrogenesis. Functional recovery was significantly attenuated in Pdgfrb+/- mice, parallel with the extent of tissue repair. CONCLUSIONS A reciprocal interaction between pericytes and macrophages is important for poststroke tissue repair and functional recovery.
Collapse
Affiliation(s)
- Tomoya Shibahara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tetsuro Ago
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Masaki Tachibana
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kuniyuki Nakamura
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kei Yamanaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Junya Kuroda
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Yoshinobu Wakisaka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| |
Collapse
|
34
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
35
|
Chang CF, Sansing LH. Response by Chang and Sansing to Letter Regarding Article, "Bexarotene Enhances Macrophage Erythrophagocytosis and Hematoma Clearance in Experimental Intracerebral Hemorrhage". Stroke 2020; 51:e88. [PMID: 32299318 DOI: 10.1161/strokeaha.120.029256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Che-Feng Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei
| | - Lauren H Sansing
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
36
|
Zhou Y, Pan Y, Shao A. Letter by Zhou et al Regarding Article, "Brain Cleanup as a Potential Target for Poststroke Recovery: The Role of RXR (Retinoic X Receptor) in Phagocytes". Stroke 2020; 51:e89. [PMID: 32233742 DOI: 10.1161/strokeaha.120.029270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yunxiang Zhou
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanbo Pan
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
37
|
|