1
|
Sinha A, Gupta M, Bhaskar SMM. Evolucollateral dynamics in stroke: Evolutionary pathophysiology, remodelling and emerging therapeutic strategies. Eur J Neurosci 2024. [PMID: 39498733 DOI: 10.1111/ejn.16585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/07/2024]
Abstract
Leptomeningeal collaterals (LMCs) are crucial in mitigating the impact of acute ischemic stroke (AIS) by providing alternate blood flow routes when primary arteries are obstructed. This article explores the evolutionary pathophysiology of LMCs, highlighting their critical function in stroke and the genetic and molecular mechanisms governing their development and remodelling. We address the translational challenges of applying animal model findings to human clinical scenarios, emphasizing the need for further research to validate emerging therapies-such as pharmacological agents, gene therapy and mechanical interventions-in clinical settings, aimed at enhancing collateral perfusion. Computational modelling emerges as a promising method for integrating experimental data, which requires precise parameterization and empirical validation. We introduce the 'Evolucollateral Dynamics' hypothesis, proposing a novel framework that incorporates evolutionary biology principles into therapeutic strategies, offering new perspectives on enhancing collateral circulation. This hypothesis emphasizes the role of genetic predispositions and environmental influences on collateral circulation, which may impact therapeutic strategies and optimize treatment outcomes. Future research must incorporate human clinical data to create robust treatment protocols, thereby maximizing the therapeutic potential of LMCs and improving outcomes for stroke patients.
Collapse
Affiliation(s)
- Akansha Sinha
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Muskaan Gupta
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
| | - Sonu M M Bhaskar
- Global Health Neurology Lab, Sydney, NSW, Australia
- UNSW Medicine and Health, University of New South Wales (UNSW), South West Sydney Clinical Campuses, Sydney, NSW, Australia
- NSW Brain Clot Bank, NSW Health Pathology, Sydney, NSW, Australia
- Department of Neurology & Neurophysiology, Liverpool Hospital and South West Sydney Local Health District, Liverpool, NSW, Australia
- Clinical Sciences Stream, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Department of Neurology, Division of Cerebrovascular Medicine and Neurology, National Cerebral and Cardiovascular Center (NCVC), Suita, Osaka, Japan
| |
Collapse
|
2
|
Fu X, Lu H, Gao M, Li P, He Y, He Y, Luo X, Rao X, Liu W. Nitric oxide in the cardio-cerebrovascular system: Source, regulation and application. Nitric Oxide 2024; 152:48-57. [PMID: 39299647 DOI: 10.1016/j.niox.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Nitric oxide (NO) plays a crucial role as a messenger or effector in the body, yet it presents a dual impact on cardio-cerebrovascular health. Under normal physiological conditions, NO exhibits vasodilatory effects, regulates blood pressure, inhibits platelet aggregation, and offers neuroprotective actions. However, in pathological situations, excessive NO production contributes to or worsens inflammation within the body. Moreover, NO may combine with reactive oxygen species (ROS), generating harmful substances that intensify physical harm. This paper succinctly reviews pertinent literature to clarify the in vivo and in vitro origins of NO, its regulatory function in the cardio-cerebrovascular system, and the advantages and disadvantages associated with NO donor drugs, NO delivery systems, and vascular stent materials for treating cardio-cerebrovascular disease. The findings provide a theoretical foundation for the application of NO in cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaoming Fu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Haowei Lu
- Department of Pharmacy, The Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Meng Gao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Pinghe Li
- Lanzhou Foci Pharmaceutical Co., Ltd, Lanzhou, 730030, China
| | - Yan He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Yu He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaojian Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Xiaoyong Rao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| | - Wei Liu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
3
|
Beard DJ, Brown LS, Morris GP, Couch Y, Adriaanse BA, Karali CS, Schneider AM, Howells DW, Redzic ZB, Sutherland BA, Buchan AM. Rapamycin Treatment Reduces Brain Pericyte Constriction in Ischemic Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01298-x. [PMID: 39331260 DOI: 10.1007/s12975-024-01298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The contraction and subsequent death of brain pericytes may play a role in microvascular no-reflow following the reopening of an occluded artery during ischemic stroke. Mammalian target of rapamycin (mTOR) inhibition has been shown to reduce motility/contractility of various cancer cell lines and reduce neuronal cell death in stroke. However, the effects of mTOR inhibition on brain pericyte contraction and death during ischemia have not yet been investigated. Cultured pericytes exposed to simulated ischemia for 12 h in vitro contracted after less than 1 h, which was about 7 h prior to cell death. Rapamycin significantly reduced the rate of pericyte contraction during ischemia; however, it did not have a significant effect on pericyte viability at any time point. Rapamycin appeared to reduce pericyte contraction through a mechanism that is independent of changes in intracellular calcium. Using a mouse model of middle cerebral artery occlusion, we showed that rapamycin significantly increased the diameter of capillaries underneath pericytes and increased the number of open capillaries 30 min following recanalisation. Our findings suggest that rapamycin may be a useful adjuvant therapeutic to reduce pericyte contraction and improve cerebral reperfusion post-stroke.
Collapse
Affiliation(s)
- Daniel J Beard
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia.
| | - Lachlan S Brown
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Gary P Morris
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Yvonne Couch
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan A Adriaanse
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Anna M Schneider
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Zoran B Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Australia.
| | - Alastair M Buchan
- Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Zhang Y, Li D, Gao H, Zhao H, Zhang S, Li T. Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia. Mol Neurobiol 2024; 61:5699-5717. [PMID: 38224443 DOI: 10.1007/s12035-023-03904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Neurons and microglia are sensitive to cerebral microcirculation and their responses play a crucial part in the pathological processes, while they are also the main target cells of many drugs used to treat brain diseases. Rapamycin exhibits beneficial effects in many diseases; however, whether it can affect neuronal injury or alter the microglial activation after global cerebral ischemia remains unclear. In this study, we performed global cerebral ischemia combined with rapamycin treatment in CX3CR1GFP/+ mice and explored the effects of rapamycin on neuronal deficit and microglial activation. Our results showed that rapamycin reduced neuronal loss, neurodegeneration, and ultrastructural damage after ischemia by histological staining and transmission electron microscopy (TEM). Interestingly, rapamycin suppressed de-ramification and proliferation of microglia and reduced the density of microglia. Immunofluorescence staining indicated that rapamycin skewed microglial polarization toward an anti-inflammatory state. Furthermore, rapamycin as well suppressed the activation of astrocytes. Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed a significant reduction of pro-inflammatory factors as well as an elevation of anti-inflammatory factors upon rapamycin treatment. As a result of these effects, behavioral tests showed that rapamycin significantly alleviated the brain injury after stroke. Together, our study suggested that rapamycin attenuated neuronal injury, altered microglial activation state, and provided a more beneficial immune microenvironment for the brain, which could be used as a promising therapeutic approach to treat ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Donghai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
5
|
Omi M, Yamada H, Takahashi H, Mori H, Oba S, Hattori Y, Yokota K, Toyama K, Takahashi K. Differences in collateral vessel formation after experimental retinal vein occlusion in spontaneously hypertensive rats and wild-type rats. Heliyon 2024; 10:e27160. [PMID: 38509953 PMCID: PMC10950832 DOI: 10.1016/j.heliyon.2024.e27160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Objective Retinal vein occlusion (RVO) can lead to visual impairment, but the development of collateral vessels can sometimes mitigate significant damage. This study aimed to investigate the relationship between collateral vessels and hypertension, the most common underlying condition associated with RVO, by comparing spontaneously hypertensive rats (SHRs) and wild-type Wister rats (WWRs). We also examined the differences between WWRs and SHRs in terms of sphingosine 1-phosphate receptor 1 (S1PR1) expression and its product nitric oxide synthase 3 (NOS3) expression, which are involved in the formation of collateral vessels after vascular occlusion. Methods Laser photocoagulation (PC) was used to occlude one randomly selected retinal vein in WWRs and SHRs, and the area surrounding the occluded vessel was examined using optical coherence tomography angiography. If reperfusion of the occluded vessel occurred within 2 weeks, the vessel was re-occluded repeatedly by PC. The number of eyes with successfully occluded vessels accompanied by collateral vessels was recorded. Then, WWRs and SHRs were divided into the following four groups: 1) control (no treatment), 2) vehicle (20% DMSO), 3) S1PR1 agonist (2 mg/mL SEW2871), and 4) S1PR1 antagonist (0.25 mg/mL VPC 23019) groups. The drugs were administered intravitreally in all groups except the control. The number of laser shots required for successful RVO was recorded. Histological evaluation and quantitative real-time PCR of S1PR1 and NOS3 were performed to elucidate the mechanisms underlying collateral vessel formation. Results The proportion of eyes achieving successful vein occlusion was lower in SHRs (4/12 eyes, 33.3%) than in WWRs (8/10 eyes, 80%, p = 0.043). NOS3 expression at 6 h after PC was significantly higher in WWRs than in SHRs (p = 0.021). In WWRs treated with SEW2871, vein occlusion failed in 7 of 10 eyes (70%). The expression of NOS3 was significantly higher in the SEW2871 treatment group than in the untreated group (p < 0.001). Furthermore, NOS3 expression was significantly higher after SEW2871 treatment in WWRs than in SHRs (p = 0.011). Conclusion In hypertensive environments, collateral vessels are less likely to develop, and S1PR1 may be involved in this phenomenon.
Collapse
Affiliation(s)
- Masatoshi Omi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Haruhiko Yamada
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Hajime Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Hidetsugu Mori
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Shimpei Oba
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Yuki Hattori
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Kaito Yokota
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Keiko Toyama
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
6
|
Cipolla MJ, Hunt RD, Liebeskind DS, Tremble SM. The impact of collateral therapeutics on stroke hemodynamics in normotensive and hypertensive rats: a step toward translation. Front Neurol 2024; 15:1373445. [PMID: 38585360 PMCID: PMC10996366 DOI: 10.3389/fneur.2024.1373445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Stroke interventions that increase collateral flow have the potential to salvage penumbral tissue and increase the number of patients eligible for reperfusion therapy. We compared the efficacy of two different collateral therapeutics during transient middle cerebral artery occlusion (tMCAO) in normotensive and hypertensive rats. Methods The change in collateral and core perfusion was measured using dual laser Doppler in response to either a pressor agent (phenylephrine, 10 mg/kg iv or vehicle) or a collateral vasodilator (TM5441, 5 mg/kg iv or vehicle) given 30 min into tMCAO in male Wistar and spontaneously hypertensive rats (SHRs). Results Pressor therapy increased collateral flow in the Wistar rats but was ineffective in the SHRs. The increase in collateral flow in the Wistar rats was associated with impaired cerebral blood flow autoregulation (CBFAR) that was intact in the SHRs. TM5441 caused a decrease in collateral perfusion in the Wistar rats and a modest increase in the SHRs. The pressor therapy reduced early infarction in both groups but increased edema in the SHRs, whereas TM5441 did not have any beneficial effects in either group. Conclusions Thus, the pressor therapy was superior to a collateral vasodilator in increasing collateral flow and improving outcomes in the Wistar rats, likely due to pial collaterals that were pressure passive; the lack of CBF response in the SHRs to pressor therapy was likely due to intact CBFAR that limited perfusion. While TM5441 modestly increased CBF in the SHRs but not in the Wistar rats, it did not have a beneficial effect on stroke outcomes. These results suggest that collateral therapies may need to be selected for certain comorbidities.
Collapse
Affiliation(s)
- Marilyn J. Cipolla
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, United States
- Department of Electrical and Biomedical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, VT, United States
| | - Ryan D. Hunt
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - David S. Liebeskind
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sarah M. Tremble
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
7
|
Melanis K, Stefanou MI, Themistoklis KM, Papasilekas T. mTOR pathway - a potential therapeutic target in stroke. Ther Adv Neurol Disord 2023; 16:17562864231187770. [PMID: 37576547 PMCID: PMC10413897 DOI: 10.1177/17562864231187770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Stroke is ranked as the second leading cause of death worldwide and a major cause of long-term disability. A potential therapeutic target that could offer favorable outcomes in stroke is the mammalian target of rapamycin (mTOR) pathway. mTOR is a serine/threonine kinase that composes two protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), and is regulated by other proteins such as the tuberous sclerosis complex. Through a significant number of signaling pathways, the mTOR pathway can modulate the processes of post-ischemic inflammation and autophagy, both of which play an integral part in the pathophysiological cascade of stroke. Promoting or inhibiting such processes under ischemic conditions can lead to apoptosis or instead sustained viability of neurons. The purpose of this review is to examine the pathophysiological role of mTOR in acute ischemic stroke, while highlighting promising neuroprotective agents such as hamartin for therapeutic modulation of this pathway. The therapeutic potential of mTOR is also discussed, with emphasis on implicated molecules and pathway steps that warrant further elucidation in order for their neuroprotective properties to be efficiently tested in future clinical trials.
Collapse
Affiliation(s)
- Konstantinos Melanis
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Rimini 1 Chaidari, Athens 12462, Greece
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine and ‘Attikon’ University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos M. Themistoklis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| | - Themistoklis Papasilekas
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- Department of Neurosurgery, ‘Korgialenio, Benakio, H.R.C’. General Hospital of Athens, Athens, Greece
| |
Collapse
|
8
|
Cipolla MJ. Therapeutic Induction of Collateral Flow. Transl Stroke Res 2023; 14:53-65. [PMID: 35416577 PMCID: PMC10155807 DOI: 10.1007/s12975-022-01019-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/31/2023]
Abstract
Therapeutic induction of collateral flow as a means to salvage tissue and improve outcome from acute ischemic stroke is a promising approach in the era in which endovascular therapy is no longer time-dependent but collateral-dependent. The importance of collateral flow enhancement as a therapeutic for acute ischemic stroke extends beyond those patients with large amounts of salvageable tissue. It also has the potential to extend the time window for reperfusion therapies in patients who are ineligible for endovascular thrombectomy. In addition, collateral enhancement may be an important adjuvant to neuroprotective agents by providing a more robust vascular route for which treatments can gain access to at risk tissue. However, our understanding of collateral hemodynamics, including under comorbid conditions that are highly prevalent in the stroke population, has hindered the efficacy of collateral flow augmentation for improving stroke outcome in the clinical setting. This review will discuss our current understanding of pial collateral function and hemodynamics, including vasoactivity that is critical for enhancing penumbral perfusion. In addition, mechanisms by which collateral flow can be increased during acute ischemic stroke to limit ischemic injury, that may be different depending on the state of the brain and vasculature prior to stroke, will also be reviewed.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont Robert Larner College of Medicine, 149 Beaumont Ave, HSRF 416A, Burlington, VT, USA.
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, USA.
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA.
| |
Collapse
|
9
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
10
|
Park SK, Cho JM, Mookherjee S, Pires PW, David Symons J. Recent Insights Concerning Autophagy and Endothelial Cell Nitric Oxide Generation. CURRENT OPINION IN PHYSIOLOGY 2022. [DOI: 10.1016/j.cophys.2022.100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Hu G, Li G, Huang D, Zou Y, Yuan X, Ritter JK, Li N, Li PL. Renomedullary exosomes produce antihypertensive effects in reversible two-kidney one-clip renovascular hypertensive mice. Biochem Pharmacol 2022; 204:115238. [PMID: 36055382 PMCID: PMC10777442 DOI: 10.1016/j.bcp.2022.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
The rapid fall in blood pressure following unclipping of the stenotic renal artery in the Goldblatt two-kidney one-clip (2K1C) model of renovascular hypertension is proposed to be due to release of renomedullary vasodepressor lipids, but the mechanism has remained unclear. In this study, we hypothesized that the hypotensive response to unclipping is mediated by exosomes released from the renal medulla. In male C57BL6/J mice made hypertensive by the 2K1C surgery, unclipping of the renal artery after 10 days decreased mean arterial pressure (MAP) by 23 mmHg one hr after unclipping. This effect was accompanied by a 556% increase in the concentration of exosomes in plasma as observed by nanoparticle tracking analysis. Immunohistochemical analysis of exosome markers, CD63 and AnnexinII, showed increased staining in interstitial cells of the inner medulla of stenotic but not contralateral control kidney of clipped 2K1C mice. Treatment with rapamycin, an inducer of exosome release, blunted the hypertensive response to clipping, whereas GW-4869, an exosome biosynthesis inhibitor, prevented both the clipping-induced increase in inner medullary exosome marker staining and the unclipping-induced fall in MAP. Plasma exosomes isolated from unclipped 2K1C mice showed elevated neutral lipid content compared to sham mouse exosomes by flow cytometric analysis after Nile red staining. Exosomes from 2K1C but not sham control mice exerted potent MAP-lowering and diuretic-natriuretic effects in both 2K1C and angiotensin II-infused hypertensive mice. These results are consistent with increased renomedullary synthesis and release of exosomes with elevated antihypertensive neutral lipids in response to increased renal perfusion pressure.
Collapse
Affiliation(s)
- Gaizun Hu
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Dandan Huang
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Yao Zou
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond VA23298, United States.
| |
Collapse
|
12
|
Kwon B, Song Y, Kim JG, Lee D, Lee SH, Cho YK, Kim JS, Suh DC. Preventive effects of ginseng against atherosclerosis and subsequent ischemic stroke: A randomized controlled trial (PEGASUS trial). J Ginseng Res 2022; 46:585-591. [PMID: 35818424 PMCID: PMC9270648 DOI: 10.1016/j.jgr.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/30/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Background Korean Red Ginseng (KRG) extract has been shown to have beneficial effects in patients with atherosclerosis, suggesting that KRG extract may be effective in preventing subsequent ischemic stroke in patients with severe atherosclerosis. Methods This double-blind, placebo-controlled trial randomized patients with severe atherosclerosis in major intracranial arteries or extracranial carotid artery, to ginseng group and placebo group. They were given two 500-mg KRG tablets or identical placebo tablets twice daily for 12 months according to randomization. The primary endpoint was the composite of cerebral ischemic stroke and transient ischemic attack during 12 months after randomization. The secondary endpoints were change in volumetric blood flow of the intracranial vessels and the incidence of newly developed asymptomatic ischemic lesions. Any adverse events were monitored. Results Fifty-eight patients were randomized from June 2016 to June 2017, 29 to ginseng and 29 to placebo, and 52 (28 and 24, respectively) completed the study. One patient in the placebo group, but none in the ginseng group, experienced ischemic symptoms (p = 0.46). Changes in volumetric blood flow and the presence of ischemic brain lesions did not differ significantly in the two groups, and none of these patients experienced adverse drug reactions. Conclusion Ginseng was well tolerated by patients with severe atherosclerosis, with these patients showing good compliance with ginseng dosing. Ginseng did not show significant effects compared with placebo, although none of the ginseng-treated patients experienced ischemic events. Long-term studies in larger patient populations are required to test the effect of ginseng.
Collapse
Affiliation(s)
- Boseong Kwon
- Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Yunsun Song
- Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Joong-Goo Kim
- Department of Neurology, Jeju National University Hospital, Republic of Korea
| | - Dongwhane Lee
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Republic of Korea
| | - Sang-hun Lee
- Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Republic of Korea
| | - Young-Keol Cho
- Department of Microbiology, University of Ulsan College of Medicine, Republic of Korea
| | - Jong S. Kim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| | - Dae Chul Suh
- Neurointervention Clinic, Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Republic of Korea
| |
Collapse
|
13
|
Growth Hormone Increases BDNF and mTOR Expression in Specific Brain Regions after Photothrombotic Stroke in Mice. Neural Plast 2022; 2022:9983042. [PMID: 35465399 PMCID: PMC9033347 DOI: 10.1155/2022/9983042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/10/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Aims We have shown that growth hormone (GH) treatment poststroke increases neuroplasticity in peri-infarct areas and the hippocampus, improving motor and cognitive outcomes. We aimed to explore the mechanisms of GH treatment by investigating how GH modulates pathways known to induce neuroplasticity, focusing on association between brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in the peri-infarct area, hippocampus, and thalamus. Methods Recombinant human growth hormone (r-hGH) or saline was delivered (0.25 μl/hr, 0.04 mg/day) to mice for 28 days, commencing 48 hours after photothrombotic stroke. Protein levels of pro-BDNF, total-mTOR, phosphorylated-mTOR, total-p70S6K, and phosporylated-p70S6K within the peri-infarct area, hippocampus, and thalamus were evaluated by western blotting at 30 days poststroke. Results r-hGH treatment significantly increased pro-BDNF in peri-infarct area, hippocampus, and thalamus (p < 0.01). r-hGH treatment significantly increased expression levels of total-mTOR in the peri-infarct area and thalamus (p < 0.05). r-hGH treatment significantly increased expression of total-p70S6K in the hippocampus (p < 0.05). Conclusion r-hGH increases pro-BDNF within the peri-infarct area and regions that are known to experience secondary neurodegeneration after stroke. Upregulation of total-mTOR protein expression in the peri-infarct and thalamus suggests that this might be a pathway that is involved in the neurorestorative effects previously reported in these animals and warrants further investigation. These findings suggest region-specific mechanisms of action of GH treatment and provide further understanding for how GH treatment promotes neurorestorative effects after stroke.
Collapse
|
14
|
Huang WQ, Zou Y, Tian Y, Ma XF, Zhou QY, Li ZY, Gong SX, Wang AP. Mammalian Target of Rapamycin as the Therapeutic Target of Vascular Proliferative Diseases: Past, Present, and Future. J Cardiovasc Pharmacol 2022; 79:444-455. [PMID: 34983907 DOI: 10.1097/fjc.0000000000001208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT The abnormal proliferation of vascular smooth muscle cells (VSMCs) is a key pathological characteristic of vascular proliferative diseases. Mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays an important role in regulating cell growth, motility, proliferation, and survival, as well as gene expression in response to hypoxia, growth factors, and nutrients. Increasing evidence shows that mTOR also regulates VSMC proliferation in vascular proliferative diseases and that mTOR inhibitors, such as rapamycin, effectively restrain VSMC proliferation. However, the molecular mechanisms linking mTOR to vascular proliferative diseases remain elusive. In our review, we summarize the key roles of the mTOR and the recent discoveries in vascular proliferative diseases, focusing on the therapeutic potential of mTOR inhibitors to target the mTOR signaling pathway for the treatment of vascular proliferative diseases. In this study, we discuss mTOR inhibitors as promising candidates to prevent VSMC-associated vascular proliferative diseases.
Collapse
Affiliation(s)
- Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Yan Zou
- Department of Hand and Foot Surgery, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China ; and
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Xiao-Feng Ma
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Qin-Yi Zhou
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Zhen-Yu Li
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical School, University of South China, Hengyang, Hunan, PR China
| |
Collapse
|
15
|
Tran N, Garcia T, Aniqa M, Ali S, Ally A, Nauli SM. Endothelial Nitric Oxide Synthase (eNOS) and the Cardiovascular System: in Physiology and in Disease States. AMERICAN JOURNAL OF BIOMEDICAL SCIENCE & RESEARCH 2022; 15:153-177. [PMID: 35072089 PMCID: PMC8774925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) plays a critical role in regulating and maintaining a healthy cardiovascular system. The importance of eNOS can be emphasized from the genetic polymorphisms of the eNOS gene, uncoupling of eNOS dimerization, and its numerous signaling regulations. The activity of eNOS on the cardiac myocytes, vasculature, and the central nervous system are discussed. The effects of eNOS on the sympathetic autonomic nervous system (SANS) and the parasympathetic autonomic nervous system (PANS), both of which profoundly influence the cardiovascular system, will be elaborated. The relationship between the eNOS protein with cardiovascular autonomic reflexes such as the baroreflex and the Exercise Pressor Reflex will be discussed. For example, the effects of endogenous nitric oxide (NO) are shown to be mediated by the eNOS protein and that eNOS-derived endothelial NO is most effective in regulating blood pressure oscillations via modulating the baroreflex mechanisms. The protective action of eNOS on the CVS is emphasized here because dysfunction of the eNOS enzyme is intricately correlated with the pathogenesis of several cardiovascular diseases such as hypertension, arteriosclerosis, myocardial infarction, and stroke. Overall, our current understanding of the eNOS protein with a focus on its role in the modulation, regulation, and control of the cardiovascular system in a normal physiological state and in cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- N Tran
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - T Garcia
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - M Aniqa
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - S Ali
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA
| | - A Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA,Corresponding author: Surya M Nauli, Chapman University and University of California, Irvine, CA, USA
| | - SM Nauli
- Chapman University and University of California, Irvine, CA, USA,Corresponding author: Surya M Nauli, Chapman University and University of California, Irvine, CA, USA
| |
Collapse
|
16
|
Chi OZ, Liu X, Cofano S, Patel N, Jacinto E, Weiss HR. Rapalink-1 Increased Infarct Size in Early Cerebral Ischemia-Reperfusion With Increased Blood-Brain Barrier Disruption. Front Physiol 2021; 12:706528. [PMID: 34354602 PMCID: PMC8329705 DOI: 10.3389/fphys.2021.706528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
It has been reported that the mechanistic target of rapamycin (mTOR) pathway is involved in cerebral ischemia–reperfusion injury. One of the important pathological changes during reperfusion after cerebral ischemia is disruption of blood–brain barrier (BBB). Rapamycin, a first-generation mTOR inhibitor, produces divergent effects on neuronal survival and alteration in BBB disruption. In this study, we investigated how Rapalink-1, a third-generation mTOR inhibitor, would affect neuronal survival and BBB disruption in the very early stage of cerebral ischemia–reperfusion that is within the time window of thrombolysis therapy. The middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Of note, 2 mg/kg of Rapalink-1 or vehicle was administered intraperitoneally 10 min after MCAO. After 1 h of MCAO and 2 h of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (104 Da) and the volume of 3H-dextran (70,000 Da) distribution were determined to assess the degree of BBB disruption. At the same time points, phosphorylated S6 (Ser240/244) and Akt (Ser473) as well as matrix metalloproteinase-2 (MMP2) protein level were determined by Western blot along with the infarct size using tetrazolium stain. Rapalink-1 increased the Ki in the ischemic-reperfused cortex (IR-C, +23%, p < 0.05) without a significant change in the volume of dextran distribution. Rapalink-1 increased the percentage of cortical infarct out of the total cortical area (+41%, p < 0.005). Rapalink-1 significantly decreased phosphorylated S6 and Akt to half the level of the control rats in the IR-C, which suggests that both of the mechanistic target of rapamycin complex 1 and 2 (mTORC1 and mTORC2) were inhibited. The MMP2 level was increased suggesting that BBB disruption could be aggravated by Rapalink-1. Taken together, our data suggest that inhibiting both mTORC1 and mTORC2 by Rapalink-1 could worsen the neuronal damage in the early stage of cerebral ischemia–reperfusion and that the aggravation of BBB disruption could be one of the contributing factors.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Sean Cofano
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Nikhil Patel
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States
| |
Collapse
|
17
|
Cipolla MJ. Thomas Willis Lecture: Targeting Brain Arterioles for Acute Stroke Treatment. Stroke 2021; 52:2465-2477. [PMID: 34102855 PMCID: PMC8238908 DOI: 10.1161/strokeaha.121.034620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebral infarction or ischemic death of brain tissue, most notably neurons, is a primary response to vascular occlusion that if minimized leads to better stroke outcome. However, many cell types are affected in the brain during ischemia and reperfusion, including vascular cells of the cerebral circulation. Importantly, the structure and function of all brain vascular segments are major determinants of the depth of ischemia during the occlusion, the extent of collateral flow (and therefore amount of potentially salvageable tissue) and the degree of reperfusion. Thus, appropriate function of the cerebral circulation can influence stroke outcome. The brain vasculature is also directly involved in secondary injury to ischemia, including edema, hemorrhage, and infarct expansion, and provides a key delivery route for neuroprotective agents. Therefore, the cerebral circulation provides a therapeutic target for multiple aspects of stroke injury, including aiding neuroprotection. Understanding how ischemia and reperfusion affect the brain vasculature is key to this therapeutic potential, that is, vascular protection. This report is focused on regional differences in the cerebral circulation, how ischemia and reperfusion differentially affects these segments, and how the response of large versus small vessels in the brain to ischemia and reperfusion can influence stroke outcome. Last, how chronic hypertension, a common comorbidity in patients with stroke, affects the brain microvasculature to worsen stroke outcome will be described.
Collapse
Affiliation(s)
- Marilyn J Cipolla
- Department of Neurological Sciences, University of Vermont, Burlington
| |
Collapse
|
18
|
Xu MS, Yin LM, Cheng AF, Zhang YJ, Zhang D, Tao MM, Deng YY, Ge LB, Shan CL. Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex. Front Cell Dev Biol 2021; 9:634347. [PMID: 33777942 PMCID: PMC7991082 DOI: 10.3389/fcell.2021.634347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death. Reperfusion is a critical stage after thrombolysis or thrombectomy, accompanied by oxidative stress, excitotoxicity, neuroinflammation, and defects in synapse structure. The process is closely related to the dephosphorylation of actin-binding proteins (e.g., cofilin-1) by specific phosphatases. Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited studies have directly investigated reperfusion-induced reorganization of actin-binding protein, and little is known about the gene expression of actin-binding proteins. The exact mechanism is still uncertain. The motor cortex is very important to save nerve function; therefore, we chose the penumbra to study the relationship between cerebral ischemia-reperfusion and actin-binding protein. After transient middle cerebral artery occlusion (MCAO) and reperfusion, we confirmed reperfusion and motor function deficit by cerebral blood flow and gait analysis. PCR was used to screen the high expression mRNAs in penumbra of the motor cortex. The high expression of cofilin in this region was confirmed by immunohistochemistry (IHC) and Western blot (WB). The change in cofilin-1 expression appears at the same time as gait imbalance, especially maximum variation and left front swing. It is suggested that cofilin-1 may partially affect motor cortex function. This result provides a potential mechanism for understanding cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Ming-Shu Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Jie Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao-Miao Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Yi Deng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Bao Ge
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|