1
|
Tanaka M, Kameda M, Okada KI. Temporal Information Processing in the Cerebellum and Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:95-116. [PMID: 38918348 DOI: 10.1007/978-3-031-60183-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Temporal information processing in the range of a few hundred milliseconds to seconds involves the cerebellum and basal ganglia. In this chapter, we present recent studies on nonhuman primates. In the studies presented in the first half of the chapter, monkeys were trained to make eye movements when a certain amount of time had elapsed since the onset of the visual cue (time production task). The animals had to report time lapses ranging from several hundred milliseconds to a few seconds based on the color of the fixation point. In this task, the saccade latency varied with the time length to be measured and showed stochastic variability from one trial to the other. Trial-to-trial variability under the same conditions correlated well with pupil diameter and the preparatory activity in the deep cerebellar nuclei and the motor thalamus. Inactivation of these brain regions delayed saccades when asked to report subsecond intervals. These results suggest that the internal state, which changes with each trial, may cause fluctuations in cerebellar neuronal activity, thereby producing variations in self-timing. When measuring different time intervals, the preparatory activity in the cerebellum always begins approximately 500 ms before movements, regardless of the length of the time interval being measured. However, the preparatory activity in the striatum persists throughout the mandatory delay period, which can be up to 2 s, with different rate of increasing activity. Furthermore, in the striatum, the visual response and low-frequency oscillatory activity immediately before time measurement were altered by the length of the intended time interval. These results indicate that the state of the network, including the striatum, changes with the intended timing, which lead to different time courses of preparatory activity. Thus, the basal ganglia appear to be responsible for measuring time in the range of several hundred milliseconds to seconds, whereas the cerebellum is responsible for regulating self-timing variability in the subsecond range. The second half of this chapter presents studies related to periodic timing. During eye movements synchronized with alternating targets at regular intervals, different neurons in the cerebellar nuclei exhibit activity related to movement timing, predicted stimulus timing, and the temporal error of synchronization. Among these, the activity associated with target appearance is particularly enhanced during synchronized movements and may represent an internal model of the temporal structure of stimulus sequence. We also considered neural mechanism underlying the perception of periodic timing in the absence of movement. During perception of rhythm, we predict the timing of the next stimulus and focus our attention on that moment. In the missing oddball paradigm, the subjects had to detect the omission of a regularly repeated stimulus. When employed in humans, the results show that the fastest temporal limit for predicting each stimulus timing is about 0.25 s (4 Hz). In monkeys performing this task, neurons in the cerebellar nuclei, striatum, and motor thalamus exhibit periodic activity, with different time courses depending on the brain region. Since electrical stimulation or inactivation of recording sites changes the reaction time to stimulus omission, these neuronal activities must be involved in periodic temporal processing. Future research is needed to elucidate the mechanism of rhythm perception, which appears to be processed by both cortico-cerebellar and cortico-basal ganglia pathways.
Collapse
Affiliation(s)
- Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Okada
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Stanczyk M, Szelag E, Krystecka K, Szymaszek A. A common timing mechanism across different millisecond domains: evidence from perceptual and motor tasks. Sci Rep 2023; 13:21052. [PMID: 38030683 PMCID: PMC10687244 DOI: 10.1038/s41598-023-48238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
Temporal information processing (TIP) constitutes a complex construct that underlies many cognitive functions and operates in a few hierarchically ordered time domains. This study aimed to verify the relationship between the tens of milliseconds and hundreds of milliseconds domains, referring to perceptual and motor timing, respectively. Sixty four young healthy individuals participated in this study. They underwent two auditory temporal order judgement tasks to assess their performance in the tens of milliseconds domain; on this basis, groups of high-level performers (HLP) and low-level performers (LLP) were identified. Then, a maximum tapping task was used to evaluate performance in the hundreds of milliseconds domain. The most remarkable result was that HLP achieved a faster tapping rate and synchronised quicker with their "internal clock" during the tapping task than did LLP. This result shows that there is a relationship between accuracy in judging temporally asynchronous stimuli and ability to achieve and maintain the pace of a movement adequate to one's internal pacemaker. This could indicate the strong contribution of a common timing mechanism, responsible for temporal organisation and coordination of behaviours across different millisecond domains.
Collapse
Affiliation(s)
- Magdalena Stanczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Elzbieta Szelag
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Klaudia Krystecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Szymaszek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
3
|
Choinski M, Stanczyk M, Szymaszek A. Cognitive training incorporating temporal information processing improves linguistic and non-linguistic functions in people with aphasia. Sci Rep 2023; 13:14053. [PMID: 37640772 PMCID: PMC10462731 DOI: 10.1038/s41598-023-41045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
People with aphasia (PWA) often present deficits in non-linguistic cognitive functions, such as executive functions, working memory, and temporal information processing (TIP), which intensify the associated speech difficulties and hinder the rehabilitation process. Therefore, training targeting non-linguistic cognitive function deficiencies may be useful in the treatment of aphasia. The present study compared the effects of the novel Dr. Neuronowski® training method (experimental training), which particularly emphasizes TIP, with the linguistic training commonly applied in clinical practice (control training). Thirty four PWA underwent linguistic and non-linguistic assessments before and after the training as well as a follow-up assessment. Patients were randomly assigned to either experimental (n = 18) or control groups (n = 16). The experimental training improved both non-linguistic functions (TIP and verbal short-term and working memory) and linguistic functions: phoneme discrimination, sentence comprehension, grammar comprehension, verbal fluency, and naming. In contrast, the control training improved only grammar comprehension and naming. The follow-up assessment confirmed the stability of the effects of both trainings over time. Thus, in PWA, Dr. Neuronowski® training appears to have broader benefits for linguistic and non-linguistic functions than does linguistic training. This provides evidence that Dr. Neuronowski® may be considered a novel tool with potential clinical applications.
Collapse
Affiliation(s)
- Mateusz Choinski
- Laboratory of Neurophysiology of Mind, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Magdalena Stanczyk
- Laboratory of Neurophysiology of Mind, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Aneta Szymaszek
- Laboratory of Neurophysiology of Mind, BRAINCITY-Center of Excellence for Neural Plasticity and Brain Disorders, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
4
|
Kameda M, Niikawa K, Uematsu A, Tanaka M. Sensory and motor representations of internalized rhythms in the cerebellum and basal ganglia. Proc Natl Acad Sci U S A 2023; 120:e2221641120. [PMID: 37276394 PMCID: PMC10268275 DOI: 10.1073/pnas.2221641120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Both the cerebellum and basal ganglia are involved in rhythm processing, but their specific roles remain unclear. During rhythm perception, these areas may be processing purely sensory information, or they may be involved in motor preparation, as periodic stimuli often induce synchronized movements. Previous studies have shown that neurons in the cerebellar dentate nucleus and the caudate nucleus exhibit periodic activity when the animals prepare to respond to the random omission of regularly repeated visual stimuli. To detect stimulus omission, the animals need to learn the stimulus tempo and predict the timing of the next stimulus. The present study demonstrates that neuronal activity in the cerebellum is modulated by the location of the repeated stimulus and that in the striatum (STR) by the direction of planned movement. However, in both brain regions, neuronal activity during movement and the effect of electrical stimulation immediately before stimulus omission were largely dependent on the direction of movement. These results suggest that, during rhythm processing, the cerebellum is involved in multiple stages from sensory prediction to motor control, while the STR consistently plays a role in motor preparation. Thus, internalized rhythms without movement are maintained as periodic neuronal activity, with the cerebellum and STR preferring sensory and motor representations, respectively.
Collapse
Affiliation(s)
- Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Koichiro Niikawa
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| | - Akiko Uematsu
- Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki444-8585, Japan
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo060-8638, Japan
| |
Collapse
|
5
|
Uehara K, Togo H, Hanakawa T. Precise motor rhythmicity relies on motor network responsivity. Cereb Cortex 2022; 33:4432-4447. [PMID: 36218995 DOI: 10.1093/cercor/bhac353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/14/2022] Open
Abstract
Rhythmic movements are the building blocks of human behavior. However, given that rhythmic movements are achieved through complex interactions between neural modules, it remains difficult to clarify how the central nervous system controls motor rhythmicity. Here, using a novel tempo-precision trade-off paradigm, we first modeled interindividual behavioral differences in tempo-dependent rhythmicity for various external tempi. We identified 2 behavioral extremes: conventional and paradoxical tempo-precision trade-off types. We then explored the neural substrates of these behavioral differences using task and resting-state functional magnetic resonance imaging. We found that the responsibility of interhemispheric motor network connectivity to tempi was a key to the behavioral repertoire. In the paradoxical trade-off type, interhemispheric connectivity was low at baseline but increased in response to increasing tempo; in the conventional trade-off type, strong baseline connectivity was coupled with low responsivity. These findings suggest that tunable interhemispheric connectivity underlies tempo-dependent rhythmicity control.
Collapse
Affiliation(s)
- Kazumasa Uehara
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi 4448585, Japan.,Department of Physiological Sciences, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 4448585, Japan
| | - Hiroki Togo
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo 1878551, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto 6068501, Japan
| |
Collapse
|
6
|
Ueda N, Tanaka K, Maruo K, Roach N, Sumiyoshi T, Watanabe K, Hanakawa T. Perceptual inference, accuracy, and precision in temporal reproduction in schizophrenia. Schizophr Res Cogn 2022; 28:100229. [PMID: 34976749 PMCID: PMC8683762 DOI: 10.1016/j.scog.2021.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
Accumulating evidence suggests that deficits in perceptual inference account for symptoms of schizophrenia. One manifestation of perceptual inference is the central bias, i.e., the tendency to put emphasis on prior experiences over actual events in perceiving incoming sensory stimuli. Using an interval reproduction task, this study aimed to determine whether patients with schizophrenia show a stronger central bias than participants without schizophrenia. In the interval reproduction task, participants were shown a cross on a screen. The cross was replaced with a Gaussian patch for a predetermined time interval, and participants were required to reproduce the interval duration by pressing and releasing the space key. We manipulated the uncertainty of prior information using different interval distributions. We found no difference in the influence of prior information on interval reproduction between patients and controls. However, patients with SZ showed a stronger central bias than healthy participants in the intermediate interval range (approximately 450 ms to 900 ms). It is possible that the patients in SZ have non-uniform deficits associated with interval range or uncertainty of prior information in perceptual inference. Further, the severity of avolition and alogia was correlated with the strength of central bias in SZ. This study provides some insights into the mechanisms underlying the association between schizophrenic symptoms and perceptual inference.
Collapse
Affiliation(s)
- Natsuki Ueda
- NCNP Brain Physiology and Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
| | - Kanji Tanaka
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Waseda Institute for Advanced Study, Waseda University, 1-21-1 Nishi Waseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Kazushi Maruo
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Neil Roach
- School of Psychology, University of Nottingham, NG7 2RD Nottingham, United Kingdom
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Faculty of Arts, Design, and Architecture, University of New South Wales, Cnr Oxford St & Greens Rd, Paddington, NSW 2021, Australia
| | - Takashi Hanakawa
- NCNP Brain Physiology and Pathology, Tokyo Medical and Dental University Graduate School, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan
- Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
The Neurophysiology of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:87-108. [DOI: 10.1007/978-3-030-99550-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Stockert A, Schwartze M, Poeppel D, Anwander A, Kotz SA. Temporo-cerebellar connectivity underlies timing constraints in audition. eLife 2021; 10:67303. [PMID: 34542407 PMCID: PMC8480974 DOI: 10.7554/elife.67303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/09/2021] [Indexed: 12/26/2022] Open
Abstract
The flexible and efficient adaptation to dynamic, rapid changes in the auditory environment likely involves generating and updating of internal models. Such models arguably exploit connections between the neocortex and the cerebellum, supporting proactive adaptation. Here, we tested whether temporo-cerebellar disconnection is associated with the processing of sound at short timescales. First, we identify lesion-specific deficits for the encoding of short timescale spectro-temporal non-speech and speech properties in patients with left posterior temporal cortex stroke. Second, using lesion-guided probabilistic tractography in healthy participants, we revealed bidirectional temporo-cerebellar connectivity with cerebellar dentate nuclei and crura I/II. These findings support the view that the encoding and modeling of rapidly modulated auditory spectro-temporal properties can rely on a temporo-cerebellar interface. We discuss these findings in view of the conjecture that proactive adaptation to a dynamic environment via internal models is a generalizable principle.
Collapse
Affiliation(s)
- Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, Leipzig University Hospital, Leipzig, Germany.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Michael Schwartze
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Poeppel
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany.,Department of Psychology, New York University, New York, United States
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sonja A Kotz
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
9
|
Breska A, Ivry RB. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. SCIENCE ADVANCES 2020; 6:6/49/eabb1141. [PMID: 33268365 PMCID: PMC7821877 DOI: 10.1126/sciadv.abb1141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Rizzo JR, Beheshti M, Naeimi T, Feiz F, Fatterpekar G, Balcer LJ, Galetta SL, Shaikh AG, Rucker JC, Hudson TE. The complexity of eye-hand coordination: a perspective on cortico-cerebellar cooperation. CEREBELLUM & ATAXIAS 2020; 7:14. [PMID: 33292609 PMCID: PMC7666466 DOI: 10.1186/s40673-020-00123-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/04/2022]
Abstract
Background Eye–hand coordination (EHC) is a sophisticated act that requires interconnected processes governing synchronization of ocular and manual motor systems. Precise, timely and skillful movements such as reaching for and grasping small objects depend on the acquisition of high-quality visual information about the environment and simultaneous eye and hand control. Multiple areas in the brainstem and cerebellum, as well as some frontal and parietal structures, have critical roles in the control of eye movements and their coordination with the head. Although both cortex and cerebellum contribute critical elements to normal eye-hand function, differences in these contributions suggest that there may be separable deficits following injury. Method As a preliminary assessment for this perspective, we compared eye and hand-movement control in a patient with cortical stroke relative to a patient with cerebellar stroke. Result We found the onset of eye and hand movements to be temporally decoupled, with significant decoupling variance in the patient with cerebellar stroke. In contrast, the patient with cortical stroke displayed increased hand spatial errors and less significant temporal decoupling variance. Increased decoupling variance in the patient with cerebellar stroke was primarily due to unstable timing of rapid eye movements, saccades. Conclusion These findings highlight a perspective in which facets of eye-hand dyscoordination are dependent on lesion location and may or may not cooperate to varying degrees. Broadly speaking, the results corroborate the general notion that the cerebellum is instrumental to the process of temporal prediction for eye and hand movements, while the cortex is instrumental to the process of spatial prediction, both of which are critical aspects of functional movement control.
Collapse
Affiliation(s)
- John-Ross Rizzo
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA. .,Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA. .,Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, USA. .,Department of Mechanical & Aerospace Engineering, NYU Tandon School of Engineering, New York, NY, USA.
| | - Mahya Beheshti
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA.,Department of Mechanical & Aerospace Engineering, NYU Tandon School of Engineering, New York, NY, USA
| | - Tahereh Naeimi
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Farnia Feiz
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Girish Fatterpekar
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Laura J Balcer
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department. of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.,Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Steven L Galetta
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department. of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Aasef G Shaikh
- Department of Neurology, University Hospitals Cleveland Medical Center and Louis Stokes Cleveland VA Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Janet C Rucker
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department. of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Todd E Hudson
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA.,Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, New York, NY, USA
| |
Collapse
|
11
|
Tanaka SY, Hirano M, Funase K. Modulation of cerebellar brain inhibition during temporal adaptive learning in a coincident timing task. Exp Brain Res 2020; 239:127-139. [PMID: 33128572 DOI: 10.1007/s00221-020-05963-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/16/2020] [Indexed: 12/30/2022]
Abstract
In the present study, we examined the role of the cerebellum in temporal adaptive learning during a coincident timing task, i.e., a baseball-like hitting task involving a moving ball presented on a computer monitor. The subjects were required to change the timing of their responses based on imposed temporal perturbations. Using paired-pulse transcranial magnetic stimulation, we measured cerebellar brain inhibition (CBI) before, during, and after the temporal adaptive learning. Reductions in CBI only occurred during and after the temporal adaptive learning, regardless of the direction of the temporal perturbations. In addition, the changes in CBI were correlated with the magnitude of the adaptation. Here, we showed that the cerebellum is essential for learning about and controlling the timing of movements during temporal adaptation. Furthermore, changes in cerebellar-primary motor cortex connectivity occurred during temporal adaptation, as has been previously reported for spatial adaptation.
Collapse
Affiliation(s)
- Shin-Ya Tanaka
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan
| | | | - Kozo Funase
- Human Motor Control Laboratory, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
12
|
Chakraborty N, Hammamieh R, Gautam A, Miller SA, Condlin ML, Jett M, Scrimgeour AG. TBI weight-drop model with variable impact heights differentially perturbs hippocampus-cerebellum specific transcriptomic profile. Exp Neurol 2020; 335:113516. [PMID: 33172833 DOI: 10.1016/j.expneurol.2020.113516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/28/2020] [Accepted: 10/21/2020] [Indexed: 01/14/2023]
Abstract
The degree of brain injury is the governing factor for the magnitude of the patient's psycho- and physiological deficits post-injury, and the associated long-term consequences. The present scaling method used to segregate the patients among mild, moderate and severe phases of traumatic brain injury (TBI) has major limitations; however, a more continuous stratification of TBI is still elusive. With the anticipation that differentiating molecular markers could be the backbone of a robust method to triage TBI, we used a modified closed-head injury (CHI) Marmarou model with two impact heights (IH). By definition, IH directly correlates with the impact force causing TBI. In our modified CHI model, the rat skull was fitted with a helmet to permit a diffuse axonal injury. With the frontal cortex as the focal point of injury, the adjacent brain regions (hippocampus, HC and cerebellum, CB) were susceptible to diffuse secondary shock injury. At 8 days post injury (po.i.), rats impacted by 120 cm IH (IH120) took a longer time to find an escape route in the Barnes maze as compared to those impacted by 100 cm IH (IH100). Using a time-resolved interrogation of the transcriptomic landscape of HC and CB tissues, we mined those genes that altered their regulations in correlation with the variable IHs. At 14 days po.i., when all rats demonstrated nearly normal visuomotor performance, the bio-functional analysis suggested an advanced healing mechanism in the HC of IH100 group. In contrast, the HC of IH120 group displayed a delayed healing with evidence of active cell death networks. Combining whole genome rat microarrays with behavioral analysis provided the insight of neuroprotective signals that could be the foundation of the next generation triage for TBI patients.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Geneva Foundation, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America; Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America.
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America; ORISE, Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Michelle L Condlin
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA 01760, United States of America
| | - Marti Jett
- Medical Readiness Systems Biology, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Angus G Scrimgeour
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Bldg 42, Natick, MA 01760, United States of America
| |
Collapse
|
13
|
Dellatolas G, Câmara-Costa H. The role of cerebellum in the child neuropsychological functioning. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:265-304. [PMID: 32958180 DOI: 10.1016/b978-0-444-64150-2.00023-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter proposes a review of neuropsychologic and behavior findings in pediatric pathologies of the cerebellum, including cerebellar malformations, pediatric ataxias, cerebellar tumors, and other acquired cerebellar injuries during childhood. The chapter also contains reviews of the cerebellar mutism/posterior fossa syndrome, reported cognitive associations with the development of the cerebellum in typically developing children and subjects born preterm, and the role of the cerebellum in neurodevelopmental disorders such as autism spectrum disorders and developmental dyslexia. Cognitive findings in pediatric cerebellar disorders are considered in the context of known cerebellocerebral connections, internal cellular organization of the cerebellum, the idea of a universal cerebellar transform and computational internal models, and the role of the cerebellum in specific cognitive and motor functions, such as working memory, language, timing, or control of eye movements. The chapter closes with a discussion of the strengths and weaknesses of the cognitive affective syndrome as it has been described in children and some conclusions and perspectives.
Collapse
Affiliation(s)
- Georges Dellatolas
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France.
| | - Hugo Câmara-Costa
- GRC 24, Handicap Moteur et Cognitif et Réadaptation, Sorbonne Université, Paris, France; Centre d'Etudes en Santé des Populations, INSERM U1018, Paris, France
| |
Collapse
|
14
|
Teghil A, Di Vita A, Pietranelli V, Matano A, Boccia M. Duration reproduction in regular and irregular contexts after unilateral brain damage: Evidence from voxel-based lesion-symptom mapping and atlas-based hodological analysis. Neuropsychologia 2020; 147:107577. [PMID: 32758553 DOI: 10.1016/j.neuropsychologia.2020.107577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
It has been proposed that not completely overlapping brain networks support interval timing depending on whether or not an external, predictable temporal cue is provided during the task, aiding time estimation. Here we tested this hypothesis in a neuropsychological study, using both a topological approach - through voxel-based lesion-symptom mapping (VLSM), that assesses the relation between continuous behavioral scores and lesion information on a voxel-by-voxel basis - and a hodological approach, using an atlas-based tractography. A group of patients with unilateral focal brain lesions and their matched controls performed a duration reproduction task assessing time processing in two conditions, namely with regularly spaced stimuli during encoding and reproduction (Regular condition), and with irregularly spaced stimuli during the same task (Irregular condition). VLSM analyses showed that scores in the two conditions were associated with lesions involving partly separable clusters of voxels, with lower performance only in the Irregular condition being related to lesions involving the right insular cortex. Performance in both conditions correlated with the probability of disconnection of the right frontal superior longitudinal tract, and of the superior and middle branches of the right superior longitudinal fasciculus. These findings suggest that the dissociation between timing in regular and irregular contexts is not complete, since performance in both conditions relies on the integrity of a common suprasecond timing network. Furthermore, they are consistent with the hypothesis that tracking time without the aid of external cues selectively relies on the integration of psychophysiological changes in the right insula.
Collapse
Affiliation(s)
- Alice Teghil
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Antonella Di Vita
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| | | | | | - Maddalena Boccia
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
15
|
Teghil A, Di Vita A, D'Antonio F, Boccia M. Inter-individual differences in resting-state functional connectivity are linked to interval timing in irregular contexts. Cortex 2020; 128:254-269. [DOI: 10.1016/j.cortex.2020.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
|
16
|
Bashwiner DM, Bacon DK, Wertz CJ, Flores RA, Chohan MO, Jung RE. Resting state functional connectivity underlying musical creativity. Neuroimage 2020; 218:116940. [PMID: 32422402 DOI: 10.1016/j.neuroimage.2020.116940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022] Open
Abstract
While the behavior of "being musically creative"- improvising, composing, songwriting, etc.-is undoubtedly a complex and highly variable one, recent neuroscientific investigation has offered significant insight into the neural underpinnings of many of the creative processes contributing to such behavior. A previous study from our research group (Bashwiner et al., 2016), which examined two aspects of brain structure as a function of creative musical experience, found significantly increased cortical surface area or subcortical volume in regions of the default-mode network, a motor planning network, and a "limbic" network. The present study sought to determine how these regions coordinate with one another and with other regions of the brain in a large number of participants (n = 218) during a task-neutral period, i.e., during the "resting state." Deriving from the previous study's results a set of eleven regions of interest (ROIs), the present study analyzed the resting-state functional connectivity (RSFC) from each of these seed regions as a function of creative musical experience (assessed via our Musical Creativity Questionnaire). Of the eleven ROIs investigated, nine showed significant correlations with a total of 22 clusters throughout the brain, the most significant being located in bilateral cerebellum, right inferior frontal gyrus, midline thalamus (particularly the mediodorsal nucleus), and medial premotor regions. These results support prior reports (by ourselves and others) implicating regions of the default-mode, executive, and motor-planning networks in musical creativity, while additionally-and somewhat unanticipatedly-including a potentially much larger role for the salience network than has been previously reported in studies of musical creativity.
Collapse
Affiliation(s)
- David M Bashwiner
- University of New Mexico, Department of Music, MSC04-2570, l University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Donna K Bacon
- University of New Mexico, Department of Music, MSC04-2570, l University of New Mexico, Albuquerque, NM, 87131, USA; Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA; University of New Mexico, Department of Psychology, MXC03-2220, l University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christopher J Wertz
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA
| | - Ranee A Flores
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA
| | - Muhammad O Chohan
- University of New Mexico, Health Sciences Center SOM, Department of Neurosurgery, MSC10-5615, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rex E Jung
- Brain and Behavioral Associates, 1014 Lomas Boulevard NW, Albuquerque, NM, 87102, USA; University of New Mexico, Department of Psychology, MXC03-2220, l University of New Mexico, Albuquerque, NM, 87131, USA; University of New Mexico, Department of Neurosurgery, MSC10-5615, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
17
|
Neural correlates of temporal updating and reasoning in association with neuropsychiatric disorders. Behav Brain Sci 2019; 42:e276. [PMID: 31826768 DOI: 10.1017/s0140525x19000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Here we argue how Hoerl & McCormack's dual system proposal may change the current view about the neural correlates underlying temporal information processing. We also consider that the concept of the dual system may help characterize various timing disabilities in neuropsychiatric disorders from the new perspective.
Collapse
|
18
|
Nani A, Manuello J, Liloia D, Duca S, Costa T, Cauda F. The Neural Correlates of Time: A Meta-analysis of Neuroimaging Studies. J Cogn Neurosci 2019; 31:1796-1826. [DOI: 10.1162/jocn_a_01459] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.
Collapse
Affiliation(s)
- Andrea Nani
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Psychology, University of Turin
| |
Collapse
|
19
|
Kameda M, Ohmae S, Tanaka M. Entrained neuronal activity to periodic visual stimuli in the primate striatum compared with the cerebellum. eLife 2019; 8:48702. [PMID: 31490120 PMCID: PMC6748823 DOI: 10.7554/elife.48702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning. Furthermore, the time course of population activity in the cerebellum well predicted stimulus timing, whereas that in the caudate reflected stochastic variation of response latency. Electrical stimulation to the respective recording sites confirmed a causal role in the detection of stimulus omission. These results suggest that striatal neurons might represent periodic response preparation while cerebellar nuclear neurons may play a role in temporal prediction of periodic events.
Collapse
Affiliation(s)
- Masashi Kameda
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | - Shogo Ohmae
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018; 96:197-209. [PMID: 30316722 DOI: 10.1016/j.neubiorev.2018.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
A dynamic interplay exists between Internally-Based (IBT) and Externally-Cued (ECT) time processing. While IBT processes support the self-generation of context-independent temporal representations, ECT mechanisms allow constructing temporal representations primarily derived from the structure of the sensory environment. We performed an activation likelihood estimation (ALE) meta-analysis on 177 fMRI experiments, from 79 articles, to identify brain areas involved in timing; two individual ALEs tested the hypothesis of a neural segregation between IBT and ECT. The general ALE highlighted a network involving supplementary motor area (SMA), intraparietal sulcus, inferior frontal gyrus (IFG), insula (INS) and basal ganglia. We found evidence of a partial dissociation between IBT and ECT. IBT relies on a subset of areas also involved in ECT, however ECT tasks activate SMA, right IFG, left precentral gyrus and INS in a significantly stronger way. Present results suggest that ECT involves the detection of environmental temporal regularities and their integration with the output of the IBT processing, to generate a representation of time which reflects the temporal metric of the environment.
Collapse
|
21
|
Adamaszek M, D’Agata F, Steele CJ, Sehm B, Schoppe C, Strecker K, Woldag H, Hummelsheim H, Kirkby KC. Comparison of visual and auditory emotion recognition in patients with cerebellar and Parkinson´s disease. Soc Neurosci 2018; 14:195-207. [DOI: 10.1080/17470919.2018.1434089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Michael Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, Kreischa, Germany
| | - Federico D’Agata
- Department of Neuroscience, AOU San Giovanni Battista Turin, Turin, Italy
| | - Christopher J. Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelia Schoppe
- Department of Neurology, Neuropsychology, Sachsenklinik Bad Lausick, Bad Lausick, Germany
| | - Karl Strecker
- Department of Neurology, Neuropsychology, Sachsenklinik Bad Lausick, Bad Lausick, Germany
- Center for Neurological Rehabilitation, Leipzig University, Bennewitz, Germany
| | - Hartwig Woldag
- Department of Neurology, Neuropsychology, Sachsenklinik Bad Lausick, Bad Lausick, Germany
- Center for Neurological Rehabilitation, Leipzig University, Bennewitz, Germany
| | - Horst Hummelsheim
- Department of Neurology, Neuropsychology, Sachsenklinik Bad Lausick, Bad Lausick, Germany
- Center for Neurological Rehabilitation, Leipzig University, Bennewitz, Germany
| | - Kenneth C. Kirkby
- Psychiatry, School of Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
22
|
Low E, Laycock R, Crewther S. Neural Markers Associated with the Temporal Deployment of Attention: A Systematic Review of Non-motor Psychophysical Measures Post-stroke. Front Hum Neurosci 2017; 11:31. [PMID: 28239343 PMCID: PMC5301011 DOI: 10.3389/fnhum.2017.00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 01/16/2017] [Indexed: 11/13/2022] Open
|
23
|
Interactive roles of the cerebellum and striatum in sub-second and supra-second timing: Support for an initiation, continuation, adjustment, and termination (ICAT) model of temporal processing. Neurosci Biobehav Rev 2016; 71:739-755. [PMID: 27773690 DOI: 10.1016/j.neubiorev.2016.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
|
24
|
Impaired Spatio-Temporal Predictive Motor Timing Associated with Spinocerebellar Ataxia Type 6. PLoS One 2016; 11:e0162042. [PMID: 27571363 PMCID: PMC5003364 DOI: 10.1371/journal.pone.0162042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 11/19/2022] Open
Abstract
Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward-model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the ‘anticipatory’ period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events.
Collapse
|
25
|
Abstract
Recent models of interval timing have emphasized local, modality-specific processes or a core network centered on a cortico-thalamic-striatal circuit, leaving the role of the cerebellum unclear. We examine this issue, using current taxonomies of timing as a guide to review the association of the cerebellum in motor and perceptual tasks in which timing information is explicit or implicit. Evidence from neuropsychological, neurophysiological, and neuroimaging studies indicates that the involvement of the cerebellum in timing is not restricted to any subdomain of this taxonomy. However, an emerging pattern is that tasks in which timing is done in cyclic continuous contexts do not rely on the cerebellum. In such scenarios, timing may be an emergent property of system dynamics, and especially oscillatory entrainment. The cerebellum may be necessary to time discrete intervals in the absence of continuous cyclic dynamics.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute University of California, Berkeley 94720-1650
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute University of California, Berkeley 94720-1650
| |
Collapse
|
26
|
Lange I, Kasanova Z, Goossens L, Leibold N, De Zeeuw CI, van Amelsvoort T, Schruers K. The anatomy of fear learning in the cerebellum: A systematic meta-analysis. Neurosci Biobehav Rev 2015; 59:83-91. [PMID: 26441374 DOI: 10.1016/j.neubiorev.2015.09.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 11/17/2022]
Abstract
Recent neuro-imaging studies have implicated the cerebellum in several higher-order functions. Its role in human fear conditioning has, however, received limited attention. The current meta-analysis examines the loci of cerebellar contributions to fear conditioning in healthy subjects, thus mapping, for the first time, the neural response to conditioned aversive stimuli onto the cerebellum. By using the activation likelihood estimation (ALE) technique for analyses, we identified several distinct regions in the cerebellum that activate in response to the presentation of the conditioned stimulus: the cerebellar tonsils, lobules HIV-VI, and the culmen. These regions have separately been implicated in fear acquisition, consolidation of fear memories and expression of conditioned fear responses. Their specific role in these processes may be attributed to the general contribution of cerebellar cortical networks to timing and prediction. Our meta-analysis highlights the potential role of the cerebellum in human cognition and emotion in general, and addresses the possibility how deficits in associative cerebellar learning may play a role in the pathogenesis of anxiety disorders. Future studies are needed to further clarify the mechanistic role of the cerebellum in higher order functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Iris Lange
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands.
| | - Zuzana Kasanova
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Liesbet Goossens
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Nicole Leibold
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Chris I De Zeeuw
- Royal Dutch Academy of Arts and Sciences, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Erasmus Medical Center, Department of Neuroscience, Rotterdam, The Netherlands
| | - Therese van Amelsvoort
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands
| | - Koen Schruers
- Maastricht University, Department of Psychiatry and Psychology, School of Mental Health and Neuroscience, Maastricht, The Netherlands; University of Leuven, Faculty of Psychology, Center for Experimental and Learning Psychology, Leuven, Belgium
| |
Collapse
|
27
|
Adamaszek M, Kirkby KC, D׳Agata F, Olbrich S, Langner S, Steele C, Sehm B, Busse S, Kessler C, Hamm A. Neural correlates of impaired emotional face recognition in cerebellar lesions. Brain Res 2015; 1613:1-12. [DOI: 10.1016/j.brainres.2015.01.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 11/29/2014] [Accepted: 01/17/2015] [Indexed: 10/23/2022]
|
28
|
The 3-second rule in hereditary pure cerebellar ataxia: a synchronized tapping study. PLoS One 2015; 10:e0118592. [PMID: 25706752 PMCID: PMC4337906 DOI: 10.1371/journal.pone.0118592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
The '3-second rule' has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients.
Collapse
|
29
|
Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, De Witte E, Fawcett AJ, Hertrich I, Küper M, Leggio M, Marvel C, Molinari M, Murdoch BE, Nicolson RI, Schmahmann JD, Stoodley CJ, Thürling M, Timmann D, Wouters E, Ziegler W. Consensus paper: Language and the cerebellum: an ongoing enigma. CEREBELLUM (LONDON, ENGLAND) 2014; 13:386-410. [PMID: 24318484 PMCID: PMC4090012 DOI: 10.1007/s12311-013-0540-5] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In less than three decades, the concept "cerebellar neurocognition" has evolved from a mere afterthought to an entirely new and multifaceted area of neuroscientific research. A close interplay between three main strands of contemporary neuroscience induced a substantial modification of the traditional view of the cerebellum as a mere coordinator of autonomic and somatic motor functions. Indeed, the wealth of current evidence derived from detailed neuroanatomical investigations, functional neuroimaging studies with healthy subjects and patients and in-depth neuropsychological assessment of patients with cerebellar disorders shows that the cerebellum has a cardinal role to play in affective regulation, cognitive processing, and linguistic function. Although considerable progress has been made in models of cerebellar function, controversy remains regarding the exact role of the "linguistic cerebellum" in a broad variety of nonmotor language processes. This consensus paper brings together a range of different viewpoints and opinions regarding the contribution of the cerebellum to language function. Recent developments and insights in the nonmotor modulatory role of the cerebellum in language and some related disorders will be discussed. The role of the cerebellum in speech and language perception, in motor speech planning including apraxia of speech, in verbal working memory, in phonological and semantic verbal fluency, in syntax processing, in the dynamics of language production, in reading and in writing will be addressed. In addition, the functional topography of the linguistic cerebellum and the contribution of the deep nuclei to linguistic function will be briefly discussed. As such, a framework for debate and discussion will be offered in this consensus paper.
Collapse
Affiliation(s)
- Peter Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussel, Brussels, Belgium,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wiener M, Lee YS, Lohoff FW, Coslett HB. Individual differences in the morphometry and activation of time perception networks are influenced by dopamine genotype. Neuroimage 2013; 89:10-22. [PMID: 24269802 DOI: 10.1016/j.neuroimage.2013.11.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022] Open
Abstract
Individual participants vary greatly in their ability to estimate and discriminate intervals of time. This heterogeneity of performance may be caused by reliance on different time perception networks as well as individual differences in the activation of brain structures utilized for timing within those networks. To address these possibilities we utilized event-related functional magnetic resonance imaging (fMRI) while human participants (n=25) performed a temporal or color discrimination task. Additionally, based on our previous research, we genotyped participants for DRD2/ANKK1-Taq1a, a single-nucleotide polymorphism associated with a 30-40% reduction in striatal D2 density and associated with poorer timing performance. Similar to previous reports, a wide range of performance was found across our sample; crucially, better performance on the timing versus color task was associated with greater activation in prefrontal and sub-cortical regions previously associated with timing. Furthermore, better timing performance also correlated with increased volume of the right lateral cerebellum, as demonstrated by voxel-based morphometry. Our analysis also revealed that A1 carriers of the Taq1a polymorphism exhibited relatively worse performance on temporal, but not color discrimination, but greater activation in the striatum and right dorsolateral prefrontal cortex, as well as reduced volume in the cerebellar cluster. These results point to the neural bases for heterogeneous timing performance in humans, and suggest that differences in performance on a temporal discrimination task are, in part, attributable to the DRD2/ANKK1 genotype.
Collapse
Affiliation(s)
- Martin Wiener
- Dept. of Neurology, University of Pennsylvania, USA; Center for Cognitive Neuroscience, University of Pennsylvania, USA.
| | - Yune-Sang Lee
- Dept. of Neurology, University of Pennsylvania, USA; Center for Cognitive Neuroscience, University of Pennsylvania, USA
| | - Falk W Lohoff
- Dept. of Psychiatry, University of Pennsylvania, USA
| | - H Branch Coslett
- Dept. of Neurology, University of Pennsylvania, USA; Center for Cognitive Neuroscience, University of Pennsylvania, USA
| |
Collapse
|
31
|
Kinematic property of target motion conditions gaze behavior and eye-hand synergy during manual tracking. Hum Mov Sci 2013; 32:1253-69. [PMID: 24054436 DOI: 10.1016/j.humov.2013.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/17/2012] [Accepted: 03/22/2013] [Indexed: 11/22/2022]
Abstract
This study investigated how frequency demand and motion feedback influenced composite ocular movements and eye-hand synergy during manual tracking. Fourteen volunteers conducted slow and fast force-tracking in which targets were displayed in either line-mode or wave-mode to guide manual tracking with target movement of direct position or velocity nature. The results showed that eye-hand synergy was a selective response of spatiotemporal coupling conditional on target rate and feedback mode. Slow and line-mode tracking exhibited stronger eye-hand coupling than fast and wave-mode tracking. Both eye movement and manual action led the target signal during fast-tracking, while the latency of ocular navigation during slow-tracking depended on the feedback mode. Slow-tracking resulted in more saccadic responses and larger pursuit gains than fast-tracking. Line-mode tracking led to larger pursuit gains but fewer and shorter gaze fixations than wave-mode tracking. During slow-tracking, incidences of saccade and gaze fixation fluctuated across a target cycle, peaking at velocity maximum and the maximal curvature of target displacement, respectively. For line-mode tracking, the incidence of smooth pursuit was phase-dependent, peaking at velocity maximum as well. Manual behavior of slow or line-mode tracking was better predicted by composite eye movements than that of fast or wave-mode tracking. In conclusion, manual tracking relied on versatile visual strategies to perceive target movements of different kinematic properties, which suggested a flexible coordinative control for the ocular and manual sensorimotor systems.
Collapse
|
32
|
Long latency electromyographic response induced by transcranial magnetic stimulation over the cerebellum preferentially appears during continuous visually guided manual tracking task. THE CEREBELLUM 2013; 12:147-54. [PMID: 22806979 DOI: 10.1007/s12311-012-0402-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We investigated whether long latency motor response induced by transcranial magnetic stimulation over the cerebellum (C-TMS) preferentially appears during a continuous visually guided manual tracking task, and whether it originates in a concomitantly evoked neck twitch. C-TMS or magnetic stimulation over the neck (N-MS) was delivered during one of four tasks: a continuous or discrete visually guided manual tracking task, or phasic or tonic contraction of the first dorsal interosseous muscle. The probability of long latency fluctuation of index finger movement induced by C-TMS was not significantly different from that induced by N-MS, but the probability of long latency fluctuation induced by C-TMS and that induced by N-MS was significantly higher than that induced by sham TMS during all the tasks. The probability of long latency electromyographic response in the first dorsal interosseous muscle induced by C-TMS was significantly higher than that induced by N-MS and that induced by sham TMS during the continuous visually guided manual tracking task. Such significant differences were not present during the other tasks. Long latency electromyographic response induced by C-TMS preferentially appears during the continuous visually guided manual tracking task and is not explained by a concomitantly evoked neck twitch.
Collapse
|
33
|
Onuki Y, Van Someren EJW, De Zeeuw CI, Van der Werf YD. Hippocampal–Cerebellar Interaction During Spatio-Temporal Prediction. Cereb Cortex 2013; 25:313-21. [PMID: 23968839 DOI: 10.1093/cercor/bht221] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yoshiyuki Onuki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Neuroscience Campus Amsterdam, 1081 HV, Amsterdam, The Netherlands, Department of Medical Psychology, VU University Medical Center, 1081 HV, Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands, Department of Neuroscience, ErasmusMC, 3000 DR, Rotterdam, The Netherlands
| | - Ysbrand D Van der Werf
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands, Department of Anatomy and Neurosciences, VU University Medical Center, 1007 MC, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Guidetti G. The role of cognitive processes in vestibular disorders. HEARING, BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.765085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Timing deficits in attention-deficit/hyperactivity disorder (ADHD): Evidence from neurocognitive and neuroimaging studies. Neuropsychologia 2013; 51:235-66. [DOI: 10.1016/j.neuropsychologia.2012.09.036] [Citation(s) in RCA: 210] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022]
|
36
|
Binetti N, Siegler IA, Bueti D, Doricchi F. Adaptive tuning of perceptual timing to whole body motion. Neuropsychologia 2012; 51:197-210. [PMID: 23142351 DOI: 10.1016/j.neuropsychologia.2012.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 11/16/2022]
Abstract
In a previous work we have shown that sinusoidal whole-body rotations producing continuous vestibular stimulation, affected the timing of motor responses as assessed with a paced finger tapping (PFT) task (Binetti et al. (2010). Neuropsychologia, 48(6), 1842-1852). Here, in two new psychophysical experiments, one purely perceptual and one with both sensory and motor components, we explored the relationship between body motion/vestibular stimulation and perceived timing of acoustic events. In experiment 1, participants were required to discriminate sequences of acoustic tones endowed with different degrees of acceleration or deceleration. In this experiment we found that a tone sequence presented during acceleratory whole-body rotations required a progressive increase in rate in order to be considered temporally regular, consistent with the idea of an increase in "clock" frequency and of an overestimation of time. In experiment 2 participants produced self-paced taps, which entailed an acoustic feedback. We found that tapping frequency in this task was affected by periodic motion by means of anticipatory and congruent (in-phase) fluctuations irrespective of the self-generated sensory feedback. On the other hand, synchronizing taps to an external rhythm determined a completely opposite modulation (delayed/counter-phase). Overall this study shows that body displacements "remap" our metric of time, affecting not only motor output but also sensory input.
Collapse
|
37
|
Villanueva R. The cerebellum and neuropsychiatric disorders. Psychiatry Res 2012; 198:527-32. [PMID: 22436353 DOI: 10.1016/j.psychres.2012.02.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/07/2011] [Accepted: 02/22/2012] [Indexed: 01/09/2023]
Abstract
Relative to non-human primates, in humans the cerebellum, and prefrontal cortex are brain regions which have undergone major evolutionary changes. In recent decades, progress in molecular biology and advances in the development of functional neuroimaging analysis have shown that the evolution of the human cerebellum was accompanied by the acquisition of more functions than were previously deduced from human post-mortem studies and animal experimentation. These new cerebellar functions included the control of attention and other cognitive functions, emotions and mood, and social behavior, which were all thought to represent cortical functions. The importance of this new view of cerebellar physiology has been confirmed by the frequency of neuropsychiatric disorders in individuals with cerebellar abnormalities. The information collected in this review emphasizes the importance of cerebellar studies in establishing the physiological substrate of mental diseases.
Collapse
Affiliation(s)
- Rosa Villanueva
- Servicio de Psiquiatria, Hospital Universitario La Paz, Paseo de Castellana 261, 28046 Madrid, Spain.
| |
Collapse
|
38
|
de Manzano Ö, Ullén F. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage 2012; 63:272-80. [PMID: 22732560 DOI: 10.1016/j.neuroimage.2012.06.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 05/25/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
Free, i.e. non-externally cued generation of movement sequences is fundamental to human behavior. We have earlier hypothesized that the dorsal premotor cortex (PMD), which has been consistently implicated in cognitive aspects of planning and selection of spatial motor sequences may be particularly important for the free generation of spatial movement sequences, whereas the pre-supplementary motor area (pre-SMA), which shows increased activation during perception, learning and reproduction of temporal sequences, may contribute more to the generation of temporal structures. Here we test this hypothesis using fMRI and musical improvisation in professional pianists as a model behavior. We employed a 2 × 2 factorial design with the factors Melody (Specified/Improvised) and Rhythm (Specified/Improvised). The main effect analyses partly confirmed our hypothesis: there was a main effect of Melody in the PMD; the pre-SMA was present in the main effect of Rhythm, as predicted, as well as in the main effect of Melody. A psychophysiological interaction analysis of functional connectivity demonstrated that the correlation in activity between the pre-SMA and cerebellum was higher during rhythmic improvisation than during the other conditions. In summary, there were only subtle differences in activity level between the pre-SMA and PMD during improvisation, regardless of condition. Consequently, the free generation of rhythmic and melodic structures, appears to be largely integrated processes but the functional connectivity between premotor areas and other regions may change during free generation in response to sequence-specific spatiotemporal demands.
Collapse
Affiliation(s)
- Örjan de Manzano
- Dept of Neuroscience, Retzius väg 8, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | | |
Collapse
|
39
|
Roberts KL, Lau JK, Chechlacz M, Humphreys GW. Spatial and temporal attention deficits following brain injury: A neuroanatomical decomposition of the temporal order judgement task. Cogn Neuropsychol 2012; 29:300-24. [DOI: 10.1080/02643294.2012.722548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Adamaszek M, Strecker K, Kessler C. Impact of cerebellar lesion on syntactic processing evidenced by event-related potentials. Neurosci Lett 2012; 512:78-82. [PMID: 22343021 DOI: 10.1016/j.neulet.2012.01.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 12/30/2011] [Accepted: 01/09/2012] [Indexed: 11/17/2022]
Abstract
In concern to the uncertain neural signature of the cerebellum in syntax processing, we investigated the Syntactic Positive Shift (SPS) for sentences with syntax violations in patients with cerebellar damage. In opposite to controls, patients showed no SPS around 300-650ms for syntax violations. Interestingly, Minimum-Norm analysis of SPS revealed increased activity in supramarginal and homologous Broca area for syntax violations in patients with cerebellar infarction. Overall, our findings support the still growing knowledge of the involvement of the cerebellum in cerebral networks in syntactic processing as evidenced by a sensitive ERP component.
Collapse
Affiliation(s)
- M Adamaszek
- Department of Neurology, University of Greifswald, Germany.
| | | | | |
Collapse
|
41
|
Curran W, Benton CP. The many directions of time. Cognition 2011; 122:252-7. [PMID: 22115023 DOI: 10.1016/j.cognition.2011.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/15/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022]
Abstract
Event duration perception is fundamental to cognitive functioning. Recent research has shown that localized sensory adaptation compresses perceived duration of brief visual events in the adapted location; however, there is disagreement on whether the source of these temporal distortions is cortical or pre-cortical. The current study reveals that spatially localized duration compression can also be direction contingent, in that duration compression is induced when adapting and test stimuli move in the same direction but not when they move in opposite directions. Because of its direction-contingent nature, the induced duration compression reported here is likely to be cortical in origin. A second experiment shows that the adaptation processes driving duration compression can occur at or beyond human cortical area MT+, a specialized motion center located upstream from primary visual cortex. The direction-specificity of these temporal mechanisms, in conjunction with earlier reports of pre-cortical temporal mechanisms driving duration perception, suggests that our encoding of subsecond event duration is driven by activity at multiple levels of processing.
Collapse
Affiliation(s)
- William Curran
- School of Psychology, Queen's University Belfast, Belfast BT7 1NN, UK.
| | | |
Collapse
|
42
|
Schmitz-Hübsch T, Eckert O, Schlegel U, Klockgether T, Skodda S. Instability of syllable repetition in patients with spinocerebellar ataxia and Parkinson's disease. Mov Disord 2011; 27:316-9. [DOI: 10.1002/mds.24030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/08/2011] [Accepted: 10/12/2011] [Indexed: 11/08/2022] Open
|
43
|
Carbon M, Argyelan M, Ghilardi MF, Mattis P, Dhawan V, Bressman S, Eidelberg D. Impaired sequence learning in dystonia mutation carriers: a genotypic effect. Brain 2011; 134:1416-27. [PMID: 21515903 DOI: 10.1093/brain/awr060] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abnormalities in motor sequence learning have been observed in non-manifesting carriers of the DYT1 dystonia mutation. Indeed, motor sequence learning deficits in these subjects have been associated with increased cerebellar activation during task performance. In the current study, we determined whether similar changes are also present in clinically manifesting DYT1 carriers as well as in carriers of other primary dystonia mutations such as DYT6. Additionally, we determined whether sequence learning performance and associated brain activation in these subjects correlate with previously described genotype-related abnormalities of cerebellar pathway integrity and striatal D2 dopamine receptor binding. Nineteen DYT1 carriers (10 non-manifesting DYT1: 51.5±15.1 years; nine manifesting DYT1: 46.1±15.1 years) and 12 healthy control subjects (42.8±15.3 years) were scanned with H2(15)O positron emission tomography while performing controlled sequence learning and reference tasks. Eleven DYT6 carriers (four non-manifesting DYT6: 38.0±22.1; seven manifesting DYT6: 35.3±14.2 years) were evaluated during task performance without concurrent imaging. DYT1 and DYT6 carriers also underwent diffusion tensor magnetic resonance imaging for the assessment of tract integrity and 11C-raclopride positron emission tomography to measure caudate/putamen D2 receptor binding. These imaging measures were correlated with sequence learning performance and associated activation responses. Sequence learning deficits of similar magnitude were observed in manifesting and non-manifesting DYT1 carriers. In contrast, learning deficits were not detected in DYT6 carriers, irrespective of clinical penetrance. Affected DYT1 carriers exhibited significant increases in sequence learning-related activation in the left lateral cerebellar cortex and in the right premotor and inferior parietal regions. Increases in premotor cortical activation observed in the mutation carriers correlated with reductions in cerebellar pathway integrity measured using magnetic resonance diffusion tensor imaging and probabilistic tractography. Additionally, the cerebellar tract changes correlated with reductions in dentate nucleus activation recorded during task performance. Sequence learning performance and task-related activation responses did not correlate with striatal D2 receptor binding. In summary, we found that sequence learning deficits and concomitant increases in cerebellar activation are specific features of the DYT1 genotype. The close relationship between reduced cerebellar pathway integrity and increased learning-related activation of the premotor cortex is compatible with the view of DYT1 dystonia as a neurodevelopmental circuit disorder.
Collapse
Affiliation(s)
- Maren Carbon
- Centre for Neurosciences, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York 11030, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Orban P, Peigneux P, Lungu O, Debas K, Barakat M, Bellec P, Benali H, Maquet P, Doyon J. Functional neuroanatomy associated with the expression of distinct movement kinematics in motor sequence learning. Neuroscience 2011; 179:94-103. [DOI: 10.1016/j.neuroscience.2011.01.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 01/19/2011] [Accepted: 01/20/2011] [Indexed: 11/25/2022]
|
45
|
Hanakawa T. Rostral premotor cortex as a gateway between motor and cognitive networks. Neurosci Res 2011; 70:144-54. [PMID: 21382425 DOI: 10.1016/j.neures.2011.02.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 01/31/2011] [Accepted: 02/24/2011] [Indexed: 11/30/2022]
Abstract
This article presents a hypothesis that the rostral premotor-subcortical networks may serve as a gateway between the cognitive and motor networks. Accumulating evidence has propelled an idea that motor and cognitive behaviors considerably share neural substrates and probably computational principles regardless of the species. Here I conducted a meta-analysis of previous neuroimaging studies on motor planning and different cognitive tasks (mental calculation, visuospatial processing and cognitive control), which showed overlap of all activations in the rostral premotor cortex, with a possible rostro-caudal functional gradient. It was also suggested that the rostral premotor areas might form circuits with specific portions of the cerebellum and the basal ganglia. The rostral premotor areas may provide context-dependent connectivity and mediate information flow between the cognitive and motor networks, thereby making the two networks operating interactively or independently.
Collapse
Affiliation(s)
- Takashi Hanakawa
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan.
| |
Collapse
|
46
|
Hanakawa T. [Multidimensional neuroimaging approach for studying brain network]. Rinsho Shinkeigaku 2010; 50:901-902. [PMID: 21921503 DOI: 10.5692/clinicalneurol.50.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Here we propose multidimensional non-invasive imaging to understand the functional anatomy of neural circuits of the human brain. The multidimensional network imaging technique currently employs anatomical, functional and evoked connectivity imaging in various combinations. The anatomical and functional connectivity imaging can be achieved by the analysis of diffusion-weighted and functional magnetic resonance imaging (fMRI), respectively. New analysis techniques such as probabilistic diffusion tractography and tract-based statistics have refined the anatomical connectivity imaging, especially in combination with fMRI for setting up regions-of-interest. For the evoked connectivity imaging, brain stimulation technique such as transcranical magnetic stimulation (TMS) is performed during acquisition of fMRI and electrophysiology monitoring. Despite technical challenges, it is important to put information from these different modalities for network imaging together for fair understanding of human brain functions.
Collapse
Affiliation(s)
- Takashi Hanakawa
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|