1
|
Liu YH, Lin YC, Shih LC, Lin CP, Chang LH. Dissociation of focal and large-scale inhibitory functions in the older adults: A multimodal MRI study. Arch Gerontol Geriatr 2024; 127:105583. [PMID: 39059036 DOI: 10.1016/j.archger.2024.105583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND The decline of inhibitory in cognitive aging is linked to reduced cognitive and mental capacities in older adults. However, this decline often shows inconsistent clinical presentations, suggesting varied impacts on different inhibition-related tasks. Inhibitory control, a multifaceted construct, involves various types of inhibition. Understanding these components is crucial for comprehending how aging affects inhibitory functions. Our research investigates the influences of aging on large-scale and focal-scale inhibitory and examines the relationship with brain markers. METHODS We examined the impact of aging on inhibitory in 18 younger (20-35 years) and 17 older adults (65-85 years) using focal and large-scale inhibition tasks. The Gabor task assessed focal-scale inhibition, while the Stop Signal Task (SST) evaluated large-scale inhibition. Participants underwent neuropsychological assessments and MRI scans, including magnetic resonance spectroscopy (MRS) and structural and resting fMRI. RESULTS Older adults exhibited a marked decline in inhibitory function, with slower SST responses indicating compromised large-scale inhibition. Conversely, the Gabor task showed no significant age-related changes. MRS findings revealed decreased levels of GABA, glutamate, glutamine, and NAA in the pre-SMA, correlating with observed large-scale inhibition in older adults. Additionally, pre-SMA seed-based functional connectivity analysis showed reduced brain network connections in older adults, potentially contributing to inhibitory control deficits. CONCLUSIONS Our study elucidates the differential effects of aging on inhibitory functions. While large-scale inhibition is more vulnerable to aging, focal-scale inhibition is relatively preserved. These findings highlight the importance of targeted cognitive interventions and underscore the necessity of a multifaceted approach in aging research.
Collapse
Affiliation(s)
- Yi-Hsuan Liu
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Cheng Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ling-Chieh Shih
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Deptartment of Education and Research, Taipei City Hospital, Taipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hung CC, Li YC, Tsai YC, Cheng CH. Aberrant error monitoring in traumatic brain injuries: A meta-analysis of event-related potential studies. Int J Psychophysiol 2024; 206:112462. [PMID: 39481647 DOI: 10.1016/j.ijpsycho.2024.112462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
OBJECTIVE Although individuals with traumatic brain injuries (TBI) often manifest altered error monitoring, evidence using event-related potentials (ERPs) to index these cortical processes is inconsistent. Therefore, this meta-analysis study aimed to comprehensively compare the error-related negativity (ERN) and error positivity (Pe) between individuals with TBI and healthy controls (HC) from the existing literature. METHODS Literature search was performed using PubMed/MEDLINE, Web of Science, and Cochrane Library. The effect sizes (Hedges' g) in the comparisons of ERN and Pe amplitudes between TBI and HC groups were employed by a random-effect, inverse-variance weighted model. The effects of age, TBI severity and experimental tasks on both ERP components were also examined. RESULTS Random-effect models showed decreased ERN (g = 0.361, p = 0.010), but intact Pe (g = 0.105, p = 0.443), in those with TBI compared to HC. A further analysis revealed that the adult patients (g = 0.326, p = 0.038), but not the youth patients, showed significant reduction of ERN as compared to the HC. However, we did not find moderating effects of TBI severity and experimental paradigms on either ERN or Pe. CONCLUSIONS ERN and Pe reflect separate neurophysiological mechanisms and different aspects of error monitoring in TBI. Our findings suggest that attenuated ERN amplitude may be an electrophysiological parameter of error monitoring deficits in TBI.
Collapse
Affiliation(s)
- Chun-Che Hung
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Yo-Chun Li
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yun-Chih Tsai
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, Taoyuan, Taiwan; Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan.
| |
Collapse
|
3
|
Brockett AT, Kumar N, Sharalla P, Roesch MR. Optogenetic Inhibition of the Orbitofrontal Cortex Disrupts Inhibitory Control during Stop-Change Performance in Male Rats. eNeuro 2024; 11:ENEURO.0015-24.2024. [PMID: 38697842 PMCID: PMC11097625 DOI: 10.1523/eneuro.0015-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Historically, the orbitofrontal cortex (OFC) has been implicated in a variety of behaviors ranging from reversal learning and inhibitory control to more complex representations of reward value and task space. While modern interpretations of the OFC's function have focused on a role in outcome evaluation, these cognitive processes often require an organism to inhibit a maladaptive response or strategy. Single-unit recordings from the OFC in rats performing a stop-change task show that the OFC responds strongly to STOP trials. To investigate the role that the OFC plays in stop-change performance, we expressed halorhodopsin (eNpHR3.0) in excitatory neurons in the OFC and tested rats on the stop-change task. Previous work suggests that the OFC differentiates between STOP trials based on trial sequence (i.e., gS trials: STOP trials preceded by a GO vs sS trials: STOP trials preceded by a STOP). We found that yellow light activation of the eNpHR3.0-expressing neurons significantly decreased accuracy only on STOP trials that followed GO trials (gS trials). Further, optogenetic inhibition of the OFC speeded reaction times on error trials. This suggests that the OFC plays a role in inhibitory control processes and that this role needs to be accounted for in modern interpretations of OFC function.
Collapse
Affiliation(s)
- Adam T Brockett
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire 03824
| | - Neeraj Kumar
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Paul Sharalla
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | - Matthew R Roesch
- Department of Psychology, University of Maryland, College Park, Maryland 20742
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
4
|
Liu Y, Masina F, Ridderinkhof KR, Pezzetta R. Addiction as a brain disease? A meta-regression comparison of error-related brain potentials between addiction and neurological diseases. Neurosci Biobehav Rev 2023; 148:105127. [PMID: 36921702 DOI: 10.1016/j.neubiorev.2023.105127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The notion that addiction is a "brain disorder" is widespread. However, there is a lack of evidence on the degree of disorder in terms of error processing in addiction. The present meta-analysis aimed at shedding light on this by comparing error-processes with populations with well-recognized brain disorders. We included 17 addiction and 32 neurological disorder studies that compared error-related negativity (ERN) or error positivity (Pe) amplitudes/latencies between experimental and healthy-control groups. Meta-regression analyses were performed for the intergroup comparison and other moderators. Both diagnoses were accompanied by a diminished ERN amplitude, although the degree of impairment was marginally larger in neurological disorders. Neurological disorders presented shorter ERN latencies than addiction when compared with controls. The two groups did not differ in Pe amplitude/latency. Except for a reduced ERN amplitude found along with aging, no other moderator contributed significantly to divergent findings about these four ERP indexes. The results support the brain disease model of addiction, while stressing the importance of quantifying the degrees of brain dysfunctions as a next step.
Collapse
Affiliation(s)
- Yang Liu
- Department of Psychology, School of Education, Shanghai Normal University, Shanghai, China.
| | | | | | | |
Collapse
|
5
|
Girotti M, Carreno FR, Morilak DA. Role of Orbitofrontal Cortex and Differential Effects of Acute and Chronic Stress on Motor Impulsivity Measured With 1-Choice Serial Reaction Time Test in Male Rats. Int J Neuropsychopharmacol 2022; 25:1026-1036. [PMID: 36087292 PMCID: PMC9743967 DOI: 10.1093/ijnp/pyac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/08/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deficits in motor impulsivity, that is, the inability to inhibit a prepotent response, are frequently observed in psychiatric conditions. Several studies suggest that stress often correlates with higher impulsivity. Among the brain areas affected by stress, the orbitofrontal cortex (OFC) is notable because of its role in impulse control. OFC subregions with unique afferent and efferent circuitry play distinct roles in impulse control, yet it is not clear what OFC subregions are engaged during motor impulsivity tasks. METHODS In this study we used a rodent test of motor impulsivity, the 1-choice serial reaction time test, to explore activation of OFC subregions either during a well-learned motor impulsivity task or in a challenge task with a longer wait time that increases premature responding. We also examined the effects of acute inescapable stress, chronic intermittent cold stress and chronic unpredictable stress on motor impulsivity. RESULTS Fos expression increased in the lateral OFC and agranular insular cortex during performance in both the mastered and challenge conditions. In the ventral OFC, Fos expression increased only during challenge, and within the medial OFC, Fos was not induced in either condition. Inescapable stress produced a transient effect on premature responses in the mastered task, whereas chronic intermittent cold stress and chronic unpredictable stress altered premature responses in both conditions in ways specific to each stressor. CONCLUSIONS These results suggest that different OFC subregions have different roles in motor impulse control, and the effects of stress vary depending on the nature and duration of the stressor.
Collapse
Affiliation(s)
- Milena Girotti
- Correspondence: Milena Girotti, PhD, Department of Pharmacology, Mail Code 7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA ()
| | - Flavia R Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - David A Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
6
|
Pyasik M, Scandola M, Moro V. Electrophysiological correlates of action monitoring in brain-damaged patients: A systematic review. Neuropsychologia 2022; 174:108333. [PMID: 35842019 DOI: 10.1016/j.neuropsychologia.2022.108333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/19/2022]
Abstract
Action monitoring is crucial to the successful execution of an action and understanding the actions of others. It is often impaired due to brain lesions, in particular after stroke. This systematic review aims to map the literature on the neurophysiological correlates of action monitoring in patients with brain lesions. Eighteen studies were identified and divided into two groups: studies on monitoring of one's own actions and studies on monitoring of the actions of others. The first group included EEG studies on monitoring of self-performed erroneous and correct actions. Impaired error detection (decreased error-related negativity) was observed in patients with lesions in the performance-monitoring network, as compared to healthy controls. Less consistent results were shown for error positivity and behavioral error monitoring performance. The second group of studies on monitoring of others' actions reported decreased mu frequency suppression, impaired readiness potential in the affected hemisphere and decreased EEG indices of error observation (observed error positivity and theta power) in stroke patients. As a whole, these results indicate distinct patterns of impaired neurophysiological activity related to monitoring one's own versus others' actions in patients with brain lesions. EEG recordings of this dissociation in the same patients might be a useful index of motor recovery, and therefore, potentially also beneficial in rehabilitation protocols.
Collapse
Affiliation(s)
- Maria Pyasik
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy.
| | - Michele Scandola
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| | - Valentina Moro
- NPSY.Lab-VR, Department of Human Sciences, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Differences in Emotional Conflict Processing between High and Low Mindfulness Adolescents: An ERP Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052891. [PMID: 35270583 PMCID: PMC8910158 DOI: 10.3390/ijerph19052891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023]
Abstract
Mindfulness is a state of concentration that allows individuals to focus on their feelings and thoughts without judgment. However, little is known regarding the underlying neural processes of mindfulness. This study used ERPs to investigate the differences between high and low trait mindfulness adolescents during emotional conflict processing. Nineteen low mindfulness adolescents (LMSs) and sixteen high mindfulness adolescent (HMSs) individuals were asked to complete a face Stroop task. The task superimposed emotional words on emotional faces to generate congruent (CC) and incongruent (IC) conditions. Continuous electroencephalogram data were recorded during the face Stroop task. Results revealed that for N450, the interaction of congruency and group was significant. The incongruent trials evoked a larger N450 than the congruent trials in the HMSs, whereas there were no significant differences between the two conditions in the LMSs. There were significant main effects of congruency for SP (slow potential). The incongruent trials evoked a larger SP than the congruent trials. The results suggest that mindfulness may only affect early conflict monitoring rather than later conflict resolution. The findings expand the neural basis of the effect of mindfulness on inhibitory control.
Collapse
|
8
|
Hadas I, Hadar A, Lazarovits A, Daskalakis ZJ, Zangen A. Right prefrontal activation predicts ADHD and its severity: A TMS-EEG study in young adults. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110340. [PMID: 33957168 DOI: 10.1016/j.pnpbp.2021.110340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Here we bring a neurophysiological diagnostic tool, based on pathophysiologically-relevant brain region, that is critical for reducing the variability between clinicians, and necessary for quantitative measures of ADHD severity. METHODS 54 healthy and 57 ADHD adults participated in the study. Electroencephalography (EEG) was recorded when combined with transcranial magnetic stimulation (TMS) over the right prefrontal cortex and also recorded during the Stop Signal task. RESULTS TMS evoked potentials (TEPs) and the event related potential (ERP) components in the Stop Signal task were found to be significantly reduced in ADHD relative to the matched healthy controls. Stop signal reaction time (SSRT) and stopping accuracy was found to correlate with the ERP signal, and ADHD severity correlated with the TEP signal. Cortical activity (early TEP and Stop Signal ERP) diagnostic model yielded accuracy of 72%. CONCLUSION TEPs and ERPs reveal that right PFC excitability was associated with ADHD severity, and with behavioral impulsivity - as a hallmark of ADHD pathology. This electrophysiological biomarker supports the potential of objective diagnosis for ADHD. SIGNIFICANCE Such tools would allow better assessment of treatment efficacy and prognosis, may advance understanding of the pathophysiology of the disease and better the public's attitudes and stigma towards ADHD. TRIAL REGISTRATION Trial to Evaluate the Efficacy of the HLPFC Coil Deep Transcranial Magnetic Stimulation System in Treating Attention Deficit and Hyperactivity Disorder (ADHD) in Adults, https://clinicaltrials.gov/ct2/show/NCT01737476, ClinicalTrials.govnumberNCT01737476.
Collapse
Affiliation(s)
- Itay Hadas
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA 92093-0603, USA; Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel.
| | - Aviad Hadar
- Shalvata Mental Health Center, Hod-Hasharon, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Avi Lazarovits
- Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Health, University of California San Diego, La Jolla, CA 92093-0603, USA
| | - Abraham Zangen
- Life Science Department and the Zlotowski Center for Neuroscience, Ben Gurion University in the Negev, Beer Sheva, Israel
| |
Collapse
|
9
|
Lenzoni S, Baker J, Sumich AL, Mograbi DC. New insights into neural networks of error monitoring and clinical implications: a systematic review of ERP studies in neurological diseases. Rev Neurosci 2021; 33:161-179. [PMID: 34214387 DOI: 10.1515/revneuro-2021-0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 11/15/2022]
Abstract
Error monitoring allows for the efficient performance of goal-directed behaviors and successful learning. Furthermore, error monitoring as a metacognitive ability may play a crucial role for neuropsychological interventions, such as rehabilitation. In the past decades, research has suggested two electrophysiological markers for error monitoring: the error-related negativity (ERN) and the error positivity (Pe), thought to reflect, respectively, error detection and error awareness. Studies on several neurological diseases have investigated the alteration of the ERN and the Pe, but these findings have not been summarized. Accordingly, a systematic review was conducted to understand what neurological conditions present alterations of error monitoring event-related potentials and their relation with clinical measures. Overall, ERN tended to be reduced in most neurological conditions while results related to Pe integrity are less clear. ERN and Pe were found to be associated with several measures of clinical severity. Additionally, we explored the contribution of different brain structures to neural networks underlying error monitoring, further elaborating on the domain-specificity of error processing and clinical implications of findings. In conclusion, electrophysiological signatures of error monitoring could be reliable measures of neurological dysfunction and a robust tool in neuropsychological rehabilitation.
Collapse
Affiliation(s)
- Sabrina Lenzoni
- Department of Psychology, Pontifical University of Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil.,Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK
| | - Joshua Baker
- Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK.,Institute for Systems Neuroscience, University Hospital Hamburg-Eppendorf, 20251Hamburg, Germany
| | - Alexander L Sumich
- Department of Psychology, Nottingham Trent University, NG1 4FQ, Nottingham, UK.,Department of Psychology, Auckland University of Technology, 1010, Auckland, New Zealand
| | - Daniel C Mograbi
- Department of Psychology, Pontifical University of Rio de Janeiro, 22451-900, Rio de Janeiro, Brazil.,Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| |
Collapse
|
10
|
Maja RA, Kilshaw RE, Garcia-Barrera MA, Karr JE. Current Posttraumatic Stress Symptoms Mediate the Relationship Between Adverse Childhood Experiences and Executive Functions. Psychol Rep 2021; 125:763-786. [PMID: 33573503 DOI: 10.1177/0033294120979690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adverse childhood experiences (ACEs) and posttraumatic stress disorder (PTSD) are both associated with lower performances on executive function tasks. However, few researchers have evaluated ACEs, posttraumatic stress (PTS) symptoms, and executive function difficulties in conjunction. Using an online micropayment service, the current study assessed whether PTS symptoms mediated the relationship between ACEs and executive functions. In total, 83 participants (54.2% female, age: M = 28.86, SD = 7.71) were administered the ACE questionnaire, PTSD Checklist for DSM-5 (PCL-5), and the Executive Function Index (EFI). A higher number of reported ACEs was related to greater PTS symptom severity (β = .40, p < .001) and worse self-rated executive functions (β = -.32, p = .002). Controlling for the number of reported ACEs, current PTS symptom severity was related to worse executive functions (β = -.45, p < .001). A bootstrapped 95% confidence interval (CI) indicated a significant indirect effect, β = -.18 (95% CI: -.30, -.08), by which current PTS symptoms mediated the relationship between the number of reported ACEs and executive functions. These results suggest that psychological interventions targeting PTS symptoms, in the context of a history of childhood trauma, may concurrently improve executive functions in adult populations.
Collapse
Affiliation(s)
- Rachel A Maja
- Department of Educational and Counselling Psychology, and Special Education, University of British Columbia, Vancouver, BC, Canada
| | - Robyn E Kilshaw
- Department of Psychology, University of Utah, Salt Lake City, UT, USA
| | | | - Justin E Karr
- Department of Psychology, 4530University of Kentucky, Lexington, KY, USA
| |
Collapse
|
11
|
Pezzetta R, Wokke ME, Aglioti SM, Ridderinkhof KR. Doing it Wrong: A Systematic Review on Electrocortical and Behavioral Correlates of Error Monitoring in Patients with Neurological Disorders. Neuroscience 2021; 486:103-125. [PMID: 33516775 DOI: 10.1016/j.neuroscience.2021.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Detecting errors in one's own and other's actions is a crucial ability for learning and adapting behavior to everchanging, highly volatile environments. Studies in healthy people demonstrate that monitoring errors in one's own and others' actions are underpinned by specific neural systems that are dysfunctional in a variety of neurological disorders. In this review, we first briefly discuss the main findings concerning error detection and error awareness in healthy subjects, the current theoretical models, and the tasks usually applied to investigate these processes. Then, we report a systematic search for evidence of dysfunctional error monitoring among neurological populations (basal ganglia, neurodegenerative, white-matter diseases and acquired brain injury). In particular, we examine electrophysiological and behavioral evidence for specific alterations of error processing in neurological disorders. Error-related negativity (ERN) amplitude were reduced in most (although not all) neurological patient groups, whereas Positivity Error (Pe) amplitude appeared not to be affected in most patient groups. Also theta activity was reduced in some neurological groups, but consistent evidence on the oscillatory activity has not been provided thus far. Behaviorally, we did not observe relevant patterns of pronounced dysfunctional (post-) error processing. Finally, we discuss limitations of the existing literature, conclusive points, open questions and new possible methodological approaches for clinical studies.
Collapse
Affiliation(s)
- R Pezzetta
- IRCCS San Camillo Hospital, Venice, Italy.
| | - M E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, The University of Cambridge, Cambridge, UK
| | - S M Aglioti
- Sapienza University of Rome and CNLS@Sapienza at Istituto Italiano di Tecnologia, Via Regina Elena 295, 00161 Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - K R Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018, WS, Amsterdam, The Netherlands; Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Stop! - The automatic tendency of action, inhibition and frontal activation in individuals with alcohol-use disorder in abstinence. Int J Psychophysiol 2020; 158:123-135. [PMID: 33075432 DOI: 10.1016/j.ijpsycho.2020.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022]
Abstract
Studying the functioning of the frontal lobe during the performance of an inhibitory activity according to automatic tendency of action would allow a better understanding of the relationship between the reflexive and impulsive system described in the dual-process models. This study aims to prove which is the inhibitory capacity and the underlying brain activity of people with alcohol-use disorder in abstinence with a greater avoidance tendency compared to those with a higher approach tendency and healthy controls. In order to group participants with AUD, the total approach/avoidance index (TAAI) - obtained from the modified alcohol approach/avoidance task - was used, therefore resulting in three groups: TAAI- (TAAI < Percentile 35: n = 20), TAAI± (TAAI = Percentile 35-65: n = 20) and TAAI+ (TAAI > Percentile 65: n = 20). In addition to this, 15 healthy controls were recruited. They all had an electroencephalographic recording while completing the modified stop-signal task. The results showed that the TAAI+ group had a worse inhibition compared to healthy controls. Moreover, the TAAI+ group showed a hyperactivation of the inferior frontal gyrus, precentral gyrus and orbital gyrus compared to the healthy controls group and the TAAI- group. The results obtained reflect that those people with AUD with a tendency to approach alcohol have a worse inhibitory capacity and a frontal hyperactivation. Moreover, people with AUD with an avoidance tendency to alcohol have also been found to have a similar inhibitory capacity and frontal activation to healthy controls.
Collapse
|
13
|
Brockett AT, Roesch MR. The ever-changing OFC landscape: What neural signals in OFC can tell us about inhibitory control. Behav Neurosci 2020; 135:129-137. [PMID: 32914996 DOI: 10.1037/bne0000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Despite decades of research on OFC function, the exact function(s) of OFC remain elusive. In recent years, 1 of the earliest hypotheses about OFC function, namely its involvement in inhibitory control, has drifted to the periphery of the functional OFC landscape in favor of theories suggesting a role for OFC in the representation of task or state space. The reasons for this drift are valid, owing in part to the development of more sensitive behavioral approaches, a clear emphasis on cross-species and cross-method comparisons, as well as the elegant integration of reinforcement learning theories. However, recent evidence recording from OFC during the performance of traditional inhibitory control tasks has found new evidence supporting a role for OFC in inhibitory control. While the extent to which these findings can be integrated into existing frameworks is in its infancy, this review seeks to highlight these findings with the goal of providing new insights into function of OFC. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
14
|
Yu LQ, Kan IP, Kable JW. Beyond a rod through the skull: A systematic review of lesion studies of the human ventromedial frontal lobe. Cogn Neuropsychol 2019; 37:97-141. [PMID: 31739752 DOI: 10.1080/02643294.2019.1690981] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropsychological studies from the past century have associated damage to the ventromedial frontal lobes (VMF) with impairments in a variety of domains, including memory, executive function, emotion, social cognition, and valuation. A central question in the literature is whether these seemingly distinct functions are subserved by different sub-regions within the VMF, or whether VMF supports a broader cognitive process that is crucial to these varied domains. In this comprehensive review of the neuropsychological literature from the last two decades, we present a qualitative synthesis of 184 papers that have examined the psychological impairments that result from VMF damage. We discuss these findings in the context of several theoretical frameworks and advocate for the view that VMF is critical for the formation and representation of schema and cognitive maps.
Collapse
Affiliation(s)
- Linda Q Yu
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.,Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Irene P Kan
- Department of Psychological & Brain Sciences, Villanova University, Villanova, PA, USA
| | - Joseph W Kable
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Electrophysiology of goal-directed versus habitual control during outcome devaluation. Cortex 2019; 119:401-416. [DOI: 10.1016/j.cortex.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/16/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023]
|
16
|
Top-down control of the medial orbitofrontal cortex to nucleus accumbens core pathway in decisional impulsivity. Brain Struct Funct 2019; 224:2437-2452. [DOI: 10.1007/s00429-019-01913-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/14/2019] [Indexed: 02/03/2023]
|
17
|
Liebrand M, Kristek J, Tzvi E, Krämer UM. Ready for change: Oscillatory mechanisms of proactive motor control. PLoS One 2018; 13:e0196855. [PMID: 29768455 PMCID: PMC5955690 DOI: 10.1371/journal.pone.0196855] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/21/2018] [Indexed: 11/19/2022] Open
Abstract
Proactive motor control is a preparatory mechanism facilitating upcoming action inhibition or adaptation. Previous studies investigating proactive motor control mostly focused on response inhibition, as in the classical go-nogo or stop-signal tasks. However, everyday life rarely calls for the complete suppression of actions without subsequent behavioral adjustment. Therefore, we conducted a modified cued go-nogo-change task, in which cues indicated whether participants might have to change to an alternative action or inhibit the response to an upcoming target. Based on the dual-mechanisms of control framework and using electroencephalography (EEG), we investigated the role of the sensorimotor cortex and of prefrontal regions in preparing to change and cancel motor responses. We focused on mu and beta power over sensorimotor cortex ipsi- and contralateral to an automatic motor response and on prefrontal beta power. Over ipsilateral sensorimotor cortex, mu and beta power was relatively decreased when anticipating to change or inhibit the automatic motor behavior. Moreover, alpha phase coupling between ipsilateral motor cortex and prefrontal areas decreased when preparing to change, suggesting a decoupling of sensorimotor regions from prefrontal control. When the standard motor action actually had to be changed, prefrontal beta power increased, reflecting enhanced cognitive control. Our data highlight the role of the ipsilateral motor cortex in preparing to inhibit and change upcoming motor actions. Here, especially mu power and phase coupling seem to be critical to guide upcoming behavior.
Collapse
Affiliation(s)
- Matthias Liebrand
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Graduate School for Computing in Medicine and Life Sciences, University of Lübeck, Lübeck, Germany
| | - Jascha Kristek
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Ulrike M. Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
- * E-mail:
| |
Collapse
|
18
|
Liebrand M, Pein I, Tzvi E, Krämer UM. Temporal Dynamics of Proactive and Reactive Motor Inhibition. Front Hum Neurosci 2017; 11:204. [PMID: 28496405 PMCID: PMC5406465 DOI: 10.3389/fnhum.2017.00204] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/07/2017] [Indexed: 01/14/2023] Open
Abstract
Proactive motor inhibition refers to endogenous preparatory mechanisms facilitating action inhibition, whereas reactive motor inhibition is considered to be a sudden stopping process triggered by external signals. Previous studies were inconclusive about the temporal dynamics of involved neurocognitive processes during proactive and reactive motor control. Using electroencephalography (EEG), we investigated the time-course of proactive and reactive inhibition, measuring event-related oscillations and event-related potentials (ERPs). Participants performed in a cued go/nogo paradigm with cues indicating whether the motor response might or might not have to be inhibited. Based on the dual mechanisms of control (DMC) framework by Braver, we investigated the role of attentional effects, motor preparation in the sensorimotor cortex and prefrontal cognitive control mechanisms, separating effects before and after target onset. In the cue-target interval, proactive motor inhibition was associated with increased attention, reflected in reduced visual alpha power and an increased contingent negative variation (CNV). At the same time, motor inhibition was modulated by reduced sensorimotor beta power. After target onset, proactive inhibition resulted in an increased N1, indicating allocation of attention towards relevant stimuli, increased prefrontal beta power and a modulation of sensorimotor mu activity. As in previous studies, reactive stopping of motor actions was associated with increased prefrontal beta power and increased sensorimotor beta activity. The results stress the relevance of attentional mechanisms for proactive inhibition and speak for different neurocognitive mechanisms being involved in the early preparation for and in later implementation of motor inhibition.
Collapse
Affiliation(s)
- Matthias Liebrand
- Department of Neurology, University of LübeckLübeck, Germany.,Graduate School for Computing in Medicine and Life Sciences, University of LübeckLübeck, Germany
| | - Inga Pein
- Department of Neurology, University of LübeckLübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of LübeckLübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of LübeckLübeck, Germany.,Institute of Psychology II, University of LübeckLübeck, Germany
| |
Collapse
|
19
|
Intact error monitoring in combat Veterans with post-traumatic stress disorder. Psychiatry Res 2015; 234:227-38. [PMID: 26481979 PMCID: PMC5645022 DOI: 10.1016/j.pscychresns.2015.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/22/2015] [Accepted: 09/17/2015] [Indexed: 12/20/2022]
Abstract
The error-related negativity (ERN) is a neuroelectric signature of performance monitoring during speeded response time tasks. Previous studies indicate that individuals with anxiety disorders show ERN enhancements that correlate with the degree of clinical symptomology. Less is known about the error monitoring system in post-traumatic stress disorder (PTSD). PTSD is characterized by impairments in the regulation of fear and other emotional responses, as well as deficits in maintaining cognitive control. Here, combat Veterans with PTSD were compared to control Veterans in two different versions of the flanker task (n=13 or 14 per group). Replicating and extending previous findings, PTSD patients showed an intact ERN in both experiments. In addition, task performance and error compensation behavior were intact. Finally, ERN amplitude showed no relationship with self-reported PTSD, depression, or post-concussive symptoms. These results suggest that error monitoring represents a relative strength in PTSD that can dissociate from cognitive control functions that are impaired, such as response inhibition and sustained attention. A healthy awareness of errors in external actions could be leveraged to improve interoceptive awareness of emotional state. The results could have positive implications for PTSD treatments that rely on self-monitoring abilities, such as neurofeedback and mindfulness training.
Collapse
|
20
|
Weinberg A, Dieterich R, Riesel A. Error-related brain activity in the age of RDoC: A review of the literature. Int J Psychophysiol 2015; 98:276-299. [PMID: 25746725 DOI: 10.1016/j.ijpsycho.2015.02.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 12/28/2022]
Abstract
The ability to detect and respond to errors is critical to successful adaptation to a changing environment. The error-related negativity (ERN), an event-related potential (ERP) component, is a well-validated neural response to errors and reflects the error monitoring activity of the anterior cingulate cortex (ACC). Additionally, the ERN is implicated in several processes key to adaptive functioning. Abnormalities in error-related brain activity have been linked to multiple forms of psychopathology and individual differences. As such, the component is likely to be useful in NIMH's Research Domain Criteria (RDoC) initiative to establish biologically-meaningful dimensions of psychological dysfunction, and currently appears as a unit of measurement in three RDoC domains: Positive Valence Systems, Negative Valence Systems, and Cognitive Systems. In this review paper, we introduce the ERN and discuss evidence related to its psychometric properties, as well as important task differences. Following this, we discuss evidence linking the ERN to clinically diverse forms of psychopathology, as well as the implications of one unit of measurement appearing in multiple RDoC dimensions. And finally, we discuss important future directions, as well as research pathways by which the ERN might be leveraged to track the ways in which dysfunctions in multiple neural systems interact to influence psychological well-being.
Collapse
Affiliation(s)
- Anna Weinberg
- Department of Psychology, University of Illinois at Chicago, United States.
| | - Raoul Dieterich
- Clinical Psychology, Humboldt-Universität zu Berlin, Germany
| | - Anja Riesel
- Clinical Psychology, Humboldt-Universität zu Berlin, Germany
| |
Collapse
|
21
|
Bailey N, Hoy K, Maller J, Upton D, Segrave R, Fitzgibbon B, Fitzgerald P. Neural evidence that conscious awareness of errors is reduced in depression following a traumatic brain injury. Biol Psychol 2015; 106:1-10. [DOI: 10.1016/j.biopsycho.2015.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/02/2023]
|