1
|
Baena D, Gabitov E, Ray LB, Doyon J, Fogel SM. Motor learning promotes regionally-specific spindle-slow wave coupled cerebral memory reactivation. Commun Biol 2024; 7:1492. [PMID: 39533111 PMCID: PMC11557691 DOI: 10.1038/s42003-024-07197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Sleep is essential for the optimal consolidation of newly acquired memories. This study examines the neurophysiological processes underlying memory consolidation during sleep, via reactivation. Here, we investigated the impact of slow wave - spindle (SW-SP) coupling on regionally-task-specific brain reactivations following motor sequence learning. Utilizing simultaneous EEG-fMRI during sleep, our findings revealed that memory reactivation occured time-locked to coupled SW-SP complexes, and specifically in areas critical for motor sequence learning. Notably, these reactivations were confined to the hemisphere actively involved in learning the task. This regional specificity highlights a precise and targeted neural mechanism, underscoring the crucial role of SW-SP coupling. In addition, we observed double-dissociation whereby primary sensory areas were recruited time-locked to uncoupled spindles; suggesting a role for uncoupled spindles in sleep maintenance. These findings advance our understanding the functional significance of SW-SP coupling for enhancing memory in a regionally-specific manner, that is functionally dissociable from uncoupled spindles.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Ella Gabitov
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada.
- School of Psychology, University of Ottawa, Ottawa, ON, Canada.
- University of Ottawa Brain & Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Orlando IF, O'Callaghan C, Lam A, McKinnon AC, Tan JBC, Michaelian JC, Kong SDX, D'Rozario AL, Naismith SL. Sleep spindle architecture associated with distinct clinical phenotypes in older adults at risk for dementia. Mol Psychiatry 2024; 29:402-411. [PMID: 38052981 PMCID: PMC11116104 DOI: 10.1038/s41380-023-02335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Sleep spindles are a hallmark of non-REM sleep and play a fundamental role in memory consolidation. Alterations in these spindles are emerging as sensitive biomarkers for neurodegenerative diseases of ageing. Understanding the clinical presentations associated with spindle alterations may help to elucidate the functional role of these distinct electroencephalographic oscillations and the pathophysiology of sleep and neurodegenerative disorders. Here, we use a data-driven approach to examine the sleep, memory and default mode network connectivity phenotypes associated with sleep spindle architecture in older adults (mean age = 66 years). Participants were recruited from a specialist clinic for early diagnosis and intervention for cognitive decline, with a proportion showing mild cognitive deficits on neuropsychological testing. In a sample of 88 people who underwent memory assessment, overnight polysomnography and resting-state fMRI, a k-means cluster analysis was applied to spindle measures of interest: fast spindle density, spindle duration and spindle amplitude. This resulted in three clusters, characterised by preserved spindle architecture with higher fast spindle density and longer spindle duration (Cluster 1), and alterations in spindle architecture (Clusters 2 and 3). These clusters were further characterised by reduced memory (Clusters 2 and 3) and nocturnal hypoxemia, associated with sleep apnea (Cluster 3). Resting-state fMRI analysis confirmed that default mode connectivity was related to spindle architecture, although directionality of this relationship differed across the cluster groups. Together, these results confirm a diversity in spindle architecture in older adults, associated with clinically meaningful phenotypes, including memory function and sleep apnea. They suggest that resting-state default mode connectivity during the awake state can be associated with sleep spindle architecture; however, this is highly dependent on clinical phenotype. Establishing relationships between clinical and neuroimaging features and sleep spindle alterations will advance our understanding of the bidirectional relationships between sleep changes and neurodegenerative diseases of ageing.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew C McKinnon
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Joshua B C Tan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Johannes C Michaelian
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
| | - Shawn D X Kong
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
| | - Angela L D'Rozario
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia.
- School of Psychology, Faculty of Science, The University of Sydney, Camperdown, NSW, Australia.
- NHMRC Centre of Research Excellence to Optimise Sleep in Brain Ageing and Neurodegeneration (CogSleep CRE), Sydney, NSW, Australia.
| |
Collapse
|
3
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
4
|
Zeng G, Zhou Y, Yang Y, Ruan L, Tan L, Luo H, Ruan J. Neural oscillations after acute large artery atherosclerotic cerebral infarction during resting state and sleep spindles. J Sleep Res 2023; 32:e13889. [PMID: 36944554 DOI: 10.1111/jsr.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023]
Abstract
Electroencephalogram-microstate analysis was conducted using low-resolution electromagnetic tomography (LORETA)-KEY to evaluate dynamic brain network changes in patients with acute large artery atherosclerotic cerebral infarction (LAACI) during the rest and sleep stages. This study included 35 age- and sex-matched healthy controls and 34 patients with acute LAACI. Each participant performed a 3-h, 19-channel video electroencephalogram test. Subsequently, 20 epochs of 2-s sleep spindles during stage N2 sleep and five epochs of 10-s electroencephalogram data in the resting state for each participant were obtained. In both the resting state and sleep spindles, patients with LAACI displayed altered neural oscillations. The parameters of microstate A (coverage, occurrence, and duration) increased during the resting state in the patients with LAACI compared with healthy controls. The coverage and occurrence of microstate B and D were reduced in the LAACI group compared with the healthy controls (p < 0.05). Moreover, during sleep spindles, the duration of microstate A and the transition probability from microstate A and B to C decreased, but the coverage of microstate B and the transition rate from microstate B to D increased (p < 0.05) in the LAACI group compared with the healthy controls. These results enable better understanding of how neural oscillations are modified in patients with LAACI during the resting state and sleep spindles. Following LAACI, the dynamic brain network undergoes changes during sleep spindles and the resting state. Continued long-term investigations are required to determine how well these changes in brain dynamics reflect the clinical characteristics of patients with LAACI.
Collapse
Affiliation(s)
- Guoli Zeng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Neurology, Luzhou People's Hospital, Luzhou, China
| | - Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
5
|
Zhuravlev M, Agaltsov M, Kiselev A, Simonyan M, Novikov M, Selskii A, Ukolov R, Drapkina O, Orlova A, Penzel T, Runnova A. Compensatory mechanisms of reduced interhemispheric EEG connectivity during sleep in patients with apnea. Sci Rep 2023; 13:8444. [PMID: 37231107 PMCID: PMC10213009 DOI: 10.1038/s41598-023-35376-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
We performed a mathematical analysis of functional connectivity in electroencephalography (EEG) of patients with obstructive sleep apnea (OSA) (N = 10; age: 52.8 ± 13 years; median age: 49 years; male/female ratio: 7/3), compared with a group of apparently healthy participants (N = 15; age: 51.5 ± 29.5 years; median age: 42 years; male/female ratio: 8/7), based on the calculation of wavelet bicoherence from nighttime polysomnograms. Having observed the previously known phenomenon of interhemispheric synchronization deterioration, we demonstrated a compensatory increase in intrahemispheric connectivity, as well as a slight increase in the connectivity of the central and occipital areas for high-frequency EEG activity. Significant changes in functional connectivity were extremely stable in groups of apparently healthy participants and OSA patients, maintaining the overall pattern when comparing different recording nights and various sleep stages. The maximum variability of the connectivity was observed at fast oscillatory processes during REM sleep. The possibility of observing some changes in functional connectivity of brain activity in OSA patients in a state of passive wakefulness opens up prospects for further research. Developing the methods of hypnogram evaluation that are independent of functional connectivity may be useful for implementing a medical decision support system.
Collapse
Affiliation(s)
- Maksim Zhuravlev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Mikhail Agaltsov
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anton Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Margarita Simonyan
- Institute of Physics, Saratov State University, Saratov, Russia
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia
| | - Mikhail Novikov
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia
| | - Anton Selskii
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Rodion Ukolov
- Institute of Physics, Saratov State University, Saratov, Russia
| | - Oksana Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Anna Orlova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia
| | - Thomas Penzel
- Interdisciplinary Sleep Medicine Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anastasiya Runnova
- National Medical Research Center for Therapy and Preventive Medicine, Moscow, Russia.
- Institute of Physics, Saratov State University, Saratov, Russia.
- Institute of Cardiology Research, Saratov State Medical University, Saratov, Russia.
| |
Collapse
|
6
|
Northoff G, Scalabrini A, Fogel S. Topographic-dynamic reorganisation model of dreams (TRoD) - A spatiotemporal approach. Neurosci Biobehav Rev 2023; 148:105117. [PMID: 36870584 DOI: 10.1016/j.neubiorev.2023.105117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/13/2022] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Dreams are one of the most bizarre and least understood states of consciousness. Bridging the gap between brain and phenomenology of (un)conscious experience, we propose the Topographic-dynamic Re-organization model of Dreams (TRoD). Topographically, dreams are characterized by a shift towards increased activity and connectivity in the default-mode network (DMN) while they are reduced in the central executive network, including the dorsolateral prefrontal cortex (except in lucid dreaming). This topographic re-organization is accompanied by dynamic changes; a shift towards slower frequencies and longer timescales. This puts dreams dynamically in an intermediate position between awake state and NREM 2/SWS sleep. TRoD proposes that the shift towards DMN and slower frequencies leads to an abnormal spatiotemporal framing of input processing including both internally- and externally-generated inputs (from body and environment). In dreams, a shift away from temporal segregation to temporal integration of inputs results in the often bizarre and highly self-centric mental contents as well as hallucinatory-like states. We conclude that topography and temporal dynamics are core features of the TroD, which may provide the connection of neural and mental activity, e.g., brain and experience during dreams as their "common currency".
Collapse
Affiliation(s)
- Georg Northoff
- Faculty of Medicine, Centre for Neural Dynamics, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, China; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China.
| | - Andrea Scalabrini
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy.
| | - Stuart Fogel
- Sleep and Neuroscience, The Royal's Institute of Mental Health Research, Brain and Mind Research Institute and Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Baena D, Fang Z, Gibbings A, Smith D, Ray LB, Doyon J, Owen AM, Fogel SM. Functional differences in cerebral activation between slow wave-coupled and uncoupled sleep spindles. Front Neurosci 2023; 16:1090045. [PMID: 36741053 PMCID: PMC9889560 DOI: 10.3389/fnins.2022.1090045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Spindles are often temporally coupled to slow waves (SW). These SW-spindle complexes have been implicated in memory consolidation that involves transfer of information from the hippocampus to the neocortex. However, spindles and SW, which are characteristic of NREM sleep, can occur as part of this complex, or in isolation. It is not clear whether dissociable parts of the brain are recruited when coupled to SW vs. when spindles or SW occur in isolation. Here, we tested differences in cerebral activation time-locked to uncoupled spindles, uncoupled SW and coupled SW-spindle complexes using simultaneous EEG-fMRI. Consistent with the "active system model," we hypothesized that brain activations time-locked to coupled SW-spindles would preferentially occur in brain areas known to be critical for sleep-dependent memory consolidation. Our results show that coupled spindles and uncoupled spindles recruit distinct parts of the brain. Specifically, we found that hippocampal activation during sleep is not uniquely related to spindles. Rather, this process is primarily driven by SWs and SW-spindle coupling. In addition, we show that SW-spindle coupling is critical in the activation of the putamen. Importantly, SW-spindle coupling specifically recruited frontal areas in comparison to uncoupled spindles, which may be critical for the hippocampal-neocortical dialogue that preferentially occurs during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Aaron Gibbings
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Dylan Smith
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada
| | - Laura B. Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Adrian M. Owen
- The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Stuart M. Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal, Ottawa, ON, Canada,School of Psychology, University of Ottawa, Ottawa, ON, Canada,The Brain and Mind Institute, Western University, London, ON, Canada,Department of Physiology and Pharmacology, Western University, London, ON, Canada,University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada,*Correspondence: Stuart M. Fogel,
| |
Collapse
|
8
|
Baena D, Fang Z, Ray LB, Owen AM, Fogel SM. Brain activations time locked to slow wave-coupled sleep spindles correlates with intellectual abilities. Cereb Cortex 2022; 33:5409-5419. [PMID: 36336346 DOI: 10.1093/cercor/bhac428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Sleep spindles (SP) are one of the few known electrophysiological neuronal biomarkers of interindividual differences in cognitive abilities and aptitudes. Recent simultaneous electroencephalography with functional magnetic resonance imaging (EEG-fMRI) studies suggest that the magnitude of the activation of brain regions recruited during spontaneous spindle events is specifically related to Reasoning abilities. However, it is not known if the relationship with cognitive abilities differs between uncoupled spindles, uncoupled slow waves (SW), and coupled SW–SP complexes, nor have the functional-neuroanatomical substrates that support this relationship been identified. Here, we investigated the functional significance of activation of brain areas recruited during SW-coupled spindles, uncoupled spindles, and uncoupled slow waves. We hypothesize that brain activations time locked to SW-coupled spindle complexes will be primarily associated to Reasoning abilities, especially in subcortical areas. Our results provide direct evidence that the relationship between Reasoning abilities and sleep spindles depends on spindle coupling status. Specifically, we found that the putamen and thalamus, recruited during coupled SW–SP events were positively correlated with Reasoning abilities. In addition, we found a negative association between Reasoning abilities and hippocampal activation time-locked to uncoupled SWs that might reflect a refractory mechanism in the absence of new, intensive hippocampal-dependent memory processing.
Collapse
Affiliation(s)
- Daniel Baena
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
| | - Zhuo Fang
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Laura B Ray
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
| | - Adrian M Owen
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University , London, Ontario N6A 5C1, Canada
| | - Stuart M Fogel
- Sleep Unit, University of Ottawa Institute of Mental Health Research at The Royal , Ontario K1Z 7K4, Ottawa, Canada
- School of Psychology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- University of Ottawa, Brain & Mind Research Institute , Ontario K1N 6N5, Ottawa, Canada
- The Brain & Mind Institute, Western University , London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Koo-Poeggel P, Neuwerk S, Petersen E, Grasshoff J, Mölle M, Martinetz T, Marshall L. Closed-loop acoustic stimulation during an afternoon nap to modulate subsequent encoding. J Sleep Res 2022; 31:e13734. [PMID: 36123957 DOI: 10.1111/jsr.13734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022]
Abstract
Sleep is able to contribute not only to memory consolidation, but also to post-sleep learning. The notion exists that either synaptic downscaling or another process during sleep increase post-sleep learning capacity. A correlation between augmentation of the sleep slow oscillation and hippocampal activation at encoding support the contribution of sleep to encoding of declarative memories. In the present study, the effect of closed-loop acoustic stimulation during an afternoon nap on post-sleep encoding of two verbal (word pairs, verbal learning and memory test) and non-verbal (figural pairs) tasks and on electroencephalogram during sleep and learning were investigated in young healthy adults (N = 16). Closed-loop acoustic stimulation enhanced slow oscillatory and spindle activity, but did not affect encoding at the group level. Subgroup analyses and comparisons with similar studies lead us to the tentative conclusion that further parameters such as time of day and subjects' cognitive ability influenced responses to closed-loop acoustic stimulation.
Collapse
Affiliation(s)
- Ping Koo-Poeggel
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Soé Neuwerk
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| | - Eike Petersen
- Institute for Electrical and Engineering in Medicine, University of Luebeck, Luebeck, Germany.,DTU Compute, Technical University of Denmark, Denmark
| | - Jan Grasshoff
- Fraunhofer IMTE, Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Lübeck, Germany
| | - Matthias Mölle
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Thomas Martinetz
- Institute for Neuro- and Bioinformatics, University of Luebeck, Luebeck, Germany
| | - Lisa Marshall
- Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, University of Luebeck, Luebeck, Germany
| |
Collapse
|
10
|
Akbar SA, Mattfeld AT, Laird AR, McMakin DL. Sleep to Internalizing Pathway in Young Adolescents (SIPYA): A proposed neurodevelopmental model. Neurosci Biobehav Rev 2022; 140:104780. [PMID: 35843345 PMCID: PMC10750488 DOI: 10.1016/j.neubiorev.2022.104780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 01/28/2023]
Abstract
The prevalence of internalizing disorders, i.e., anxiety and depressive disorders, spikes in adolescence and has been increasing amongst adolescents despite the existence of evidence-based treatments, highlighting the need for advancing theories on how internalizing disorders emerge. The current review presents a theoretical model, called the Sleep to Internalizing Pathway in Young Adolescents (SIPYA) Model, to explain how risk factors, namely sleep-related problems (SRPs), are prospectively associated with internalizing disorders in adolescence. Specifically, SRPs during late childhood and early adolescence, around the initiation of pubertal development, contribute to the interruption of intrinsic brain networks dynamics, both within the default mode network and between the default mode network and other networks in the brain. This interruption leaves adolescents vulnerable to repetitive negative thought, such as worry or rumination, which then increases vulnerability to internalizing symptoms and disorders later in adolescence. Sleep-related behaviors are observable, modifiable, low-stigma, and beneficial beyond treating internalizing psychopathology, highlighting the intervention potential associated with understanding the neurodevelopmental impact of SRPs around the transition to adolescence. This review details support for the SIPYA Model, as well as gaps in the literature and future directions.
Collapse
Affiliation(s)
- Saima A Akbar
- Department of Psychology, Florida International University, Miami, FL, USA.
| | - Aaron T Mattfeld
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Angela R Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Dana L McMakin
- Department of Psychology, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Gombos F, Bódizs R, Pótári A, Bocskai G, Berencsi A, Szakács H, Kovács I. Topographical relocation of adolescent sleep spindles reveals a new maturational pattern in the human brain. Sci Rep 2022; 12:7023. [PMID: 35487959 PMCID: PMC9054798 DOI: 10.1038/s41598-022-11098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
Current theories of human neural development emphasize the posterior-to-anterior pattern of brain maturation. However, this scenario leaves out significant brain areas not directly involved with sensory input and behavioral control. Suggesting the relevance of cortical activity unrelated to sensory stimulation, such as sleep, we investigated adolescent transformations in the topography of sleep spindles. Sleep spindles are known to be involved in neural plasticity and in adults have a bimodal topography: slow spindles are frontally dominant, while fast spindles have a parietal/precuneal origin. The late functional segregation of the precuneus from the frontoparietal network during adolescence suggests that spindle topography might approach the adult state relatively late in development, and it may not be a result of the posterior-to-anterior maturational pattern. We analyzed the topographical distribution of spindle parameters in HD-EEG polysomnographic sleep recordings of adolescents and found that slow spindle duration maxima traveled from central to anterior brain regions, while fast spindle density, amplitude and frequency peaks traveled from central to more posterior brain regions. These results provide evidence for the gradual posteriorization of the anatomical localization of fast sleep spindles during adolescence and indicate the existence of an anterior-to-posterior pattern of human brain maturation.
Collapse
Affiliation(s)
- Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary
| | - Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, 1089, Hungary.,National Institute of Clinical Neurosciences, Budapest, 1145, Hungary
| | - Adrián Pótári
- Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary
| | - Gábor Bocskai
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Doctoral School of Mental Health Sciences, Semmelweis University, Üllői st. 26, Budapest, 1085, Hungary
| | - Andrea Berencsi
- Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary.,Institute for the Methodology of Special Needs Education and Rehabilitation, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, 1097, Hungary
| | - Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary.,Doctoral School of Mental Health Sciences, Semmelweis University, Üllői st. 26, Budapest, 1085, Hungary
| | - Ilona Kovács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Kálmán Sq., Budapest, 1088, Hungary. .,Adolescent Development Research Group, Hungarian Academy of Sciences - Pázmány Péter Catholic University, Budapest, 1088, Hungary. .,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
| |
Collapse
|
12
|
The relationship between cognitive ability and BOLD activation across sleep-wake states. Brain Imaging Behav 2021; 16:305-315. [PMID: 34432229 DOI: 10.1007/s11682-021-00504-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The sleep spindle, a waxing and waning oscillation in the sigma frequency range, has been shown to correlate with fluid intelligence; i.e. the ability to use logic, learn novel rules/patterns, and solve problems. Using simultaneous EEG and fMRI, we previously identified the neural correlates of this relationship, including activation of the thalamus, bilateral putamen, medial frontal gyrus, middle cingulate cortex, and precuneus. However, research to date has focussed primarily on non-rapid eye movement (NREM) sleep, and spindles per se, thus overlooking the possibility that brain activity that occurs in other sleep-wake states might also be related to cognitive abilities. In our current study, we sought to investigate whether brain activity across sleep/wake states is also related to human intelligence in N = 29 participants. During NREM sleep, positive correlations were observed between fluid intelligence and blood oxygen level dependent (BOLD) activations in the bilateral putamen and the paracentral lobule/precuneus, as well as between short-term memory (STM) abilities and activity in the medial frontal cortex and inferior frontal gyrus. During wake, activity in bilateral postcentral gyri and occipital lobe was positively correlated with short-term memory abilities. In participants who experienced REM sleep in the scanner, fluid intelligence was positively associated with midbrain activation, and verbal intelligence was associated with right postcentral gyrus activation. These findings provide evidence that the relationship between sleep and intellectual abilities exists beyond sleep spindles.
Collapse
|
13
|
Kathrin B, Michael A H, Ines W, Kerstin H. The relation between sigma power and internalizing problems across development. J Psychiatr Res 2021; 135:302-310. [PMID: 33524677 DOI: 10.1016/j.jpsychires.2021.01.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
Internalizing problems are characterized by deficits in emotion processing and regulation. They are among the most common problems in children and adolescents and mark an increased risk for depressive and anxiety disorders in later life. First evidence suggests that sleep alterations are related to the development and/or persistence of mood and anxiety disorders in children, adolescents, and adults. Most recently, data from clinical samples showed that brain activity in the sigma frequency band (9-16 Hz, i.e. sleep spindle frequency) is associated with internalizing problems in children and adolescents. However, less is known about the association between sigma power and internalizing problems in healthy participants within this age group. Here, we re-analyzed longitudinal data (25 healthy subjects (18 females) at two time points (T1: childhood mean age: 9.52 ± 0.77; T2: adolescence mean age: 16.08 ± 0.91) by correlating sigma power with measures for internalizing problems. Moreover, we calculated sigma power ratios (frontal/central, frontal/parietal, frontal/occipital) to examine whether these measures would reflect developmental changes more accurately. We found that higher values of internalizing problems at T1 were related to a lower decrease in sigma power from T1 to T2 at frontal and central derivations. Furthermore, higher values of internalizing problems at T1 as well as at T2 were related to higher sigma power ratios at T2. We suggest that sigma power may reflect maturational processes (e.g. network efficiency, integrity) related to the development of internalizing problems. In particular, a stronger decrease in frontal sigma power from childhood to adolescence may indicate a healthier development. Thus, our results emphasize the role of sigma power as a useful marker for internalizing problems during adolescence.
Collapse
Affiliation(s)
- Bothe Kathrin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Hahn Michael A
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| | - Wilhelm Ines
- Translational Psychiatry Unit (TPU), Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany.
| | - Hoedlmoser Kerstin
- Laboratory for Sleep, Cognition and Consciousness Research, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.
| |
Collapse
|
14
|
Altered Global Brain Signal during Physiologic, Pharmacologic, and Pathologic States of Unconsciousness in Humans and Rats. Anesthesiology 2020; 132:1392-1406. [PMID: 32205548 DOI: 10.1097/aln.0000000000003197] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Consciousness is supported by integrated brain activity across widespread functionally segregated networks. The functional magnetic resonance imaging-derived global brain signal is a candidate marker for a conscious state, and thus the authors hypothesized that unconsciousness would be accompanied by a loss of global temporal coordination, with specific patterns of decoupling between local regions and global activity differentiating among various unconscious states. METHODS Functional magnetic resonance imaging global signals were studied in physiologic, pharmacologic, and pathologic states of unconsciousness in human natural sleep (n = 9), propofol anesthesia (humans, n = 14; male rats, n = 12), and neuropathological patients (n = 21). The global signal amplitude as well as the correlation between global signal and signals of local voxels were quantified. The former reflects the net strength of global temporal coordination, and the latter yields global signal topography. RESULTS A profound reduction of global signal amplitude was seen consistently across the various unconscious states: wakefulness (median [1st, 3rd quartile], 0.46 [0.21, 0.50]) versus non-rapid eye movement stage 3 of sleep (0.30 [0.24, 0.32]; P = 0.035), wakefulness (0.36 [0.31, 0.42]) versus general anesthesia (0.25 [0.21, 0.28]; P = 0.001), healthy controls (0.30 [0.27, 0.37]) versus unresponsive wakefulness syndrome (0.22 [0.15, 0.24]; P < 0.001), and low dose (0.07 [0.06, 0.08]) versus high dose of propofol (0.04 [0.03, 0.05]; P = 0.028) in rats. Furthermore, non-rapid eye movement stage 3 of sleep was characterized by a decoupling of sensory and attention networks from the global network. General anesthesia and unresponsive wakefulness syndrome were characterized by a dissociation of the majority of functional networks from the global network. This decoupling, however, was dominated by distinct neuroanatomic foci (e.g., precuneus and anterior cingulate cortices). CONCLUSIONS The global temporal coordination of various modules across the brain may distinguish the coarse-grained state of consciousness versus unconsciousness, while the relationship between the global and local signals may define the particular qualities of a particular unconscious state.
Collapse
|
15
|
24-h polysomnographic recordings and electrophysiological spectral analyses from a cohort of patients with chronic disorders of consciousness. J Neurol 2020; 267:3650-3663. [DOI: 10.1007/s00415-020-10076-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
|
16
|
Smith D, Fang Z, Thompson K, Fogel S. Sleep and individual differences in intellectual abilities. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|