1
|
Aashat S, D'Angelo MC, Rosenbaum RS, Ryan JD. Effects of extended practice and unitization on relational memory in older adults and neuropsychological lesion cases. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:1070-1105. [PMID: 38415694 DOI: 10.1080/13825585.2024.2319892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
Unitization - the fusion of objects into a single unit through an action/consequence sequence - can mitigate relational memory impairments, but the circumstances under which unitization is effective are unclear. Using transverse patterning (TP), we compared unitization (and its component processes of fusion, motion, and action/consequence) with extended practice on relational learning and transfer in older adults and neuropsychological cases with lesions (to varying extents) in the medial prefrontal cortex (mPFC) or hippocampus/medial temporal lobe (HC/MTL). The latter included a person with bilateral HC lesions primarily within the dentate gyrus. For older adults, TP accuracy increased, and transfer benefits were observed, with extended practice and unitization. Broadly, the lesion cases did not benefit from either extended practice or unitization, suggesting the mPFC and dentate gyrus play important roles in relational memory and in unitization. The results suggest that personalized strategy interventions must align with the cognitive and neural profiles of the user.
Collapse
Affiliation(s)
- Supreet Aashat
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Maria C D'Angelo
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
| | - R Shayna Rosenbaum
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
| | - Jennifer D Ryan
- The Rotman Research Institute, Baycrest Academy for Research and Education, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Kao T, Michaelcheck C, Ferrera VP, Terrace HS, Jensen G. Transitive inference in a clinical childhood sample with a focus on autism spectrum disorder. Autism Res 2024; 17:2355-2369. [PMID: 39223913 PMCID: PMC11568932 DOI: 10.1002/aur.3225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Transitive inference (TI) has a long history in the study of human development. There have, however, few pediatric studies that report clinical diagnoses have tested trial-and-error TI learning, in which participants infer item relations, rather than evaluate them explicitly from verbal descriptions. Children aged 8-10 underwent a battery of clinical assessments and received a range of diagnoses, potentially including autism spectrum disorder (ASD), attention-deficit hyperactive disorder (ADHD), anxiety disorders (AD), specific learning disorders (SLD), and/or communication disorders (CD). Participants also performed a trial-and-error learning task that tested for TI. Response accuracy and reaction time were assessed using a statistical model that controlled for diagnostic comorbidity at the group level. Participants in all diagnostic categories showed evidence of TI. However, a model comparison analysis suggested that those diagnosed with ASD succeeded in a qualitatively different way, responding more slowly to each choice and improving faster across trials than their non-ASD counterparts. Additionally, TI performance was not associated with IQ. Overall, our data suggest that superficially similar performance levels between ASD and non-ASD participants may have resulted from a difference in the speed-accuracy tradeoff made by each group. Our work provides a preliminary profile of the impact of various clinical diagnoses on TI performance in young children. Of these, an ASD diagnosis resulted in the largest difference in task strategy.
Collapse
Affiliation(s)
- Tina Kao
- Dept. of Psychology, New York City College of Technology, City University of New York (CUNY), New York, NY, United States
- Dept. of Psychology, Columbia University, New York, NY, United States
| | | | - Vincent P. Ferrera
- Dept. of Neuroscience, Columbia University, New York, NY, United States
- Dept. of Psychology & Psychiatry, Columbia University, New York, NY, United States
| | - Herbert S. Terrace
- Dept. of Psychology, Columbia University, New York, NY, United States
- Dept. of Psychology & Psychiatry, Columbia University, New York, NY, United States
| | - Greg Jensen
- Dept. of Neuroscience, Columbia University, New York, NY, United States
- Dept. of Psychology, Reed College, Portland, OR, United States
| |
Collapse
|
3
|
Balshin-Rosenberg F, Ghosh V, Gilboa A. It's not a lie … If you believe it: Narrative analysis of autobiographical memories reveals over-confidence disposition in patients who confabulate. Cortex 2024; 175:66-80. [PMID: 38641540 DOI: 10.1016/j.cortex.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 03/14/2024] [Indexed: 04/21/2024]
Abstract
Humans perceive their personal memories as fundamentally true, and although memory is prone to inaccuracies, flagrant memory errors are rare. Some patients with damage to the ventromedial prefrontal cortex (vmPFC) recall and act upon patently erroneous memories (spontaneous confabulations). Clinical observations suggest these memories carry a strong sense of confidence, a function ascribed to vmPFC in studies of memory and decision making. However, most studies of the underlying mechanisms of memory overconfidence do not directly probe personal recollections and resort instead to laboratory-based tasks and contrived rating scales. We analyzed naturalistic word use of patients with focal vmPFC damage (N = 18) and matched healthy controls (N = 23) while they recalled autobiographical memories using the Linguistic Inquiry and Word Count (LIWC) method. We found that patients with spontaneous confabulation (N = 7) tended to over-use words related to the categories of 'certainty' and of 'swearwords' compared to both non-confabulating vmPFC patients (N = 11) and control participants. Certainty related expressions among confabulating patients were at normal levels during erroneous memories and were over-expressed during accurate memories, contrary to our predictions. We found no elevation in expressions of affect (positive or negative), temporality or drive as would be predicted by some models of confabulation. Thus, erroneous memories may be associated with subjectively lower certainty, but still exceed patients' report criterion because of a global proclivity for overconfidence. This may be compounded by disinhibition reflected by elevated use of swearwords. These findings demonstrate that analysis of naturalistic expressions of memory content can illuminate global meta-mnemonic contributions to memory accuracy complementing indirect laboratory-based correlates of behavior. Memory accuracy is the result of complex interactions among multiple meta-mnemonic processes such as monitoring, report criteria, and control processes which may be shared across decision-making domains.
Collapse
Affiliation(s)
| | - Vanessa Ghosh
- Rotman Research Institute at Baycrest Health Sciences, Canada
| | - Asaf Gilboa
- Rotman Research Institute at Baycrest Health Sciences, Canada; Department of Psychology, University of Toronto, Canada; Toronto Rehabilitation Institute, University Health Network, Canada.
| |
Collapse
|
4
|
Barber N, Valoumas I, Leger KR, Chang YL, Huang CM, Goh JOS, Gutchess A. Culture, prefrontal volume, and memory. PLoS One 2024; 19:e0298235. [PMID: 38551909 PMCID: PMC10980194 DOI: 10.1371/journal.pone.0298235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/19/2024] [Indexed: 04/01/2024] Open
Abstract
Prior cross-cultural studies have demonstrated differences among Eastern and Western cultures in memory and cognition along with variation in neuroanatomy and functional engagement. We further probed cultural neuroanatomical variability in terms of its relationship with memory performance. Specifically, we investigated how memory performance related to gray matter volume in several prefrontal lobe structures, including across cultures. For 58 American and 57 Taiwanese young adults, memory performance was measured with the California Verbal Learning Test (CVLT) using performance on learning trial 1, on which Americans had higher scores than the Taiwanese, and the long delayed free recall task, on which groups performed similarly. MRI data were reconstructed using FreeSurfer. Across both cultures, we observed that larger volumes of the bilateral rostral anterior cingulate were associated with lower scores on both CVLT tasks. In terms of effects of culture, the relationship between learning trial 1 scores and gray matter volumes in the right superior frontal gyrus had a trend for a positive relationship in Taiwanese but not in Americans. In addition to the a priori analysis of select frontal volumes, an exploratory whole-brain analysis compared volumes-without considering CVLT performance-across the two cultural groups in order to assess convergence with prior research. Several cultural differences were found, such that Americans had larger volumes in the bilateral superior frontal and lateral occipital cortex, whereas Taiwanese had larger volumes in the bilateral rostral middle frontal and inferior temporal cortex, and the right precuneus.
Collapse
Affiliation(s)
- Nicolette Barber
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Ioannis Valoumas
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Krystal R. Leger
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
| | - Yu-Ling Chang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Angela Gutchess
- Department of Psychology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| |
Collapse
|
5
|
Ramawat S, Marc IB, Ceccarelli F, Ferrucci L, Bardella G, Ferraina S, Pani P, Brunamonti E. The transitive inference task to study the neuronal correlates of memory-driven decision making: A monkey neurophysiology perspective. Neurosci Biobehav Rev 2023; 152:105258. [PMID: 37268179 DOI: 10.1016/j.neubiorev.2023.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
A vast amount of literature agrees that rank-ordered information as A>B>C>D>E>F is mentally represented in spatially organized schemas after learning. This organization significantly influences the process of decision-making, using the acquired premises, i.e. deciding if B is higher than D is equivalent to comparing their position in this space. The implementation of non-verbal versions of the transitive inference task has provided the basis for ascertaining that different animal species explore a mental space when deciding among hierarchically organized memories. In the present work, we reviewed several studies of transitive inference that highlighted this ability in animals and, consequently, the animal models developed to study the underlying cognitive processes and the main neural structures supporting this ability. Further, we present the literature investigating which are the underlying neuronal mechanisms. Then we discuss how non-human primates represent an excellent model for future studies, providing ideal resources for better understanding the neuronal correlates of decision-making through transitive inference tasks.
Collapse
Affiliation(s)
- Surabhi Ramawat
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Isabel Beatrice Marc
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy; Behavioral Neuroscience PhD Program, Sapienza University, Rome, Italy
| | | | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
6
|
Echeverria V, Mendoza C, Iarkov A. Nicotinic acetylcholine receptors and learning and memory deficits in Neuroinflammatory diseases. Front Neurosci 2023; 17:1179611. [PMID: 37255751 PMCID: PMC10225599 DOI: 10.3389/fnins.2023.1179611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/07/2023] [Indexed: 06/01/2023] Open
Abstract
Animal survival depends on cognitive abilities such as learning and memory to adapt to environmental changes. Memory functions require an enhanced activity and connectivity of a particular arrangement of engram neurons, supported by the concerted action of neurons, glia, and vascular cells. The deterioration of the cholinergic system is a common occurrence in neurological conditions exacerbated by aging such as traumatic brain injury (TBI), posttraumatic stress disorder (PTSD), Alzheimer's disease (AD), and Parkinson's disease (PD). Cotinine is a cholinergic modulator with neuroprotective, antidepressant, anti-inflammatory, antioxidant, and memory-enhancing effects. Current evidence suggests Cotinine's beneficial effects on cognition results from the positive modulation of the α7-nicotinic acetylcholine receptors (nAChRs) and the inhibition of the toll-like receptors (TLRs). The α7nAChR affects brain functions by modulating the function of neurons, glia, endothelial, immune, and dendritic cells and regulates inhibitory and excitatory neurotransmission throughout the GABA interneurons. In addition, Cotinine acting on the α7 nAChRs and TLR reduces neuroinflammation by inhibiting the release of pro-inflammatory cytokines by the immune cells. Also, α7nAChRs stimulate signaling pathways supporting structural, biochemical, electrochemical, and cellular changes in the Central nervous system during the cognitive processes, including Neurogenesis. Here, the mechanisms of memory formation as well as potential mechanisms of action of Cotinine on memory preservation in aging and neurological diseases are discussed.
Collapse
Affiliation(s)
- Valentina Echeverria
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL, United States
| | - Cristhian Mendoza
- Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastián, Concepción, Chile
| | - Alex Iarkov
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| |
Collapse
|
7
|
Vaidya AR, Badre D. Abstract task representations for inference and control. Trends Cogn Sci 2022; 26:484-498. [DOI: 10.1016/j.tics.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022]
|