1
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. J Neural Eng 2024; 21:046041. [PMID: 38986461 PMCID: PMC11299538 DOI: 10.1088/1741-2552/ad6188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/21/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
Objective. Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ('RP', the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established 'shuffling' procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection.Approach. In a novel 'residuals' method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the precedingnrmilliseconds. Finally, we compute the PSD of the model's residuals.Main results. We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey-in which alpha-beta oscillations (8-30 Hz) were anticipated-the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection.Significance. These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Robert S Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261, United States of America
| |
Collapse
|
2
|
Cox KM, Kase D, Znati T, Turner RS. Detecting rhythmic spiking through the power spectra of point process model residuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.08.556120. [PMID: 38586036 PMCID: PMC10996479 DOI: 10.1101/2023.09.08.556120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Objective Oscillations figure prominently as neurological disease hallmarks and neuromodulation targets. To detect oscillations in a neuron's spiking, one might attempt to seek peaks in the spike train's power spectral density (PSD) which exceed a flat baseline. Yet for a non-oscillating neuron, the PSD is not flat: The recovery period ("RP", the post-spike drop in spike probability, starting with the refractory period) introduces global spectral distortion. An established "shuffling" procedure corrects for RP distortion by removing the spectral component explained by the inter-spike interval (ISI) distribution. However, this procedure sacrifices oscillation-related information present in the ISIs, and therefore in the PSD. We asked whether point process models (PPMs) might achieve more selective RP distortion removal, thereby enabling improved oscillation detection. Approach In a novel "residuals" method, we first estimate the RP duration (nr) from the ISI distribution. We then fit the spike train with a PPM that predicts spike likelihood based on the time elapsed since the most recent of any spikes falling within the preceding nr milliseconds. Finally, we compute the PSD of the model's residuals. Main results We compared the residuals and shuffling methods' ability to enable accurate oscillation detection with flat baseline-assuming tests. Over synthetic data, the residuals method generally outperformed the shuffling method in classification of true- versus false-positive oscillatory power, principally due to enhanced sensitivity in sparse spike trains. In single-unit data from the internal globus pallidus (GPi) and ventrolateral anterior thalamus (VLa) of a parkinsonian monkey -- in which alpha-beta oscillations (8-30 Hz) were anticipated -- the residuals method reported the greatest incidence of significant alpha-beta power, with low firing rates predicting residuals-selective oscillation detection. Significance These results encourage continued development of the residuals approach, to support more accurate oscillation detection. Improved identification of oscillations could promote improved disease models and therapeutic technologies.
Collapse
Affiliation(s)
- Karin M. Cox
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
| | - Daisuke Kase
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| | - Taieb Znati
- Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, United States of America
| | - Robert S. Turner
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, Maryland, 20815, United States of America
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Systems Neuroscience Center, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, United States of America
| |
Collapse
|
3
|
Sachdeva P, Bak JH, Livezey J, Kirst C, Frank L, Bhattacharyya S, Bouchard KE. Resolving Non-identifiability Mitigates Bias in Models of Neural Tuning and Functional Coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.11.548615. [PMID: 37503030 PMCID: PMC10370036 DOI: 10.1101/2023.07.11.548615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the brain, all neurons are driven by the activity of other neurons, some of which maybe simultaneously recorded, but most are not. As such, models of neuronal activity need to account for simultaneously recorded neurons and the influences of unmeasured neurons. This can be done through inclusion of model terms for observed external variables (e.g., tuning to stimuli) as well as terms for latent sources of variability. Determining the influence of groups of neurons on each other relative to other influences is important to understand brain functioning. The parameters of statistical models fit to data are commonly used to gain insight into the relative importance of those influences. Scientific interpretation of models hinge upon unbiased parameter estimates. However, evaluation of biased inference is rarely performed and sources of bias are poorly understood. Through extensive numerical study and analytic calculation, we show that common inference procedures and models are typically biased. We demonstrate that accurate parameter selection before estimation resolves model non-identifiability and mitigates bias. In diverse neurophysiology data sets, we found that contributions of coupling to other neurons are often overestimated while tuning to exogenous variables are underestimated in common methods. We explain heterogeneity in observed biases across data sets in terms of data statistics. Finally, counter to common intuition, we found that model non-identifiability contributes to bias, not variance, making it a particularly insidious form of statistical error. Together, our results identify the causes of statistical biases in common models of neural data, provide inference procedures to mitigate that bias, and reveal and explain the impact of those biases in diverse neural data sets.
Collapse
Affiliation(s)
- Pratik Sachdeva
- Physics Department, UC Berkeley
- Redwood Center for Theoretical Neuroscience, UC Berkeley
| | - Ji Hyun Bak
- Kavli Institute for Fundamental Neuroscience, UC San Francisco
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab
| | - Jesse Livezey
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab
| | - Christoph Kirst
- Kavli Institute for Fundamental Neuroscience, UC San Francisco
- Scientific Data Division, Lawrence Berkeley National Lab
- Deptartment of Anatomy, UC San Francisco
| | - Loren Frank
- Kavli Institute for Fundamental Neuroscience, UC San Francisco
- Departments of Physiology and Psychiatry, UC San Francisco
- Howard Hughes Medical Institute
| | | | - Kristofer E. Bouchard
- Redwood Center for Theoretical Neuroscience, UC Berkeley
- Kavli Institute for Fundamental Neuroscience, UC San Francisco
- Biological Systems and Engineering Division, Lawrence Berkeley National Lab
- Scientific Data Division, Lawrence Berkeley National Lab
- Helen Wills Neuroscience Institute, UC Berkeley
| |
Collapse
|
4
|
Jensen KT, Kadmon Harpaz N, Dhawale AK, Wolff SBE, Ölveczky BP. Long-term stability of single neuron activity in the motor system. Nat Neurosci 2022; 25:1664-1674. [PMID: 36357811 PMCID: PMC11152193 DOI: 10.1038/s41593-022-01194-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
How an established behavior is retained and consistently produced by a nervous system in constant flux remains a mystery. One possible solution to ensure long-term stability in motor output is to fix the activity patterns of single neurons in the relevant circuits. Alternatively, activity in single cells could drift over time provided that the population dynamics are constrained to produce the same behavior. To arbitrate between these possibilities, we recorded single-unit activity in motor cortex and striatum continuously for several weeks as rats performed stereotyped motor behaviors-both learned and innate. We found long-term stability in single neuron activity patterns across both brain regions. A small amount of drift in neural activity, observed over weeks of recording, could be explained by concomitant changes in task-irrelevant aspects of the behavior. These results suggest that long-term stable behaviors are generated by single neuron activity patterns that are themselves highly stable.
Collapse
Affiliation(s)
- Kristopher T Jensen
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Naama Kadmon Harpaz
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Trostle P, Corzo CA, Reich BJ, Machado G. A discrete-time survival model for porcine epidemic diarrhoea virus. Transbound Emerg Dis 2022; 69:3693-3703. [PMID: 36217910 PMCID: PMC10369857 DOI: 10.1111/tbed.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023]
Abstract
Since the arrival of porcine epidemic diarrhea virus (PEDV) in the United States in 2013, elimination and control programmes have had partial success. The dynamics of its spread are hard to quantify, though previous work has shown that local transmission and the transfer of pigs within production systems are most associated with the spread of PEDV. Our work relies on the history of PEDV infections in a region of the southeastern United States. This infection data is complemented by farm-level features and extensive industry data on the movement of both pigs and vehicles. We implement a discrete-time survival model and evaluate different approaches to modelling the local-transmission and network effects. We find strong evidence in that the local-transmission and pig-movement effects are associated with the spread of PEDV, even while controlling for seasonality, farm-level features and the possible spread of disease by vehicles. Our fully Bayesian model permits full uncertainty quantification of these effects. Our farm-level out-of-sample predictions have a receiver-operating characteristic area under the curve (AUC) of 0.779 and a precision-recall AUC of 0.097. The quantification of these effects in a comprehensive model allows stakeholders to make more informed decisions about disease prevention efforts.
Collapse
Affiliation(s)
- Parker Trostle
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Cesar A Corzo
- Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| | - Brian J Reich
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Gustavo Machado
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Mill RD, Hamilton JL, Winfield EC, Lalta N, Chen RH, Cole MW. Network modeling of dynamic brain interactions predicts emergence of neural information that supports human cognitive behavior. PLoS Biol 2022; 20:e3001686. [PMID: 35980898 PMCID: PMC9387855 DOI: 10.1371/journal.pbio.3001686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
How cognitive task behavior is generated by brain network interactions is a central question in neuroscience. Answering this question calls for the development of novel analysis tools that can firstly capture neural signatures of task information with high spatial and temporal precision (the "where and when") and then allow for empirical testing of alternative network models of brain function that link information to behavior (the "how"). We outline a novel network modeling approach suited to this purpose that is applied to noninvasive functional neuroimaging data in humans. We first dynamically decoded the spatiotemporal signatures of task information in the human brain by combining MRI-individualized source electroencephalography (EEG) with multivariate pattern analysis (MVPA). A newly developed network modeling approach-dynamic activity flow modeling-then simulated the flow of task-evoked activity over more causally interpretable (relative to standard functional connectivity [FC] approaches) resting-state functional connections (dynamic, lagged, direct, and directional). We demonstrate the utility of this modeling approach by applying it to elucidate network processes underlying sensory-motor information flow in the brain, revealing accurate predictions of empirical response information dynamics underlying behavior. Extending the model toward simulating network lesions suggested a role for the cognitive control networks (CCNs) as primary drivers of response information flow, transitioning from early dorsal attention network-dominated sensory-to-response transformation to later collaborative CCN engagement during response selection. These results demonstrate the utility of the dynamic activity flow modeling approach in identifying the generative network processes underlying neurocognitive phenomena.
Collapse
Affiliation(s)
- Ravi D. Mill
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Julia L. Hamilton
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Emily C. Winfield
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Nicole Lalta
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| | - Richard H. Chen
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
- Behavioral and Neural Sciences Graduate Program, Rutgers University, Newark, New Jersey, United States of America
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
7
|
Guardamagna M, Eichler R, Pedrosa R, Aarts AAA, Meyer AF, Battaglia F. The Hybrid Drive: a chronic implant device combining tetrode arrays with silicon probes for layer-resolved ensemble electrophysiology in freely moving mice. J Neural Eng 2022; 19. [PMID: 35421850 DOI: 10.1088/1741-2552/ac6771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Objective. Understanding the function of brain cortices requires simultaneous investigation at multiple spatial and temporal scales and to link neural activity to an animal's behavior. A major challenge is to measure within- and across-layer information in actively behaving animals, in particular in mice that have become a major species in neuroscience due to an extensive genetic toolkit. Here we describe the Hybrid Drive, a new chronic implant for mice that combines tetrode arrays to record within-layer information with silicon probes to simultaneously measure across-layer information.Approach. The design of our device combines up to 14 tetrodes and 2 silicon probes, that can be arranged in custom arrays to generate unique areas-specific (and multi-area) layouts.Main Results. We show that large numbers of neurons and layer-resolved local field potentials can be recorded from the same brain region across weeks without loss in electrophysiological signal quality. The drive's lightweight structure (~3.5 g) leaves animal behavior largely unchanged, compared to other tetrode drives, during a variety of experimental paradigms. We demonstrate how the data collected with the Hybrid Drive allow state-of-the-art analysis in a series of experiments linking the spiking activity of CA1 pyramidal layer neurons to the oscillatory activity across hippocampal layers.Significance. Our new device fits a gap in the existing technology and increases the range and precision of questions that can be addressed about neural computations in freely behaving mice.
Collapse
Affiliation(s)
| | - Ronny Eichler
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Rafael Pedrosa
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | - Arno A A Aarts
- ATLAS Neuroengineering, Kapeldreef 75, Leuven, B-3000, BELGIUM
| | - Arne F Meyer
- Radboud University, Heyendaalseweg 135, Nijmegen, 6500 HC, NETHERLANDS
| | | |
Collapse
|
8
|
Endo D, Kobayashi R, Bartolo R, Averbeck BB, Sugase-Miyamoto Y, Hayashi K, Kawano K, Richmond BJ, Shinomoto S. A convolutional neural network for estimating synaptic connectivity from spike trains. Sci Rep 2021; 11:12087. [PMID: 34103546 PMCID: PMC8187444 DOI: 10.1038/s41598-021-91244-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The recent increase in reliable, simultaneous high channel count extracellular recordings is exciting for physiologists and theoreticians because it offers the possibility of reconstructing the underlying neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each individual dataset. Here we present another method using a Convolutional Neural Network for Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-correlogram. There are no user-adjustable parameters. With this new method, we have constructed diagrams of neuronal circuits recorded in several cortical areas of monkeys.
Collapse
Affiliation(s)
- Daisuke Endo
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryota Kobayashi
- Mathematics and Informatics Center, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba, 277-8561, Japan
- JST, PRESTO, Saitama, 332-0012, Japan
| | - Ramon Bartolo
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Kazuko Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Kenji Kawano
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Shigeru Shinomoto
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
- Brain Information Communication Research Laboratory Group, ATR Institute International, Kyoto, 619-0288, Japan.
| |
Collapse
|
9
|
Rossbroich J, Trotter D, Beninger J, Tóth K, Naud R. Linear-nonlinear cascades capture synaptic dynamics. PLoS Comput Biol 2021; 17:e1008013. [PMID: 33720935 PMCID: PMC7993773 DOI: 10.1371/journal.pcbi.1008013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 03/25/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
Short-term synaptic dynamics differ markedly across connections and strongly regulate how action potentials communicate information. To model the range of synaptic dynamics observed in experiments, we have developed a flexible mathematical framework based on a linear-nonlinear operation. This model can capture various experimentally observed features of synaptic dynamics and different types of heteroskedasticity. Despite its conceptual simplicity, we show that it is more adaptable than previous models. Combined with a standard maximum likelihood approach, synaptic dynamics can be accurately and efficiently characterized using naturalistic stimulation patterns. These results make explicit that synaptic processing bears algorithmic similarities with information processing in convolutional neural networks.
Collapse
Affiliation(s)
- Julian Rossbroich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - John Beninger
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Katalin Tóth
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
- uOttawa Brain Mind Institute, Center for Neural Dynamics, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Keeley SL, Zoltowski DM, Aoi MC, Pillow JW. Modeling statistical dependencies in multi-region spike train data. Curr Opin Neurobiol 2020; 65:194-202. [PMID: 33334641 PMCID: PMC7769979 DOI: 10.1016/j.conb.2020.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Neural computations underlying cognition and behavior rely on the coordination of neural activity across multiple brain areas. Understanding how brain areas interact to process information or generate behavior is thus a central question in neuroscience. Here we provide an overview of statistical approaches for characterizing statistical dependencies in multi-region spike train recordings. We focus on two classes of models in particular: regression-based models and shared latent variable models. Regression-based models describe interactions in terms of a directed transformation of information from one region to another. Shared latent variable models, on the other hand, seek to describe interactions in terms of sources that capture common fluctuations in spiking activity across regions. We discuss the advantages and limitations of each of these approaches and future directions for the field. We intend this review to be an introduction to the statistical methods in multi-region models for computational neuroscientists and experimentalists alike.
Collapse
Affiliation(s)
- Stephen L Keeley
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - David M Zoltowski
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mikio C Aoi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Latimer KW, Fairhall AL. Capturing Multiple Timescales of Adaptation to Second-Order Statistics With Generalized Linear Models: Gain Scaling and Fractional Differentiation. Front Syst Neurosci 2020; 14:60. [PMID: 33013331 PMCID: PMC7509073 DOI: 10.3389/fnsys.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Single neurons can dynamically change the gain of their spiking responses to take into account shifts in stimulus variance. Moreover, gain adaptation can occur across multiple timescales. Here, we examine the ability of a simple statistical model of spike trains, the generalized linear model (GLM), to account for these adaptive effects. The GLM describes spiking as a Poisson process whose rate depends on a linear combination of the stimulus and recent spike history. The GLM successfully replicates gain scaling observed in Hodgkin-Huxley simulations of cortical neurons that occurs when the ratio of spike-generating potassium and sodium conductances approaches one. Gain scaling in the GLM depends on the length and shape of the spike history filter. Additionally, the GLM captures adaptation that occurs over multiple timescales as a fractional derivative of the stimulus envelope, which has been observed in neurons that include long timescale afterhyperpolarization conductances. Fractional differentiation in GLMs requires long spike history that span several seconds. Together, these results demonstrate that the GLM provides a tractable statistical approach for examining single-neuron adaptive computations in response to changes in stimulus variance.
Collapse
Affiliation(s)
- Kenneth W Latimer
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
| | - Adrienne L Fairhall
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Ghanbari A, Ren N, Keine C, Stoelzel C, Englitz B, Swadlow HA, Stevenson IH. Modeling the Short-Term Dynamics of in Vivo Excitatory Spike Transmission. J Neurosci 2020; 40:4185-4202. [PMID: 32303648 PMCID: PMC7244199 DOI: 10.1523/jneurosci.1482-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Information transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as nonsynaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here, we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and nonsynaptic effects based only on observed presynaptic and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a pair of connected neurons within thalamus in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multielectrode recordings to illustrate how such an approach has the potential to reveal cell type-specific differences in spike transmission in vivo Although STP parameters estimated from ongoing presynaptic and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.SIGNIFICANCE STATEMENT Although synaptic dynamics have been extensively studied and modeled using intracellular recordings of postsynaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here, we developed a model that, using only observations of presynaptic and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity (STP) and nonsynaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.
Collapse
Affiliation(s)
| | - Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Christian Keine
- Carver College of Medicine, Iowa Neuroscience Institute, Department of Anatomy and Cell Biology, University of Iowa, Iowa, IA 52242
| | - Carl Stoelzel
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Ian H Stevenson
- Department of Biomedical Engineering
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
13
|
Kotekal S, MacLean JN. Recurrent interactions can explain the variance in single trial responses. PLoS Comput Biol 2020; 16:e1007591. [PMID: 31999693 PMCID: PMC7012453 DOI: 10.1371/journal.pcbi.1007591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/11/2020] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
To develop a complete description of sensory encoding, it is necessary to account for trial-to-trial variability in cortical neurons. Using a linear model with terms corresponding to the visual stimulus, mouse running speed, and experimentally measured neuronal correlations, we modeled short term dynamics of L2/3 murine visual cortical neurons to evaluate the relative importance of each factor to neuronal variability within single trials. We find single trial predictions improve most when conditioning on the experimentally measured local correlations in comparison to predictions based on the stimulus or running speed. Specifically, accurate predictions are driven by positively co-varying and synchronously active functional groups of neurons. Including functional groups in the model enhances decoding accuracy of sensory information compared to a model that assumes neuronal independence. Functional groups, in encoding and decoding frameworks, provide an operational definition of Hebbian assemblies in which local correlations largely explain neuronal responses on individual trials.
Collapse
Affiliation(s)
- Subhodh Kotekal
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Jason N. MacLean
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois, United States of America
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, Chicago, Illinois, United States of America
| |
Collapse
|