1
|
Uceta M, del Cerro‐León A, Shpakivska‐Bilán D, García‐Moreno LM, Maestú F, Antón‐Toro LF. Clustering Electrophysiological Predisposition to Binge Drinking: An Unsupervised Machine Learning Analysis. Brain Behav 2024; 14:e70157. [PMID: 39576251 PMCID: PMC11583822 DOI: 10.1002/brb3.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND The demand for fresh strategies to analyze intricate multidimensional data in neuroscience is increasingly evident. One of the most complex events during our neurodevelopment is adolescence, where our nervous system suffers constant changes, not only in neuroanatomical traits but also in neurophysiological components. One of the most impactful factors we deal with during this time is our environment, especially when encountering external factors such as social behaviors or substance consumption. Binge drinking (BD) has emerged as an extended pattern of alcohol consumption in teenagers, not only affecting their future lifestyle but also changing their neurodevelopment. Recent studies have changed their scope into finding predisposition factors that may lead adolescents into this kind of patterns of consumption. METHODS In this article, using unsupervised machine learning (UML) algorithms, we analyze the relationship between electrophysiological activity of healthy teenagers and the levels of consumption they had 2 years later. We used hierarchical agglomerative UML techniques based on Ward's minimum variance criterion to clusterize relations between power spectrum and functional connectivity and alcohol consumption, based on similarity in their correlations, in frequency bands from theta to gamma. RESULTS We found that all frequency bands studied had a pattern of clusterization based on anatomical regions of interest related to neurodevelopment and cognitive and behavioral aspects of addiction, highlighting the dorsolateral and medial prefrontal, the sensorimotor, the medial posterior, and the occipital cortices. All these patterns, of great cohesion and coherence, showed an abnormal electrophysiological activity, representing a dysregulation in the development of core resting-state networks. The clusters found maintained not only plausibility in nature but also robustness, making this a great example of the usage of UML in the analysis of electrophysiological activity-a new perspective into analysis that, while contributing to classical statistics, can clarify new characteristics of the variables of interest.
Collapse
Affiliation(s)
- Marcos Uceta
- Center for Cognitive and Computational Neuroscience (C3N)Complutense University of Madrid (UCM)MadridSpain
- Department of Cellular Biology, Faculty of BiologyComplutense University of Madrid (UCM)MadridSpain
| | - Alberto del Cerro‐León
- Center for Cognitive and Computational Neuroscience (C3N)Complutense University of Madrid (UCM)MadridSpain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of PsychologyComplutense University of Madrid (UCM)MadridSpain
| | - Danylyna Shpakivska‐Bilán
- Center for Cognitive and Computational Neuroscience (C3N)Complutense University of Madrid (UCM)MadridSpain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of PsychologyComplutense University of Madrid (UCM)MadridSpain
| | - Luis M. García‐Moreno
- Department of Psychobiology and Methodology in Behavioral Science, Faculty of EducationComplutense University of Madrid (UCM)MadridSpain
| | - Fernando Maestú
- Center for Cognitive and Computational Neuroscience (C3N)Complutense University of Madrid (UCM)MadridSpain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of PsychologyComplutense University of Madrid (UCM)MadridSpain
- Health Research Institute of the Clinical Hospital San Carlos (IdISSC)MadridSpain
| | - Luis Fernando Antón‐Toro
- Center for Cognitive and Computational Neuroscience (C3N)Complutense University of Madrid (UCM)MadridSpain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of PsychologyComplutense University of Madrid (UCM)MadridSpain
| |
Collapse
|
2
|
del Cerro-León A, Fernando Antón-Toro L, Shpakivska-Bilan D, Uceta M, Santos-Mayo A, Cuesta P, Bruña R, García-Moreno LM, Maestú F. Adolescent alcohol consumption predicted by differences in electrophysiological functional connectivity and neuroanatomy. Proc Natl Acad Sci U S A 2024; 121:e2320805121. [PMID: 39378092 PMCID: PMC11494299 DOI: 10.1073/pnas.2320805121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/22/2024] [Indexed: 10/10/2024] Open
Abstract
Alcohol consumption during adolescence has been associated with neuroanatomical abnormalities and the appearance of future disorders. However, the latest advances in this field point to the existence of risk profiles which may lead to some individuals into an early consumption. To date, some studies have established predictive models of consumption based on sociodemographic, behavioral, and anatomical-functional variables using MRI. However, the neuroimaging variables employed are usually restricted to local and hemodynamic phenomena. Given the potential of connectome approaches, and the high temporal dynamics of electrophysiology, we decided to explore the relationship between future alcohol consumption and electrophysiological connectivity measured by MEG in a cohort of 83 individuals aged 14 to 16. As a result, we found a positive correlation between alcohol consumption and the functional connectivity in frontal, parietal, and frontoparietal connections. Once this relationship was described, multivariate linear regression analyses were used to evaluate the predictive capacity of functional connectivity in conjunction with other neuroanatomical and behavioral variables described in the literature. Finally, the multivariate linear regression analysis determined the importance of anatomical and functional variables in the prediction of alcohol consumption but failed to find associations with impulsivity, sensation seeking, and executive function scales. In conclusion, the predictive traits obtained in these models were closely associated with changes occurring during adolescence, suggesting the existence of different paths in neurodevelopment that have the potential to influence adolescents' relationship with alcohol consumption.
Collapse
Affiliation(s)
- Alberto del Cerro-León
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Luis Fernando Antón-Toro
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Psychology, University Camilo José Cela, Madrid28692, Spain
| | - Danylyna Shpakivska-Bilan
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Marcos Uceta
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid28040, Spain
| | - Alejandro Santos-Mayo
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Psychology, University of Florida, Gainesville, FL32612
| | - Pablo Cuesta
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid28040, Spain
- Department of Radiology, Faculty of Medicine, Complutense University of Madrid, Madrid28040, Spain
| | - Ricardo Bruña
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Radiology, Faculty of Medicine, Complutense University of Madrid, Madrid28040, Spain
| | - Luis M. García-Moreno
- Department of Psychobiology and Methodology in Behavioral Science, Faculty of Education, Complutense University of Madrid, Madrid28040, Spain
| | - Fernando Maestú
- Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Faculty of Psychology, Universidad Complutense de Madrid, Madrid28040, Spain
- Department of Psychology, University of Florida, Gainesville, FL32612
| |
Collapse
|
3
|
Vandewouw MM, Sato J, Safar K, Rhodes N, Taylor MJ. The development of aperiodic and periodic resting-state power between early childhood and adulthood: New insights from optically pumped magnetometers. Dev Cogn Neurosci 2024; 69:101433. [PMID: 39126820 PMCID: PMC11350249 DOI: 10.1016/j.dcn.2024.101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Neurophysiological signals, comprised of both periodic (e.g., oscillatory) and aperiodic (e.g., non-oscillatory) activity, undergo complex developmental changes between childhood and adulthood. With much of the existing literature primarily focused on the periodic features of brain function, our understanding of aperiodic signals is still in its infancy. Here, we are the first to examine age-related changes in periodic (peak frequency and power) and aperiodic (slope and offset) activity using optically pumped magnetometers (OPMs), a new, wearable magnetoencephalography (MEG) technology that is particularly well-suited for studying development. We examined age-related changes in these spectral features in a sample (N=65) of toddlers (1-3 years), children (4-5 years), young adults (20-26 years), and adults (27-38 years). Consistent with the extant literature, we found significant age-related decreases in the aperiodic slope and offset, and changes in peak frequency and power that were frequency-specific; we are the first to show that the effect sizes of these changes also varied across brain regions. This work not only adds to the growing body of work highlighting the advantages of using OPMs, especially for studying development, but also contributes novel information regarding the variation of neurophysiological changes with age across the brain.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Julie Sato
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Kristina Safar
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Natalie Rhodes
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Margot J Taylor
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Zhao Q, Luo Y, Mei X, Shao Z. Resting-state EEG patterns of preschool-aged boys with autism spectrum disorder: A pilot study. APPLIED NEUROPSYCHOLOGY. CHILD 2024; 13:413-420. [PMID: 37172019 DOI: 10.1080/21622965.2023.2211702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Defective cognition development during preschool years is believed to be linked with core symptoms of autism spectrum disorder (ASD). Neurophysiological research on mechanisms underly the cognitive disabilities of preschool-aged children with ASD is scarce currently. This pilot study aimed to compare the resting spectral EEG power of preschool-aged boys with ASD with their matched typically developing peers. Children in the ASD group demonstrated reduced central and posterior absolute delta (1-4 Hz) and enhanced frontal absolute beta (12-30 Hz) and gamma (30-45 Hz). The relative power of the ASD group was elevated in delta, theta (4-8 Hz), alpha (8-12 Hz), beta, and gamma bands as compared to the controls. The theta/beta ratio decreased in the frontal regions and enhanced at Cz and Pz electrodes in the ASD group. Correlations between the inhibition and metacognition indices of the behavior rating inventory of executive function-preschool version (BRIEF-P) and the theta/beta ratio for children of both groups were significant. In conclusion, the present study revealed atypical resting spectral characteristics of boys with ASD at preschool ages. Future large-sampled studies for the generalization of our findings and a better understanding of the relationships between brain oscillations and phenotypes of ASD are warranted.
Collapse
Affiliation(s)
- Qin Zhao
- Rehabilitation Center for Children with Autism of Chongqing, Department of Child Health Care, Ninth People's Hospital of Chongqing, Beibei, Chongqing, China
| | - Yan Luo
- Department of Child Health Care, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Xinjie Mei
- Department of Child Health Care, Guiyang Maternal and Child Health Care Hospital, Guiyang, China
| | - Zhi Shao
- Rehabilitation Center for Children with Autism of Chongqing, Department of Child Health Care, Ninth People's Hospital of Chongqing, Beibei, Chongqing, China
| |
Collapse
|
5
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
7
|
Candelaria-Cook FT, Schendel ME, Romero LL, Cerros C, Hill DE, Stephen JM. Sex-specific Differences in Resting Oscillatory Dynamics in Children with Prenatal Alcohol Exposure. Neuroscience 2024; 543:121-136. [PMID: 38387734 PMCID: PMC10954390 DOI: 10.1016/j.neuroscience.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
At rest children with prenatal alcohol exposure (PAE) exhibit impaired static and dynamic functional connectivity, along with decreased alpha oscillations. Sex-specific information regarding the impact of PAE on whole-brain resting-state gamma spectral power remains unknown. Eyes-closed and eyes-open MEG resting-state data were examined in 83 children, ages 6-13 years of age. Using a matched design, the sample consisted of 42 typically developing children (TDC) (22 males/20 females) and 41 children with PAE and/or a fetal alcohol spectrum disorders (FASD) diagnosis (21 males/20 females). Whole-brain source resting-state spectral power was examined to determine group and sex specific relationships. Within gamma, we found sex and group specific changes such that female participants with PAE/FASD had increased gamma power when compared to female TDC and male participants with PAE/FASD. These differences were detected in most source regions analyzed during both resting-states, and were observed across the age spectrum examined. Within delta, we found sex and group specific changes such that female participants with PAE/FASD had decreased delta power when compared to female TDC and male participants with PAE/FASD. The reduced delta oscillations in female participants with PAE/FASD were detected in several source regions during eyes-closed rest and were evident at younger ages. These results indicate PAE alters neural oscillations during rest in a sex-specific manner, with females with PAE/FASD showing the largest perturbations. These results further demonstrate PAE has global effects on resting-state spectral power and connectivity, creating long-term consequences by potentially disrupting the excitation/inhibition balance in the brain, interrupting normative neurodevelopment.
Collapse
Affiliation(s)
| | - Megan E Schendel
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Lucinda L Romero
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Cassandra Cerros
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Dina E Hill
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Julia M Stephen
- The Mind Research Network and Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
8
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
9
|
Picci G, Ott LR, Penhale SH, Taylor BK, Johnson HJ, Willett MP, Okelberry HJ, Wang Y, Calhoun VD, Stephen JM, Wilson TW. Developmental changes in endogenous testosterone have sexually-dimorphic effects on spontaneous cortical dynamics. Hum Brain Mapp 2023; 44:6043-6054. [PMID: 37811842 PMCID: PMC10619376 DOI: 10.1002/hbm.26496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/18/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The transition from childhood to adolescence is associated with an influx of sex hormones, which not only facilitates physical and behavioral changes, but also dramatic changes in neural circuitry. While previous work has shown that pubertal hormones modulate structural and functional brain development, few of these studies have focused on the impact that such hormones have on spontaneous cortical activity, and whether these effects are modulated by sex during this critical developmental window. Herein, we examined the effect of endogenous testosterone on spontaneous cortical activity in 71 typically-developing youth (ages 10-17 years; 32 male). Participants completed a resting-state magnetoencephalographic (MEG) recording, structural MRI, and provided a saliva sample for hormone analysis. MEG data were source-reconstructed and the power within five canonical frequency bands (delta, theta, alpha, beta, and gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially specific effects of testosterone and sex by testosterone interactions, while covarying out age. We found robust sex differences in the modulatory effects of testosterone on spontaneous delta, beta, and gamma activity. These interactions were largely confined to frontal cortices and exhibited a stark switch in the directionality of the correlation from the low (delta) to high frequencies (beta/gamma). For example, in the delta band, greater testosterone related to lower relative power in prefrontal cortices in boys, while the reverse pattern was found for girls. These data suggest testosterone levels are uniquely related to the development of spontaneous cortical dynamics during adolescence, and such levels are associated with different developmental patterns in males and females within regions implicated in executive functioning.
Collapse
Affiliation(s)
- Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Brittany K. Taylor
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
| | - Yu‐Ping Wang
- Department of Biomedical EngineeringTulane UniversityNew OrleansLouisianaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of TechnologyEmory UniversityAtlantaGeorgiaUSA
| | | | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research HospitalBoys TownNebraskaUSA
- Center for Pediatric Brain Health, Boys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
10
|
Stier C, Braun C, Focke NK. Adult lifespan trajectories of neuromagnetic signals and interrelations with cortical thickness. Neuroimage 2023; 278:120275. [PMID: 37451375 PMCID: PMC10443236 DOI: 10.1016/j.neuroimage.2023.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross-sectional adult sample (n = 350), we probed lifespan differences (18-88 years) in connectivity and power and interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the spatial correspondence between age effects on cortical thickness and those on functional networks. We further probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new light on how the brain's structural architecture relates to fast oscillatory activity.
Collapse
Affiliation(s)
- Christina Stier
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany.
| | - Christoph Braun
- MEG-Center, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Niels K Focke
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Bergwell H, Trevarrow MP, Heinrichs-Graham E, Reelfs A, Ott LR, Penhale SH, Wilson TW, Kurz MJ. Aberrant age-related alterations in spontaneous cortical activity in participants with cerebral palsy. Front Neurol 2023; 14:1163964. [PMID: 37521295 PMCID: PMC10374009 DOI: 10.3389/fneur.2023.1163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Cerebral Palsy (CP) is the most common neurodevelopmental motor disability, resulting in life-long sensory, perception and motor impairments. Moreover, these impairments appear to drastically worsen as the population with CP transitions from adolescents to adulthood, although the underlying neurophysiological mechanisms remain poorly understood. Methods We began to address this knowledge gap by utilizing magnetoencephalographic (MEG) brain imaging to study how the amplitude of spontaneous cortical activity (i.e., resting state) is altered during this transition period in a cohort of 38 individuals with spastic diplegic CP (Age range = 9.80-47.50 years, 20 females) and 67 neurotypical controls (NT) (Age range = 9.08-49.40 years, Females = 27). MEG data from a five-minute eyes closed resting-state paradigm were source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz) frequency bands were computed. Results For both groups, the delta and theta spontaneous power decreased in the bilateral temporoparietal and superior parietal regions with age, while alpha, beta, and gamma band spontaneous power increased in temporoparietal, frontoparietal and premotor regions with age. We also found a significant group x age interaction, such that participants with CP demonstrated significantly less age-related increases in the spontaneous beta activity in the bilateral sensorimotor cortices compared to NT controls. Discussion Overall, these results demonstrate that the spontaneous neural activity in individuals with CP has an altered trajectory when transitioning from adolescents to adulthood. We suggest that these differences in spontaneous cortical activity may play a critical role in the aberrant motor actions seen in this patient group, and may provide a neurophysiological marker for assessing the effectiveness of current treatment strategies that are directed at improving the mobility and sensorimotor impairments seen in individuals with CP.
Collapse
Affiliation(s)
- Hannah Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael P. Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
12
|
Petro NM, Picci G, Embury CM, Ott LR, Penhale SH, Rempe MP, Johnson HJ, Willett MP, Wang YP, Stephen JM, Calhoun VD, Doucet GE, Wilson TW. Developmental differences in functional organization of multispectral networks. Cereb Cortex 2023; 33:9175-9185. [PMID: 37279931 PMCID: PMC10505424 DOI: 10.1093/cercor/bhad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/08/2023] Open
Abstract
Assessing brain connectivity during rest has become a widely used approach to identify changes in functional brain organization during development. Generally, previous works have demonstrated that brain activity shifts from more local to more distributed processing from childhood into adolescence. However, the majority of those works have been based on functional magnetic resonance imaging measures, whereas multispectral functional connectivity, as measured using magnetoencephalography (MEG), has been far less characterized. In our study, we examined spontaneous cortical activity during eyes-closed rest using MEG in 101 typically developing youth (9-15 years old; 51 females, 50 males). Multispectral MEG images were computed, and connectivity was estimated in the canonical delta, theta, alpha, beta, and gamma bands using the imaginary part of the phase coherence, which was computed between 200 brain regions defined by the Schaefer cortical atlas. Delta and alpha connectivity matrices formed more communities as a function of increasing age. Connectivity weights predominantly decreased with age in both frequency bands; delta-band differences largely implicated limbic cortical regions and alpha band differences in attention and cognitive networks. These results are consistent with previous work, indicating the functional organization of the brain becomes more segregated across development, and highlight spectral specificity across different canonical networks.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Lauren R Ott
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Samantha H Penhale
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United States
| | | | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, United States
| | - Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, United States
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
13
|
Rhodes N, Rea M, Boto E, Rier L, Shah V, Hill RM, Osborne J, Doyle C, Holmes N, Coleman SC, Mullinger K, Bowtell R, Brookes MJ. Measurement of Frontal Midline Theta Oscillations using OPM-MEG. Neuroimage 2023; 271:120024. [PMID: 36918138 PMCID: PMC10465234 DOI: 10.1016/j.neuroimage.2023.120024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
Optically pumped magnetometers (OPMs) are an emerging lightweight and compact sensor that can measure magnetic fields generated by the human brain. OPMs enable construction of wearable magnetoencephalography (MEG) systems, which offer advantages over conventional instrumentation. However, when trying to measure signals at low frequency, higher levels of inherent sensor noise, magnetic interference and movement artefact introduce a significant challenge. Accurate characterisation of low frequency brain signals is important for neuroscientific, clinical, and paediatric MEG applications and consequently, demonstrating the viability of OPMs in this area is critical. Here, we undertake measurement of theta band (4-8 Hz) neural oscillations and contrast a newly developed 174 channel triaxial wearable OPM-MEG system with conventional (cryogenic-MEG) instrumentation. Our results show that visual steady state responses at 4 Hz, 6 Hz and 8 Hz can be recorded using OPM-MEG with a signal-to-noise ratio (SNR) that is not significantly different to conventional MEG. Moreover, we measure frontal midline theta oscillations during a 2-back working memory task, again demonstrating comparable SNR for both systems. We show that individual differences in both the amplitude and spatial signature of induced frontal-midline theta responses are maintained across systems. Finally, we show that our OPM-MEG results could not have been achieved without a triaxial sensor array, or the use of postprocessing techniques. Our results demonstrate the viability of OPMs for characterising theta oscillations and add weight to the argument that OPMs can replace cryogenic sensors as the fundamental building block of MEG systems.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Karen Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Cerca Magnetics Ltd. 2, Castlebridge Office Village, Kirtley Dr, Nottingham NG7 1LD.
| |
Collapse
|
14
|
Rempe MP, Ott LR, Picci G, Penhale SH, Christopher-Hayes NJ, Lew BJ, Petro NM, Embury CM, Schantell M, Johnson HJ, Okelberry HJ, Losh KL, Willett MP, Losh RA, Wang YP, Calhoun VD, Stephen JM, Heinrichs-Graham E, Kurz MJ, Wilson TW. Spontaneous cortical dynamics from the first years to the golden years. Proc Natl Acad Sci U S A 2023; 120:e2212776120. [PMID: 36652485 PMCID: PMC9942851 DOI: 10.1073/pnas.2212776120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/08/2022] [Indexed: 01/19/2023] Open
Abstract
In the largest and most expansive lifespan magnetoencephalography (MEG) study to date (n = 434, 6 to 84 y), we provide critical data on the normative trajectory of resting-state spontaneous activity and its temporal dynamics. We perform cutting-edge analyses to examine age and sex effects on whole-brain, spatially-resolved relative and absolute power maps, and find significant age effects in all spectral bands in both types of maps. Specifically, lower frequencies showed a negative correlation with age, while higher frequencies positively correlated with age. These correlations were further probed with hierarchical regressions, which revealed significant nonlinear trajectories in key brain regions. Sex effects were found in absolute but not relative power maps, highlighting key differences between outcome indices that are generally used interchangeably. Our rigorous and innovative approach provides multispectral maps indicating the unique trajectory of spontaneous neural activity across the lifespan, and illuminates key methodological considerations with the widely used relative/absolute power maps of spontaneous cortical dynamics.
Collapse
Affiliation(s)
- Maggie P. Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- College of Medicine, University of Nebraska Medical Center, Omaha, NE68198
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA92120
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Nicholas J. Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- Center for Mind and Brain, University of California–Davis, Davis, CA95618
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- College of Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nathan M. Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
| | - Christine M. Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- College of Medicine, University of Nebraska Medical Center, Omaha, NE68198
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
| | - Hallie J. Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Hannah J. Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Kathryn L. Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Madelyn P. Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Rebecca A. Losh
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA70118
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA30303
| | | | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE68178
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE68178
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE68010
- College of Medicine, University of Nebraska Medical Center, Omaha, NE68198
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE68010
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE68178
| |
Collapse
|
15
|
Mossad SI, Vandewouw MM, de Villa K, Pang EW, Taylor MJ. Characterising the spatial and oscillatory unfolding of Theory of Mind in adults using fMRI and MEG. Front Hum Neurosci 2022; 16:921347. [PMID: 36204717 PMCID: PMC9530400 DOI: 10.3389/fnhum.2022.921347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Theory of Mind (ToM) is a core social cognitive skill that refers to the ability to attribute mental states to others. ToM involves understanding that others have beliefs, thoughts and desires that may be different from one's own and from reality. ToM is crucial to predict behaviour and navigate social interactions. This study employed the complementary methodological advantages of both functional MRI (fMRI) and magnetoencephalography (MEG) to examine the neural underpinnings of ToM in adults. Twenty healthy adults were first recruited to rate and describe 28 videos (15s long), each containing three moving shapes designed to depict either social interactions or random motion (control condition). The first sample of adults produced consistent narratives for 6 of those social videos and of those, 4 social videos and 4 control videos were chosen to include in the neuroimaging study. Another sample of twenty-five adults were then recruited to complete the neuroimaging in MEG and fMRI. In fMRI, we found increased activation in frontal-parietal regions in the social compared to the control condition corroborating previous fMRI findings. In MEG, we found recruitment of ToM networks in the social condition in theta, beta and gamma bands. The right supramarginal and angular gyri (right temporal parietal junction), right inferior parietal lobe and right temporal pole were recruited in the first 5s of the videos. Frontal regions such as the superior frontal gyrus were recruited in the second time window (5–10s). Brain regions such as the bilateral amygdalae were also recruited (5–10s), indicating that various social processes were integrated in understanding the social videos. Our study is one of the first to combine multi-modal neuroimaging to examine the neural networks underlying social cognitive processes, combining the strengths of the spatial resolution of fMRI and temporal resolution of MEG. Understanding this information from both modalities helped delineate the mechanism by which ToM processing unfolds over time in healthy adults. This allows us to determine a benchmark against which clinical populations can be compared.
Collapse
Affiliation(s)
- Sarah I. Mossad
- Department of Psychology, The Hospital for Sick Children, Toronto, ON, Canada
- *Correspondence: Sarah I. Mossad
| | - Marlee M. Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth W. Pang
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurology, Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J. Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Departments of Psychology and of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Petro NM, Ott LR, Penhale SH, Rempe MP, Embury CM, Picci G, Wang YP, Stephen JM, Calhoun VD, Wilson TW. Eyes-closed versus eyes-open differences in spontaneous neural dynamics during development. Neuroimage 2022; 258:119337. [PMID: 35636737 PMCID: PMC9385211 DOI: 10.1016/j.neuroimage.2022.119337] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Assessing brain activity during rest has become a widely used approach in developmental neuroscience. Extant literature has measured resting brain activity both during eyes-open and eyes-closed conditions, but the difference between these conditions has not yet been well characterized. Studies, limited to fMRI and EEG, have suggested that eyes-open versus -closed conditions may differentially impact neural activity, especially in visual cortices. METHODS Spontaneous cortical activity was recorded using MEG from 108 typically developing youth (9-15 years-old; 55 female) during separate sessions of eyes-open and eyes-closed rest. MEG source images were computed, and the strength of spontaneous neural activity was estimated in the canonical delta, theta, alpha, beta, and gamma bands, respectively. Power spectral density maps for eyes-open were subtracted from eyes-closed rest, and then submitted to vertex-wise regression models to identify spatially specific differences between conditions and as a function of age and sex. RESULTS Relative alpha power was weaker in the eyes-open compared to -closed condition, but otherwise eyes-open was stronger in all frequency bands, with differences concentrated in the occipital cortex. Relative theta power became stronger in the eyes-open compared to the eyes-closed condition with increasing age in frontal cortex. No differences were observed between males and females. CONCLUSIONS The differences in relative power from eyes-closed to -open conditions are consistent with changes observed in task-based visual sensory responses. Age differences occurred in relatively late developing frontal regions, consistent with canonical attention regions, suggesting that these differences could be reflective of developmental changes in attention processes during puberty. Taken together, resting-state paradigms using eyes-open versus -closed produce distinct results and, in fact, can help pinpoint sensory related brain activity.
Collapse
Affiliation(s)
- Nathan M Petro
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Lauren R Ott
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Samantha H Penhale
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christine M Embury
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Psychology, University of Nebraska Omaha, Omaha, NE, USA
| | - Giorgia Picci
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | | | - Vince D Calhoun
- Mind Research Network, Albuquerque, NM, USA; Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Tony W Wilson
- Boys Town National Research Hospital, Institute for Human Neuroscience, 378 Bucher Circle, Boys Town, NE 68010, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
17
|
Candelaria-Cook FT, Solis I, Schendel ME, Wang YP, Wilson TW, Calhoun VD, Stephen JM. Developmental trajectory of MEG resting-state oscillatory activity in children and adolescents: a longitudinal reliability study. Cereb Cortex 2022; 32:5404-5419. [PMID: 35225334 PMCID: PMC9712698 DOI: 10.1093/cercor/bhac023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 12/27/2022] Open
Abstract
Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9-17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test-retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change.
Collapse
Affiliation(s)
- Felicha T Candelaria-Cook
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States
| | - Isabel Solis
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States,Department of Psychology, University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, United States
| | - Megan E Schendel
- The Mind Research Network, a Division of Lovelace Biomedical Research Institute, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, LA 70118, United States
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, United States
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, 55 Park Pl NE, Atlanta, GA 30303, United States
| | - Julia M Stephen
- Corresponding author: The Mind Research Network, 1101 Yale Blvd NE, Albuquerque, NM 87106, United States.
| |
Collapse
|
18
|
Ott LR, Penhale SH, Taylor BK, Lew BJ, Wang YP, Calhoun VD, Stephen JM, Wilson TW. Spontaneous cortical MEG activity undergoes unique age- and sex-related changes during the transition to adolescence. Neuroimage 2021; 244:118552. [PMID: 34517128 PMCID: PMC8685767 DOI: 10.1016/j.neuroimage.2021.118552] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While numerous studies have examined the developmental trajectory of task-based neural oscillations during childhood and adolescence, far less is known about the evolution of spontaneous cortical activity during this time period. Likewise, many studies have shown robust sex differences in task-based oscillations during this developmental period, but whether such sex differences extend to spontaneous activity is not understood. METHODS Herein, we examined spontaneous cortical activity in 111 typically-developing youth (ages 9-15 years; 55 male). Participants completed a resting state magnetoencephalographic (MEG) recording and a structural MRI. MEG data were source imaged and the power within five canonical frequency bands (delta, theta, alpha, beta, gamma) was computed. The resulting power spectral density maps were analyzed via vertex-wise ANCOVAs to identify spatially-specific effects of age, sex, and their interaction. RESULTS We found robust increases in power with age in all frequencies except delta, which decreased over time, with findings largely confined to frontal cortices. Sex effects were distributed across frontal and temporal regions; females tended to have greater delta and beta power, whereas males had greater alpha. Importantly, there was a significant age-by-sex interaction in theta power, such that males exhibited decreasing power with age while females showed increasing power with age in the bilateral superior temporal cortices. DISCUSSION These data suggest that the strength of spontaneous activity undergoes robust change during the transition from childhood to adolescence (i.e., puberty onset), with intriguing sex differences in some cortical areas. Future developmental studies should probe task-related oscillations and spontaneous activity in parallel.
Collapse
Affiliation(s)
- Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, United
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
19
|
Lew BJ, Fitzgerald EE, Ott LR, Penhale SH, Wilson TW. Three-year reliability of MEG resting-state oscillatory power. Neuroimage 2021; 243:118516. [PMID: 34454042 PMCID: PMC8590732 DOI: 10.1016/j.neuroimage.2021.118516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Resting-state oscillatory activity has been extensively studied across a wide array of disorders. Establishing which spectrally- and spatially-specific oscillatory components exhibit test-retest reliability is essential to move the field forward. While studies have shown short-term reliability of MEG resting-state activity, no studies have examined test-retest reliability across an extended period of time to establish the stability of these signals, which is critical for reproducibility. METHODS We examined 18 healthy adults age 23 - 61 who completed three visits across three years. For each visit, participants completed both a resting state MEG and structural MRI scan. MEG data were source imaged, and the cortical power in canonical frequency bands (delta, theta, alpha, beta, low gamma, high gamma) was computed. Intra-class correlation coefficients (ICC) were then calculated across the cortex for each frequency band. RESULTS Over three years, power in the alpha and beta bands displayed the highest reliability estimates, while gamma showed the lowest estimates of three-year reliability. Spatially, delta, alpha, and beta all showed the highest degrees of reliability in the parietal cortex. Interestingly, the peak signal for each of these frequency bands was located outside of the parietal cortex, suggesting that reliability estimates were not solely dependent on the signal-to-noise ratio. CONCLUSION Oscillatory resting-state power in parietal delta, posterior beta, and alpha across most of the cortex are reliable across three years and future MEEG studies may focus on these measures for the development of specific markers.
Collapse
Affiliation(s)
- Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Emily E Fitzgerald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lauren R Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samantha H Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
20
|
Vandewouw MM, Hunt BAE, Ziolkowski J, Taylor MJ. The developing relations between networks of cortical myelin and neurophysiological connectivity. Neuroimage 2021; 237:118142. [PMID: 33951516 DOI: 10.1016/j.neuroimage.2021.118142] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023] Open
Abstract
Recent work identified that patterns of distributed brain regions sharing similar myeloarchitecture are related to underlying functional connectivity, demonstrating cortical myelin's plasticity to changes in functional demand. However, the changing relations between functional and structural architecture throughout child and adulthood are poorly understood. We show that structural covariance connectivity (T1-weighted/T2-weighted ratio) and functional connectivity (magnetoencephalography) exhibit nonlinear developmental changes. We then show significant relations between structural and functional connectivity, which have shared and distinct characteristics dependent on the neural oscillatory frequency. Increases in structure-function coupling are visible during the protracted myelination observed throughout childhood and adolescence and are followed by decreases near the onset of adulthood. Our work lays the foundation for understanding the mechanisms by which myeloarchitecture supports brain function, enabling future investigations into how clinical populations may deviate from normative patterns.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada.
| | - Benjamin A E Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Justine Ziolkowski
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 0A4, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Psychology, University of Toronto, Toronto M5G 0A4 Canada; Department of Medical Imaging, University of Toronto, Toronto M5G 0A4, Canada
| |
Collapse
|
21
|
Safar K, Zhang J, Emami Z, Gharehgazlou A, Ibrahim G, Dunkley BT. Mild traumatic brain injury is associated with dysregulated neural network functioning in children and adolescents. Brain Commun 2021; 3:fcab044. [PMID: 34095832 PMCID: PMC8176148 DOI: 10.1093/braincomms/fcab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Mild traumatic brain injury is highly prevalent in paediatric populations, and can result in chronic physical, cognitive and emotional impairment, known as persistent post-concussive symptoms. Magnetoencephalography has been used to investigate neurophysiological dysregulation in mild traumatic brain injury in adults; however, whether neural dysrhythmia persists in chronic mild traumatic brain injury in children and adolescents is largely unknown. We predicted that children and adolescents would show similar dysfunction as adults, including pathological slow-wave oscillations and maladaptive, frequency-specific, alterations to neural connectivity. Using magnetoencephalography, we investigated regional oscillatory power and distributed brain-wide networks in a cross-sectional sample of children and adolescents in the chronic stages of mild traumatic brain injury. Additionally, we used a machine learning pipeline to identify the most relevant magnetoencephalography features for classifying mild traumatic brain injury and to test the relative classification performance of regional power versus functional coupling. Results revealed that the majority of participants with chronic mild traumatic brain injury reported persistent post-concussive symptoms. For neurophysiological imaging, we found increased regional power in the delta band in chronic mild traumatic brain injury, predominantly in bilateral occipital cortices and in the right inferior temporal gyrus. Those with chronic mild traumatic brain injury also showed dysregulated neuronal coupling, including decreased connectivity in the delta range, as well as hyper-connectivity in the theta, low gamma and high gamma bands, primarily involving frontal, temporal and occipital brain areas. Furthermore, our multivariate classification approach combined with functional connectivity data outperformed regional power in terms of between-group classification accuracy. For the first time, we establish that local and large-scale neural activity are altered in youth in the chronic phase of mild traumatic brain injury, with the majority presenting persistent post-concussive symptoms, and that dysregulated interregional neural communication is a reliable marker of lingering paediatric ‘mild’ traumatic brain injury.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Zahra Emami
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4
| | - Avideh Gharehgazlou
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Ibrahim
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9 Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.,Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada M5G 0A4.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada M5T 1W7
| |
Collapse
|
22
|
Sjøgård M, Wens V, Van Schependom J, Costers L, D'hooghe M, D'haeseleer M, Woolrich M, Goldman S, Nagels G, De Tiège X. Brain dysconnectivity relates to disability and cognitive impairment in multiple sclerosis. Hum Brain Mapp 2020; 42:626-643. [PMID: 33242237 PMCID: PMC7814767 DOI: 10.1002/hbm.25247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear. This magnetoencephalography (MEG) study investigates the impact of MS on brain resting-state functional connectivity (rsFC) and its relationship to disability and cognitive impairment. We investigated rsFC based on power envelope correlation within and between different frequency bands, in a large cohort of participants consisting of 99 MS patients and 47 healthy subjects. Correlations were investigated between rsFC and outcomes on disability, disease duration and 7 neuropsychological scores within each group, while stringently correcting for multiple comparisons and possible confounding factors. Specific dysconnections correlating with MS-induced physical disability and disease duration were found within the sensorimotor and language networks, respectively. Global network-level reductions in within- and cross-network rsFC were observed in the default-mode network. Healthy subjects and patients significantly differed in their scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both of which involved a shift in patients from the posterior default-mode network to the language network. Introducing electrophysiological rsFC in a regression model of verbal fluency and cognitive fatigue in MS patients significantly increased the explained variance compared to a regression limited to structural MRI markers (relative thalamic volume and lesion load). This MEG study demonstrates that MS induces distinct changes in the resting-state functional brain architecture that relate to disability, disease duration and specific cognitive functioning alterations. It highlights the potential value of electrophysiological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.
Collapse
Affiliation(s)
- Martin Sjøgård
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeroen Van Schependom
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Lars Costers
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie D'hooghe
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Miguel D'haeseleer
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Nagels
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium.,St Edmund Hall, University of Oxford, Oxford, UK
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
23
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Hunt BAE, Scratch SE, Mossad SI, Emami Z, Taylor MJ, Dunkley BT. Disrupted Visual Cortex Neurophysiology Following Very Preterm Birth. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 5:951-960. [PMID: 31706907 DOI: 10.1016/j.bpsc.2019.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Visual regions develop rapidly in utero and throughout early childhood, but very preterm (VPT) birth can disrupt the typical maturation of primary cortices, with VPT children exhibiting mild visual impairments in early life and throughout development. This is thought to be due to dysfunctional maturation of occipital cortices. A way to readily index brain function is to examine neural oscillations; these mechanisms play a central role in the modeling and pruning of connections, providing an intrinsic temporal structure that refines the precise alignment of spiking, processing information in the brain, and coordinating networks. METHODS Using magnetoencephalography, we examined regional oscillatory patterns and functional coupling in VPT and full-term children. Five minutes of eyes-open resting-state data were acquired from 27 VPT and 32 full-term children at 8 years of age. RESULTS As hypothesized, the VPT group, when compared with control children, had elevated theta-band power, while alpha amplitude envelope coupling, a marker of connectivity, was found to be decreased. CONCLUSIONS These results support the hypothesis of spectral slowing in VPT children and more broadly suggest that the developmental arc of visual neurophysiology is disrupted by VPT birth. We conclude that these deficits underlie difficulties in complex visual perceptual processing evident during childhood and beyond.
Collapse
Affiliation(s)
- Benjamin A E Hunt
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Shannon E Scratch
- Holland Bloorview Rehabilitation Hospital, Toronto, Ontario, Canada; Bloorview Research Institute, Toronto, Ontario, Canada; Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sarah I Mossad
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zahra Emami
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|