1
|
Courson J, Quoy M, Timofeeva Y, Manos T. An exploratory computational analysis in mice brain networks of widespread epileptic seizure onset locations along with potential strategies for effective intervention and propagation control. Front Comput Neurosci 2024; 18:1360009. [PMID: 38468870 PMCID: PMC10925689 DOI: 10.3389/fncom.2024.1360009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mean-field models have been developed to replicate key features of epileptic seizure dynamics. However, the precise mechanisms and the role of the brain area responsible for seizure onset and propagation remain incompletely understood. In this study, we employ computational methods within The Virtual Brain framework and the Epileptor model to explore how the location and connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to focal seizures (seizures that start in one brain area and may or may not remain localized), with a specific focus on the hippocampal region known for its association with epileptic seizures. We then devise computational strategies to confine seizures (prevent widespread propagation), simulating medical-like treatments such as tissue resection and the application of an anti-seizure drugs or neurostimulation to suppress hyperexcitability. Through selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas, we demonstrate that seizures can be kept constrained around the EZ region. We successfully identified the minimal connections necessary to prevent widespread seizures, with a particular focus on minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.
Collapse
Affiliation(s)
- Juliette Courson
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CY Cergy Paris Université, CNRS, Cergy-Pontoise, France
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
| | - Mathias Quoy
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- IPAL CNRS Singapore, Singapore, Singapore
| | - Yulia Timofeeva
- Department of Computer Science, University of Warwick, Coventry, United Kingdom
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Thanos Manos
- ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
| |
Collapse
|
2
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. Front Comput Neurosci 2023; 17:1295395. [PMID: 38188355 PMCID: PMC10770256 DOI: 10.3389/fncom.2023.1295395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activities between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, which was first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC aligns well with the observed FC when compared with that simulated traditional structural connectome.
Collapse
Affiliation(s)
- Thanos Manos
- ETIS, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France
- Laboratoire de Physique Théorique et Modélisation, UMR 8089, CNRS, Cergy-Pontoise, CY Cergy Paris Université, Cergy, France
| | - Sandra Diaz-Pier
- Simulation and Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), JARA, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Ira Driscoll
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
4
|
Ibáñez-Berganza M, Lucibello C, Santucci F, Gili T, Gabrielli A. Noise cleaning the precision matrix of short time series. Phys Rev E 2023; 108:024313. [PMID: 37723818 DOI: 10.1103/physreve.108.024313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 09/20/2023]
Abstract
We present a comparison between various algorithms of inference of covariance and precision matrices in small data sets of real vectors of the typical length and dimension of human brain activity time series retrieved by functional magnetic resonance imaging (fMRI). Assuming a Gaussian model underlying the neural activity, the problem consists of denoising the empirically observed matrices to obtain a better estimator of the (unknown) true precision and covariance matrices. We consider several standard noise-cleaning algorithms and compare them on two types of data sets. The first type consists of synthetic time series sampled from a generative Gaussian model of which we can vary the fraction of dimensions per sample q and the strength of off-diagonal correlations. The second type consists of time series of fMRI brain activity of human subjects at rest. The reliability of each algorithm is assessed in terms of test-set likelihood and, in the case of synthetic data, of the distance from the true precision matrix. We observe that the so-called optimal rotationally invariant estimator, based on random matrix theory, leads to a significantly lower distance from the true precision matrix in synthetic data and higher test likelihood in natural fMRI data. We propose a variant of the optimal rotationally invariant estimator in which one of its parameters is optimzed by cross-validation. In the severe undersampling regime (large q) typical of fMRI series, it outperforms all the other estimators. We furthermore propose a simple algorithm based on an iterative likelihood gradient ascent, leading to very accurate estimations in weakly correlated synthetic data sets.
Collapse
Affiliation(s)
- Miguel Ibáñez-Berganza
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy and Istituto Italiano di Tecnologia. Largo Barsanti e Matteucci, 53, 80125 Napoli, Italy
| | - Carlo Lucibello
- AI Lab, Institute for Data Science and Analytics, Bocconi University, 20136 Milano, Italy
| | - Francesca Santucci
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Tommaso Gili
- Networks Unit, IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 50100 Lucca, Italy
| | - Andrea Gabrielli
- Dipartimento di Ingegneria Civile, Informatica e delle Tecnologie Aeronautiche, Universitá degli Studi Roma Tre, Via Vito Volterra 62, 00146 Rome, Italy and Centro Ricerche Enrico Fermi, Via Panisperna 89a, 00184 Rome, Italy
| |
Collapse
|
5
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
6
|
Banihashemi L, Lv J, Wu M, Zhan L. Editorial: Current advances in multimodal human brain imaging and analysis across the lifespan: From mapping to state prediction. Front Neurosci 2023; 17:1153035. [PMID: 36860619 PMCID: PMC9969151 DOI: 10.3389/fnins.2023.1153035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinglei Lv
- School of Biomedical Engineering and Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Activation-Inhibition Coordination in Neuron, Brain, and Behavior Sequencing/Organization: Implications for Laterality and Lateralization. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Activation-inhibition coordination is considered a dynamic process that functions as a common mechanism in the synchronization and functioning of neurons, brain, behavior, and their sequencing/organization, including over these different scales. The concept has broad applicability, for example, in applications to maladaptivity/atypicality. Young developed the hypothesis to help explain the efficacy of right-hand reaching to grasp in 1-month-olds, a study that implicated that the left hemisphere is specialized for activation-inhibition coordination. This underlying left-hemisphere function, noted to characterize the left hemisphere right from birth, can explain equally its language and fine motor skills, for example. The right hemisphere appears specialized for less complex inhibitory skills, such as outright damping/inhibition. The hypotheses related to inhibition and hemispheric specialization that appear in the literature typically refer to right hemisphere skills in these regards. The research to present also refers to excitation/inhibition balance/ratio in synaptic function, but not to coordination in the sense described here. Furthermore, it refers to the inhibitory function widely in neuronal networks. The paper presents a comprehensive literature review, framing the research in terms of the proposed concept. Further, the paper presents a broad model of activation-inhibition coordination that can help better understand neuron, brain, and behavior, generally, and left hemisphere specialization, specifically.
Collapse
|