1
|
Lee KH, Wang CY, Tsai YR, Huang SY, Huang WT, Kasimayan U, K P O M, Chiang YC. Epigallocatechin gallate-immobilized antimicrobial resin with rechargeable fluorinated synergistic composite for enhanced caries control. Dent Mater 2024; 40:407-419. [PMID: 38123384 DOI: 10.1016/j.dental.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVES Given the global prevalence of dental caries, impacting 2.5 billion individuals, the development of sophisticated prevention filling materials is crucial. Streptococcus mutans, the principal caries-causing strain, produces acids that demineralize teeth and initiate dental caries. To address this issue, we aimed to develop a synergistic resin-based composite for enhancing caries control. METHODS The synergistic resin composite incorporates fluorinated kaolinite and silanized Al2O3 nanoparticle fillers into an epigallocatechin gallate (EGCG) immobilized urethane-modified epoxy acrylate (U-EA) resin matrix, referred to the as-prepared resin composite. The EGCG-modified TPGDA/U-EA network was synthesized by preparing methacrylate-functionalized isocyanate (HI), reacting it with EGCG to form HI-EGCG, and then incorporating HI-EGCG into the TPGDA/U-EA matrix. The lamellar space within the kaolinite layer was expanded through the intercalation of acrylamide into kaolinite, enhancing its capability to adsorb and release fluoride ions (F-). The layered structure of acrylamide/ kaolinite in the U-EA resin composite acts as a F- reservoir. RESULTS The physico-mechanical properties of the as-prepared resin composites are comparable to those of commercial products, exhibiting lower polymerization shrinkage, substantial F- release and recharge and favorable diametral tensile strength. The immobilized EGCG in the composite exhibits potent antimicrobial properties, effectively reducing the biofilm biomass. Furthermore, the synergistic effect of EGCG and fluorinated kaolinite efficiently counteracts acid-induced hydroxyapatite dissolution, thereby suppressing demineralization and promoting enamel remineralization. SIGNIFICANCE Our innovative EGCG and fluoride synergistic composite provides enhanced antimicrobial properties, durable anti-demineralization, and tooth remineralization effects, positioning it as a promising solution for effective caries control and long-term dental maintenance.
Collapse
Affiliation(s)
- Kuan-Han Lee
- Department of Dentistry, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan; Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Chen-Ying Wang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Periodontology, Department of Dentistry, National Taiwan University Hospital, Taiwan
| | - Yun-Rong Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Szu-Ying Huang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Wei-Te Huang
- School of Dentistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Uma Kasimayan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Mahesh K P O
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan
| | - Yu-Chih Chiang
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, 1, Chang-de Street, Taipei 10016, Taiwan; Division of Restorative and Esthetic Dentistry, Department of Dentistry, National Taiwan University Hospital, 1, Chang-de Street, Taipei 10016, Taiwan; School of Dentistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
2
|
Hengtrakool C, Wanichpakorn S, Kedjarune-Leggat U. Chitosan Resin-Modified Glass Ionomer Cement Containing Epidermal Growth Factor Promotes Pulp Cell Proliferation with a Minimum Effect on Fluoride and Aluminum Release. Polymers (Basel) 2023; 15:3511. [PMID: 37688136 PMCID: PMC10490150 DOI: 10.3390/polym15173511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The development of biomaterials that are able to control the release of bioactive molecules is a challenging task for regenerative dentistry. This study aimed to enhance resin-modified glass ionomer cement (RMGIC) for the release of epidermal growth factor (EGF). This RMGIC was formulated from RMGIC powder supplemented with 15% (w/w) chitosan at a molecular weight of either 62 or 545 kDa with 5% bovine serum albumin mixed with the same liquid component as the Vitrebond. EGF was added while mixing. ELISA was used to determine EGF release from the specimen immersed in phosphate-buffered saline at 1 h, 3 h, 24 h, 3 d, 1 wk, 2 wks, and 3 wks. Fluoride and aluminum release at 1, 3, 5, and 7 d was measured by electrode and inductively coupled plasma optical emission spectrometry. Pulp cell viability was examined through MTT assays and the counting of cell numbers using a Coulter counter. The RMGIC with 65 kDa chitosan is able to prolong the release of EGF for significantly longer than RMGIC for at least 3 wks due to its retained bioactivity in promoting pulp cell proliferation. This modified RMGIC can prolong the release of fluoride, with a small amount of aluminum also released for a limited time. This biomaterial could be useful in regenerating pulp-dentin complexes.
Collapse
Affiliation(s)
- Chanothai Hengtrakool
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supreya Wanichpakorn
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ureporn Kedjarune-Leggat
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
- Cell Biology and Biomaterials Research Unit, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
3
|
Morais AMDS, Pereira YMR, Souza-Araújo IJD, Silva DF, Pecorari VGA, Gomes OP, Nociti-Júnior FH, Puppin-Rontani RM, Vieira-Junior WF, Lisboa-Filho PN, Kantovitz KR. TiO2 nanotube-containing glass ionomer cements display reduced aluminum release rates. Braz Oral Res 2022; 36:e097. [PMID: 35830141 DOI: 10.1590/1807-3107bor-2022.vol36.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Titanium dioxide nanotubes (TiO2-nts) were incorporated into a glass ionomer cement (GIC) with improved mechanical properties and antibacterial activity. The aims of the present in vitro study were to define the elemental characterization, aluminum (Al) release rate, and initial working time for GIC reinforced with TiO2-nts, in an experimental caries model. TiO2-nts were incorporated into GIC powder components at 5% by weight, and compared with unblended GIC. Experimental approaches used energy-dispersive spectrometry (EDS), atomic absorption spectrophotometry (AAS), and brightness loss to define surface element properties, Al release rates, and initial working time, respectively. Statistical analysis was performed by 2-way ANOVA, Tukey's test, generalized linear models, and Student's t test (a = 0.05). EDS data analysis revealed that TiO2-nts incorporated into GIC had no significant impact on the typical elemental composition of GICs in an in vitro caries model. Regarding the demineralizing solution, GIC with TiO2-nt significantly decreased the Al release rate, compared with the control group (p < 0.0001). Moreover, TiO2-nt incorporated into GIC did not alter the initial working time of the material (p > 0.05). These findings add information to our scientific body of knowledge concerning the potential impact of TiO2-nt on the performance of conventional GICs.
Collapse
Affiliation(s)
- Ana Mara da Silva Morais
- Faculdade São Leopoldo Mandic - SLMandic, School of Dentistry, Dental Material Area, Campinas, SP, Brazil
| | | | - Isaac Jordão de Souza-Araújo
- University of Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Daniel Furtado Silva
- Federal University of Paraíba - UFPB, School of Dentistry, Restorative Dentistry Area, João Pessoa, PB, Brazil
| | | | - Orisson Ponce Gomes
- São Paulo State University - Unesp, School of Sciences, Department of Physics, Bauru, SP, Brazil
| | | | - Regina Maria Puppin-Rontani
- University of Campinas - Unicamp, Piracicaba Dental School, Department of Pediatric Dentistry, Piracicaba, SP, Brazil
| | | | | | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic - SLMandic, School of Dentistry, Dental Material Area, Campinas, SP, Brazil
| |
Collapse
|
4
|
Aydın N, Karaoğlanoğlu S, Aybala-Oktay E, Çetinkaya S, Erdem O. Investigation of water sorption and aluminum releases from high viscosity and resin modified glass ionomer. J Clin Exp Dent 2020; 12:e844-e851. [PMID: 32994873 PMCID: PMC7511048 DOI: 10.4317/jced.56381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/13/2020] [Indexed: 11/29/2022] Open
Abstract
Background High viscosity glass ionomer cement (HVGIC) and resin-modified glass ionomer cement (RMGIC) have recently been clinically preferred thanks to their numerous advantages. However, initial moisture contamination has a negative effect on the mechanical and physical properties of these cements. The aim of this study was in vitro of HVGICs and RMGICs, with and without surface protection, on water sorption, solubility and release of aluminum.
Material and Methods In this study, as HVGICs; Equia Forte, IonoStar Plus, Riva Self Cure; as RMCIS, Ionolux and Riva Light Cure; and as control, Z250 universal composite was used. Equia coat, Voco varnish and Riva coat were chosen as surface protective. Water sorption and solubility levels of the samples were measured according to ISO 4049:2009. Al levels released from samples were determined by graphite furnace atomic absorption spectroscopy (GFAAS) for 7, 14 and 21 days. Statistical evaluation of the results was made using one-way variance analysis (ANOVA) and Tukey post-hoc test (p<0.05).
Results RMGICs from restorative materials showed more water absorption than HVGICs, but no differences in solubility. Among the materials tested, the water absorption values of the HVGIC and RMGIC materials without surface protection were higher than those with the surface protection (p<0.001).
Conclusions It was determined that the Al release of HVGIC and RMGIC groups with the surface protection were lower in all time periods than the groups without surface protection (p<0.001). The application of surface protection effectively reduced water sorption and Al release from HVGICs and RMGICs. Key words:Highly viscous glass ionomer cement, resin coating, aluminum release, water sorption, solubility.
Collapse
Affiliation(s)
- Numan Aydın
- DDS, PhD. University of Health Sciences, Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, Ankara, Turkey
| | - Serpil Karaoğlanoğlu
- DDS, PhD. University of Health Sciences, Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, Ankara, Turkey
| | - Elif Aybala-Oktay
- DDS, PhD. University of Health Sciences, Gulhane Faculty of Dentistry, Department of Restorative Dental Treatment, Ankara, Turkey
| | - Serdar Çetinkaya
- PhD. University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Onur Erdem
- PhD. University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
5
|
Wei Su L, Lin DJ, Yen Uan J. Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: Fluoride release/recharge, mechanical properties, color change, and cytotoxicity. Dent Mater 2019; 35:663-672. [DOI: 10.1016/j.dental.2019.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/26/2019] [Accepted: 02/04/2019] [Indexed: 01/18/2023]
|
6
|
Akbulut MB, Arpaci PU, Eldeniz AU. Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts. Restor Dent Endod 2018; 43:e24. [PMID: 30135845 PMCID: PMC6103538 DOI: 10.5395/rde.2018.43.e24] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/24/2018] [Indexed: 11/22/2022] Open
Abstract
Objectives The aim of this in vitro study was to evaluate the biocompatibility of newly proposed root-end filling materials, Biodentine, Micro-Mega mineral trioxide aggregate (MM-MTA), polymethylmethacrylate (PMMA) bone cement, and Smart Dentin Replacement (SDR), in comparison with contemporary root-end filling materials, intermediate restorative material (IRM), Dyract compomer, ProRoot MTA (PMTA), and Vitrebond, using human periodontal ligament (hPDL) fibroblasts. Materials and Methods Ten discs from each material were fabricated in sterile Teflon molds and 24-hour eluates were obtained from each root-end filling material in cell culture media after 1- or 3-day setting. hPDL fibroblasts were plated at a density of 5 × 103/well, and were incubated for 24 hours with 1:1, 1:2, 1:4, and 1:8 dilutions of eluates. Cell viability was evaluated by XTT assay. Data was statistically analysed. Apoptotic/necrotic activity of PDL cells exposed to material eluates was established by flow cytometry. Results The Vitrebond and IRM were significantly more cytotoxic than the other root-end filling materials (p < 0.05). Those cells exposed to the Biodentine and Dyract compomer eluates showed the highest survival rates (p < 0.05), while the PMTA, MM-MTA, SDR, and PMMA groups exhibited similar cell viabilities. Three-day samples were more cytotoxic than 1-day samples (p < 0.05). Eluates from the cements at 1:1 dilution were significantly more cytotoxic (p < 0.05). Vitrebond induced cell necrosis as indicated by flow cytometry. Conclusions This in vitro study demonstrated that Biodentine and Compomer were more biocompatible than the other root-end filling materials. Vitrebond eluate caused necrotic cell death.
Collapse
Affiliation(s)
- Makbule Bilge Akbulut
- Department of Endodontics, Faculty of Dentistry, Necmettin Erbakan University, Konya, Turkey
| | - Pembegul Uyar Arpaci
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ayce Unverdi Eldeniz
- Department of Endodontics, Faculty of Dentistry, Selcuk University, Konya, Turkey
| |
Collapse
|
7
|
Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: A review article. J Clin Exp Dent 2017; 9:e1249-e1255. [PMID: 29167717 PMCID: PMC5694156 DOI: 10.4317/jced.54103] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/12/2017] [Indexed: 11/05/2022] Open
Abstract
Background Recently a new generation of endodontic sealers has been developed based on calcium silicate as MTA Fillapex, Endoseal MTA, Total Fill BC Sealer, EndoSequence BC Sealer, iRoot SP, Endo CPM sealer, MTA-Angelus and ProRoot Endo Sealer. A review of literature was conducted to discuss the composition, physicochemical properties, and clinical perspectives of calcium silicate based sealers. Material and Methods A literature search was conducted in PubMed and web of knowledge databases with appropriate MeSh terms and keywords. A total of 71 studies were reviewed for data extraction. Results and Conclusions Calcium silicate based sealers showed suitable physical properties to be used as an endodontic sealer. However, its high solubility remains an important issue. They show good performance regarding calcium ion release, film thickness, and fowability. More researches are required about features of calcium silicate based sealers before recommending them for clinical applications. Key words:Calcium silicate, root canal filling materials, composition, physical properties.
Collapse
Affiliation(s)
- Farnaz Jafari
- Assistant Professor, Department of Endodontics, Dental School, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sanaz Jafari
- Assistant Professor, Orthodontics Department, Dentistry Faculty, Ilam University of Medical Sciences
| |
Collapse
|
8
|
Akbulut MB, Uyar Arpaci P, Unverdi Eldeniz A. ‘Effects of novel root repair materials on attachment and morphological behaviour of periodontal ligament fibroblasts: Scanning electron microscopy observation’. Microsc Res Tech 2016; 79:1214-1221. [DOI: 10.1002/jemt.22780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/13/2016] [Accepted: 09/02/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Makbule Bilge Akbulut
- Department of Endodontics, Faculty of Dentistry; Necmettin Erbakan University; Konya Turkey
| | - Pembegul Uyar Arpaci
- Department of Biotechnology, Faculty of Science; Selcuk University; Konya Turkey
| | - Ayce Unverdi Eldeniz
- Department of Endodontics, Faculty of Dentistry; Selcuk University; Konya Turkey
| |
Collapse
|
9
|
Ráth G, Katona G, Bakó P, Török L, Révész P, Tóth E, Gerlinger I. Application of ionomer cement onto the stapedial footplate: Impact on the perilymphatic aluminum level. Laryngoscope 2014; 124:541-4. [DOI: 10.1002/lary.24289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Gábor Ráth
- Department of Pediatric Otorhinolaryngology; Pécs University, Pécs; Budapest Hungary
| | - Gábor Katona
- Department of Pediatric Otorhinolaryngology and Bronchology; Heim Pál Hospital; Budapest Hungary
| | - Péter Bakó
- Department of Otorhinolaryngology & Head and Neck Surgery; Pécs University, Pécs; Budapest Hungary
| | - László Török
- Department of Otorhinolaryngology & Head and Neck Surgery; Pécs University, Pécs; Budapest Hungary
| | - Péter Révész
- Department of Otorhinolaryngology & Head and Neck Surgery; Pécs University, Pécs; Budapest Hungary
| | - Edit Tóth
- Klebelsberg Institution Maintenance Center; Hungary; Budapest Hungary
| | - Imre Gerlinger
- Department of Otorhinolaryngology & Head and Neck Surgery; Pécs University, Pécs; Budapest Hungary
| |
Collapse
|
10
|
Saghiri MA, Tanideh N, Garcia-Godoy F, Lotfi M, Karamifar K, Amanat D. Subcutaneous connective tissue reactions to various endodontic biomaterials: an animal study. J Dent Res Dent Clin Dent Prospects 2013; 7:15-21. [PMID: 23486841 PMCID: PMC3593200 DOI: 10.5681/joddd.2013.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/08/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIMS Biocompatibility of root-end filling materials is a matter of debate. The aim of this study was to compare the biocompatibility of a variety of commercial ProRoot WMTA cements and a resin-based cement (Geristore®) with different pH values of setting reaction and different aluminum contents, implanted into the subcutaneous connective tissue of rats at various time intervals. MATERIALS AND METHODS Fifty Sprague-Dawley rats were used in this study. Polyethylene tubes were filled with Angelus WMTA, ProRoot WMTA, Bioaggregate, and Geristore. Empty control tubes were implanted into subcutaneous tissues and harvested at 7-, 14-, 28- and 60-day intervals. Tissue sections of 5 μm were stained with hematoxylin and eosin and observed under a light microscope. Inflammatory reactions were categorized as 0, none (without inflammatory cells); 1, mild (inflammatory cells ≤25); 2, moderate (25-125 inflammatory cells); and 3, severe (>125 inflammatory cells). Statistical analysis was performed with Kruskal-Wallis and Mann Whitney U tests. RESULTS ProRoot WMTA and Angelus elicited significantly less inflammation than other materials (P<0.05). After 7 days, however, all the materials induced significantly more inflammation than the controls (P<0.05). Angelus-MTA group exhi-bited no significant differences from the Bioaggregate group (P=0.15); however, ProRoot WMTA elicited significantly less inflammation than Bioaggregate (P=0.02). Geristore induced significantly more inflammation than other groups (P<0.05). CONCLUSION Geristore induced an inflammatory response higher than ProRoot WMTA; therefore, it is not recommended for clinical use.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Head, Center for Excellence in Endodontic Materials, Professor Kamal Asgar Research Center (KARC) For Dental Materials and Devices, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Okte Z, Bayrak S, Fidanci UR, Sel T. Fluoride and aluminum release from restorative materials using ion chromatography. J Appl Oral Sci 2012; 20:27-31. [PMID: 22437674 PMCID: PMC3928768 DOI: 10.1590/s1678-77572012000100006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/02/2010] [Indexed: 11/30/2022] Open
Abstract
Objective The aim of this study was to determine the amounts of fluoride and aluminum
released from different restorative materials stored in artificial saliva and
double-distilled water. Material and Methods Cylindrical specimens (10 x 1 mm) were prepared from 4 different restorative
materials (Kavitan Plus, Vitremer, Dyract Extra, and Surefil). For each material,
20 specimens were prepared, 10 of which were stored in 5 mL artificial saliva and
10 of which were stored in 5 mL of double-distilled water. Concentrations of
fluoride and aluminum in the solutions were measured using ion chromatography.
Measurements were taken daily for one week and then weekly for two additional
weeks. Data were analyzed using two-way ANOVA and Duncan's multiple range tests
(p<0.05). Results The highest amounts of both fluoride and aluminum were released by the
resin-modified glass ionomer cement Vitremer in double-distilled water
(p<0.05). All materials released significantly more fluoride in
double-distilled water than in artificial saliva (p<0.05). In artificial
saliva, none of the materials were observed to release aluminum. Conclusion It was concluded that storage media and method of analysis should be taken into
account when the fluoride and aluminum release from dental materials is
assessed.
Collapse
Affiliation(s)
- Zeynep Okte
- Department of Pediatric Dentistry, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | | | | | | |
Collapse
|
12
|
Camilleri J. The biocompatibility of modified experimental Portland cements with potential for use in dentistry. Int Endod J 2009; 41:1107-14. [PMID: 19133101 DOI: 10.1111/j.1365-2591.2008.01483.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the biocompatibility of a group of new potential dental materials and their eluants by assessing cell viability. METHODOLOGY Calcium sulpho-aluminate cement (CSA), calcium fluoro-aluminate cement (CFA) and glass-ionomer cement (GIC; Ketac Molar), used as the control, were tested for biocompatibility. Using a direct test method cell viability was measured quantitatively using alamarBluetrade mark dye, and an indirect test method where cells were grown on material elutions and cell viability was assessed using methyltetrazolium (MTT) assay as recommended by ISO 10 993-Part 5 for in vitro testing. Statistical analysis was performed by analysis of variance and Tukey multi-comparison test method. RESULTS Elution collected from the prototype cements and the GIC cured for 1 and 7 days allowed high cell activity after 24 h cell exposure, which reduced after 48 h when compared to the nontoxic glass-ionomer control, but increased significantly after 72 h cell contact. Elutions collected after 28 days revealed reduced cell activity at all cell exposure times. Cells placed in direct contact with the prototype materials showed reduced cell activity when compared with the control. CONCLUSIONS Cell growth was poor when seeded in direct contact with the prototype cements. GIC encouraged cell growth after 1 day of contact. The eluted species for all the cements tested exhibited adequate cell viability in the early ages with reduced cell activity at 28 days. Changes in the production of calcium hydroxide as a by-product of cement hydration affect the material biocompatibility adversely.
Collapse
Affiliation(s)
- J Camilleri
- Department of Building and Civil Engineering, Faculty of Architecture and Civil Engineering, University of Malta, Msida, Malta.
| |
Collapse
|
13
|
Markovic DL, Petrovic BB, Peric TO. Fluoride content and recharge ability of five glassionomer dental materials. BMC Oral Health 2008; 8:21. [PMID: 18655734 PMCID: PMC2507707 DOI: 10.1186/1472-6831-8-21] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 07/28/2008] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The relationship between fluoride content and fluoride release for glass-ionomer cements is not well understood. The aim of this laboratory study was: to determine the fluoride concentrations at the surfaces of glass-ionomer materials with respect to different storage media and different pH environments; to examine the recharge ability of the materials after NaF immersion; and to assess the morphological changes at the material surfaces using scanning electron microscope and energy dispersive spectroscopic techniques (SEM/EDS). METHODS Five glass-ionomer materials, Fuji Triage (FT), Fuji II LC (FII), Fuji VIII (FVIII), Fuji IX GP (FIX), and Ketac N100 (KN), were analyzed in this study. Resin-based fluoride releasing material Helioseal F (HSF) was used as a comparison material. The sample consisted of 120 cured cement disks (n = 20 disks of each tested material, 10 x 1.5 mm). Five disks of each material were stored in 4 different storage media (I- saline, II- acidic solution ph = 2.5, III- acid solution ph = 5.5, IV- NaF solution (c = 500/106). After 7 days, two disks of each material were transferred from media I, II and III to the NaF solution for 3 min. EDS analysis was conducted in 3 randomly selected spots of each experimental disk. SEM was used to determine morphological characteristics of the material surface. Differences between the experimental groups have been analyzed using Student's t-test with the level of significance set at p < 0.001. RESULTS FT showed the highest fluoride content at the surface of the material. The lowest amounts of fluoride ions were detected at the surfaces of the FT disks stored at low pH environments, and this difference was statistically significant (p < 0.001). Glass-ionomers showed significantly higher fluoride concentrations when compared to the HSF (p < 0.001). After immersion in the NaF solution, fluoride concentrations at the surfaces of the disks increased when compared with previous storage media (FT>FVIII>KN>FII>FIX). SEM analysis of the surface morphology revealed numerous voids, cracks and microporosities in all experimental groups, except for KN and HSF. More homogenous material structure with more discrete cracks was observed in samples stored at neutral pH environment, compared to disks stored in acidic solutions. CONCLUSION The tested materials could be considered as promising dental materials with potential prophylactic characteristics due to their relatively high fluoride content, but also the ability to extensively reabsorb fluoride ions, especially in acidic environments.
Collapse
Affiliation(s)
- Dejan Lj Markovic
- Faculty of Dentistry, Clinic for Paediatric and Preventive Dentistry, Dr Subotica 11, Belgrade, Republic of Serbia.
| | | | | |
Collapse
|
14
|
Gandolfi MG, Chersoni S, Acquaviva GL, Piana G, Prati C, Mongiorgi R. Fluoride release and absorption at different pH from glass-ionomer cements. Dent Mater 2006; 22:441-9. [PMID: 16153705 DOI: 10.1016/j.dental.2005.04.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Accepted: 04/07/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the fluoride release (release-tests) from two glass-ionomer cements (GIC), before and after NaF solution treatment (fluoride treatment) in different pH environments. MATERIALS AND METHODS After 21 days, every second sample was submitted to fluoride treatment to simulate a fluoride recharge. After fluoride treatment every second sample was submitted to a further three days of long release-tests. Sample surfaces were analyzed by SEM before and after the release-tests in all pH solutions studied. RESULTS The present study showed that GICs released fluoride ions for the duration of the examination period. For both materials the amount of F(-) released at low pH was considerably greater than at higher pH. The massive superficial breaking up observed by SEM probably promoted the releasing processes. Recharge is possible at different pH levels using NaF solution. CONCLUSIONS Fluoride release may depend on GICs surface degradation caused by pH in the solution. The use of this kind of material may be an important issue in patients with with low pH saliva and with a high risks caries.
Collapse
Affiliation(s)
- M G Gandolfi
- Center of Biomineralogy, Crystallography and Biomaterials, University of Bologna, Bologna Italy
| | | | | | | | | | | |
Collapse
|
15
|
Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 2006; 23:343-62. [PMID: 16616773 DOI: 10.1016/j.dental.2006.01.022] [Citation(s) in RCA: 494] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 11/10/2005] [Accepted: 01/10/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The purpose of this article was to review the fluoride release and recharge capabilities, and antibacterial properties, of fluoride-releasing dental restoratives, and discuss the current status concerning the prevention or inhibition of caries development and progression. METHODS Information from original scientific full papers or reviews listed in PubMed (search term: fluoride release AND (restorative OR glass-ionomer OR compomer OR polyacid-modified composite resin OR composite OR amalgam)), published from 1980 to 2004, was included in the review. Papers dealing with endodontic or orthodontic topics were not taken into consideration. Clinical studies concerning secondary caries development were only included when performed in split-mouth design with an observation period of at least three years. RESULTS Fluoride-containing dental materials show clear differences in the fluoride release and uptake characteristics. Short- and long-term fluoride releases from restoratives are related to their matrices, setting mechanisms and fluoride content and depend on several environmental conditions. Fluoride-releasing materials may act as a fluoride reservoir and may increase the fluoride level in saliva, plaque and dental hard tissues. However, clinical studies exhibited conflicting data as to whether or not these materials significantly prevent or inhibit secondary caries and affect the growth of caries-associated bacteria compared to non-fluoridated restoratives. SIGNIFICANCE Fluoride release and uptake characteristics depend on the matrices, fillers and fluoride content as well as on the setting mechanisms and environmental conditions of the restoratives. Fluoride-releasing materials, predominantly glass-ionomers and compomers, did show cariostatic properties and may affect bacterial metabolism under simulated cariogenic conditions in vitro. However, it is not proven by prospective clinical studies whether the incidence of secondary caries can be significantly reduced by the fluoride release of restorative materials.
Collapse
Affiliation(s)
- Annette Wiegand
- Department of Operative Dentistry, Preventive Dentistry and Periodontology, University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | | | | |
Collapse
|
16
|
Fano L, Fano V, Ma W, Wang X, Zhu F. Hydrolytic degradation and cracks in resin-modified glass-ionomer cements. J Biomed Mater Res B Appl Biomater 2004; 69:87-93. [PMID: 15015215 DOI: 10.1002/jbm.b.20037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Water-absorption affects the basic properties of resin-modified glass-ionomer cements (RMGICs). Fick's law is usually invoked to explain the absorption process. The purpose of this study is to show that the absorption in accordance with the Fickian model cannot be extended to the whole of the specimen, and that microcrack formation is the main degradation mechanism for specimens cured in a closed environment. For this purpose, flat disk-shaped paste specimens 1.5 mm thick (aspect ratio 4), irradiated in closed conditions between two glass slides and stored in water for approximately 20 months, were analyzed periodically gravimetrically and under confocal fluorescence microscopy, with absorbed eosin used as the fluorescent probe. At pH 7.0, the specimen surface (10-20 micrometers in depth) absorbed water rapidly, swelled, and disintegrated in 20-40 days. Long-term storage produced isolated cracks and grains, no progress in the swelling, and a slow weight decrease. A lower pH (pH 3.5) produced a significant increase of the number of microcracks. The decrease in the irradiation time (30 s or less) enhanced the erosion process, producing very broad cracks. It was concluded that the prevalent mechanism of long-term hydrolytic degradation was based on the slow formation of cracks, whereas only in the early stage of storage did absorption occur quickly in accordance with the Fickian diffusion.
Collapse
Affiliation(s)
- Luca Fano
- Department of Public Health, Section of Physics, Istituto Nazionale Fisica della Materia, University of Parma, via Volturno 39, Parma, Italy.
| | | | | | | | | |
Collapse
|
17
|
Hayacibara MF, Rosa OPS, Koo H, Torres SA, Costa B, Cury JA. Effects of fluoride and aluminum from ionomeric materials on S. mutans biofilm. J Dent Res 2003; 82:267-71. [PMID: 12651929 DOI: 10.1177/154405910308200405] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ionomeric materials release different proportions of fluoride and aluminum. Their simultaneous effect on the acidogenicity and composition of S. mutans biofilm is unknown. Six cylindrical specimens of each material (Ketac-fil, Vitremer, Fuji-Ortho LC, F-2000, and Z-100) were incubated with S. mutans GS-5 in culture media containing 5% sucrose (w/v). The media were changed daily for seven days, during which the pH and concentrations of fluoride and aluminum were determined. Furthermore, the concentrations of these ions and insoluble polysaccharide were determined in the biofilm formed at the end of the experimental period. The results showed that all the materials tested released fluoride. However, Vitremer released the highest amount of aluminum and was the most effective in reducing the acidogenicity of S. mutans biofilms. It also significantly affected both biofilm formation and composition. Thus, this study suggests that aluminum released by ionomeric materials may enhance the biological effects of fluoride.
Collapse
Affiliation(s)
- M F Hayacibara
- Faculty of Dentistry of Piracicaba, UNICAMP, Av. Limeira, 901, CEP 13414-903, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Soheili Majd E, Goldberg M, Stanislawski L. In vitro effects of ascorbate and Trolox on the biocompatibility of dental restorative materials. Biomaterials 2003; 24:3-9. [PMID: 12417172 DOI: 10.1016/s0142-9612(02)00221-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Previous in vitro studies on the cytotoxicity of eight dental restorative materials including composites, compomers, resin-modified glass ionomer cements and glass ionomer cements have demonstrated a depletion of intracellular glutathione in gingival fibroblasts incubated with eluates of these materials and a protective effect of N-acetylcysteine. In the present study, we investigate the effects of two other antioxidants: ascorbate and Trolox. It was found that Trolox reduced the cytotoxicity induced by resin-based biomaterial eluates. In contrast, ascorbate increased in a dose-dependent manner the toxic effect of all eluates except for Z100 MP and Tetric flow (composites). The effect of D-mannitol was studied for GC FUJI II and was found to neutralize the additional toxic effect of ascorbate. Ascorbate increased the depletion of intracellular glutathione of these dental material eluates (between 17% and 24%, depending on the material). Quantification of metal ions in the dental material eluates showed the presence of significant amounts of aluminum and iron in GC FUJI II > photac fil > GC FUJI II LC > F2000. The mechanism of this increased cytotoxicity could be explained by the Fenton reaction resulting from the pro-oxidant effect of ascorbate in the presence of iron (transition metal ions) and/or aluminum.
Collapse
Affiliation(s)
- E Soheili Majd
- Laboratoire de Biologie et Physiopathologie Cranio-faciales, EA 2496, Faculté de Chirurgie Dentaire, Université Paris V, 1 rue Maurice Arnoux, Montrouge 92120, France
| | | | | |
Collapse
|