1
|
Siriwardane ML, Derosa K, Collins G, Pfister BJ. Engineering Fiber-Based Nervous Tissue Constructs for Axon Regeneration. Cells Tissues Organs 2021; 210:105-117. [PMID: 34198287 DOI: 10.1159/000515549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Biomaterial-based scaffolds used in nerve conduits including channels for confining regenerating axons and 3-dimensional (3D) gels as substrates for growth have made improvements in models of nerve repair. Many biomaterial strategies, however, continue to fall short of autologous nerve grafts, which remain the current gold standard in repairing severe nerve lesions (<20 mm). Intraluminal nerve conduit fibers have also shown considerable promise in directing regenerating axons in vitro and in vivo and have gained increasing interest for nerve repair. It is unknown, however, how growing axons respond to a fiber when encountered in a 3D environment. In this study, we considered a construct consisting of a compliant collagen hydrogel matrix and a fiber component to assess contact-guided axon growth. We investigated preferential axon outgrowth on synthetic and natural polymer fibers by utilizing small-diameter microfibers of poly-L-lactic acid and type I collagen representing 2 different fiber stiffnesses. We found that axons growing freely in a 3D hydrogel culture preferentially attach, turn and follow fibers with outgrowth rates and distances that far exceed outgrowth in a hydrogel alone. Wet-spun type I collagen from rat tail tendon performed the best, associated with highly aligned and accelerated outgrowth. This study also evaluated the response of dorsal root ganglion neurons from adult rats to provide data more relevant to axon regenerative potential in nerve repair. We found that ECM treatments on fibers enhanced the regeneration of adult axons indicating that both the physical and biochemical presentation of the fibers are essential for enhancing axon guidance and growth.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Kathleen Derosa
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - George Collins
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
2
|
Yamada Y, Yoshida C, Hamada K, Kikkawa Y, Nomizu M. Development of Three-Dimensional Cell Culture Scaffolds Using Laminin Peptide-Conjugated Agarose Microgels. Biomacromolecules 2020; 21:3765-3771. [DOI: 10.1021/acs.biomac.0c00871] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yuji Yamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chihiro Yoshida
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Arya N, Forget A, Sarem M, Shastri VP. RGDSP functionalized carboxylated agarose as extrudable carriers for chondrocyte delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:103-111. [DOI: 10.1016/j.msec.2019.01.080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/11/2018] [Accepted: 01/20/2019] [Indexed: 01/23/2023]
|
4
|
Graham S, Marina PF, Blencowe A. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks. Carbohydr Polym 2018; 207:143-159. [PMID: 30599994 DOI: 10.1016/j.carbpol.2018.11.053] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/22/2023]
Abstract
Thermoresponsive polymers have been used extensively for various applications including food additives, pharmaceutical formulations, therapeutic delivery, cosmetics and environmental remediation, to mention a few. Many thermoresponsive polymers have the ability to form physical hydrogel networks in response to temperature changes, which are particularly useful for emerging biomedical applications, including cell therapies, drug delivery systems, tissue engineering, wound healing and 3D bioprinting. In particular, the use of polysaccharides with thermoresponsive properties has been of interest due to their wide availability, versatile functionality, biodegradability, and in many cases, inherent biocompatibility. Naturally thermoresponsive polysaccharides include agarose, carrageenans and gellan gum, which exhibit upper critical solution temperatures, transitioning from a solution to a gel state upon cooling. Arguably, this limits their use in biomedical applications, particularly for cell encapsulation as they require raised temperatures to maintain a solution state that may be detrimental to living systems. Conversely, significant progress has been made over recent years to develop synthetically modified polysaccharides, which tend to exhibit lower critical solution temperatures, transitioning from a solution to a gel state upon warming. Of particular interest are thermoresponsive polysaccharides with a lower critical solution temperature in between room temperature and physiological temperature, as their solutions can conveniently be manipulated at room temperature before gelling upon warming to physiological temperature, which makes them ideal candidates for many biological applications. Therefore, this review provides an introduction to the different types of thermoresponsive polysaccharides that have been developed, their resulting hydrogels and properties, and the exciting applications that have emerged as a result of these properties.
Collapse
Affiliation(s)
- Sarah Graham
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Paula Facal Marina
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Anton Blencowe
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia; Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.
| |
Collapse
|
5
|
Regeneration of heat stable salts-loaded anion exchange resin by a novel zirconium pentahydroxide [Zr(OH) 5 − ] displacement technique in CO 2 absorption process. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Yodmuang S, McNamara SL, Nover AB, Mandal BB, Agarwal M, Kelly TAN, Chao PHG, Hung C, Kaplan DL, Vunjak-Novakovic G. Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 2015; 11:27-36. [PMID: 25281788 DOI: 10.1016/j.actbio.2014.09.032] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 08/21/2014] [Accepted: 09/18/2014] [Indexed: 01/20/2023]
Abstract
Cartilage tissue lacks an intrinsic capacity for self-regeneration due to slow matrix turnover, a limited supply of mature chondrocytes and insufficient vasculature. Although cartilage tissue engineering has achieved some success using agarose as a scaffolding material, major challenges of agarose-based cartilage repair, including non-degradability, poor tissue-scaffold integration and limited processing capability, have prompted the search for an alternative biomaterial. In this study, silk fiber-hydrogel composites (SF-silk hydrogels) made from silk microfibers and silk hydrogels were investigated for their potential use as a support material for engineered cartilage. We demonstrated the use of 100% silk-based fiber-hydrogel composite scaffolds for the development of cartilage constructs with properties comparable to those made with agarose. Cartilage constructs with an equilibrium modulus in the native tissue range were fabricated by mimicking the collagen fiber and proteoglycan composite architecture of native cartilage using biocompatible, biodegradable silk fibroin from Bombyx mori. Excellent chondrocyte response was observed on SF-silk hydrogels, and fiber reinforcement resulted in the development of more mechanically robust constructs after 42 days in culture compared to silk hydrogels alone. Thus, we demonstrate the versatility of silk fibroin as a composite scaffolding material for use in cartilage tissue repair to create functional cartilage constructs that overcome the limitations of agarose biomaterials, and provide a much-needed alternative to the agarose standard.
Collapse
Affiliation(s)
- Supansa Yodmuang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Adam B Nover
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Biman B Mandal
- Department of Biotechnology, Indian Institute of Technology, Guwahati 781039, India
| | - Monica Agarwal
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Terri-Ann N Kelly
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Pen-hsiu Grace Chao
- Institute of Biomedical Engineering, School of Engineering and School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Clark Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | |
Collapse
|
7
|
Abstract
Little headway has been made in single cell protein analysis, aside from tools that rely solely on antibody-probe based detection (i.e., flow cytometry, immunocytochemistry), which are limited by low specificity and multiplexing capabilities. To address these protein analysis gaps, we have introduced a single-cell western blot (scWestern). The protein assay is capable of highly specific analysis by coupling antibody-based detection with a polyacrylamide gel electrophoresis (PAGE) protein separation. Cells are settled via gravity into polyacrylamide (PA) microwells, chemically lysed in the wells, and then subjected to PAGE through the walls of the microwells and into the surrounding PA gel. Over a thousand single-cell separations are performed simultaneously, and multiple protein targets of interest are investigated. After PAGE separation, photo-immobilization of all proteins to the gel allows for antibody probing and lends to the archival quality of the scWestern assay where new proteins targets can be investigated months after the initial separations are performed.
Collapse
Affiliation(s)
- Elly Sinkala
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall MC 1762, Berkeley, CA, 94720-1762, USA
| | - Amy E Herr
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall MC 1762, Berkeley, CA, 94720-1762, USA.
| |
Collapse
|
8
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
9
|
Siriwardane ML, DeRosa K, Collins G, Pfister BJ. Controlled formation of cross-linked collagen fibers for neural tissue engineering applications. Biofabrication 2014; 6:015012. [PMID: 24589999 DOI: 10.1088/1758-5082/6/1/015012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fibrous scaffolds engineered to direct the growth of tissues can be important in forming architecturally functional tissue such as aligning regenerating nerves with their target. Collagen is a commonly used substrate used for neuronal growth applications in the form of surface coatings and hydrogels. The wet spinning technique can create collagen fibers without the use of organic solvents and is typically accomplished by extruding a collagen dispersion into a coagulation bath. To create well-controlled and uniform collagen fibers, we developed an automatic wet spinning device with precise control over the spinning and fiber collection parameters. A fiber collection belt allowed the continuous formation of very soft and delicate fibers up to half a meter in length. Wet-spun collagen fibers were characterized by tensile and thermal behavior, diameter uniformity, the swelling response in phosphate buffered saline and their biocompatibility with dorsal root ganglion (DRG) neurons and Schwann cells. Fibers formed from 0.75% weight by volume (w/v) collagen dispersions formed the best fibers in terms of tensile behavior and fiber uniformity. Fibers post-treated with the cross-linkers glutaraldehyde and genipin exhibited increased mechanical stability and reduced swelling. Importantly, genipin-treated fibers were conducive to DRG neurons and Schwann cell survival and growth, which validated the use of this cross-linker for neural tissue engineering applications.
Collapse
Affiliation(s)
- Mevan L Siriwardane
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA. Graduate School of Biomedical Sciences, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | | | | | |
Collapse
|
10
|
Forget A, Christensen J, Lüdeke S, Kohler E, Tobias S, Matloubi M, Thomann R, Shastri VP. Polysaccharide hydrogels with tunable stiffness and provasculogenic properties via α-helix to β-sheet switch in secondary structure. Proc Natl Acad Sci U S A 2013; 110:12887-92. [PMID: 23886665 PMCID: PMC3740890 DOI: 10.1073/pnas.1222880110] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mechanical aspects of the cellular environment can influence cell function, and in this context hydrogels can serve as an instructive matrix. Here we report that physicochemical properties of hydrogels derived from polysaccharides (agarose, κ-carrageenan) having an α-helical backbone can be tailored by inducing a switch in the secondary structure from α-helix to β-sheet through carboxylation. This enables the gel modulus to be tuned over four orders of magnitude (G' 6 Pa-3.6 × 10(4) Pa) independently of polymer concentration and molecular weight. Using carboxylated agarose gels as a screening platform, we demonstrate that soft-carboxylated agarose provides a unique environment for the polarization of endothelial cells in the presence of soluble and bound signals, which notably does not occur in fibrin and collagen gels. Furthermore, endothelial cells organize into freestanding lumens over 100 μm in length. The finding that a biomaterial can modulate soluble and bound signals provides impetus for exploring mechanobiology paradigms in regenerative therapies.
Collapse
Affiliation(s)
- Aurelien Forget
- Institute for Macromolecular Chemistry
- BIOSS–Centre for Biological Signaling Studies, and
| | - Jon Christensen
- Institute for Macromolecular Chemistry
- BIOSS–Centre for Biological Signaling Studies, and
| | - Steffen Lüdeke
- Institute for Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany
| | - Esther Kohler
- Institute for Macromolecular Chemistry
- BIOSS–Centre for Biological Signaling Studies, and
| | | | | | | | - V. Prasad Shastri
- Institute for Macromolecular Chemistry
- BIOSS–Centre for Biological Signaling Studies, and
| |
Collapse
|
11
|
Yang P, Yang W. Surface Chemoselective Phototransformation of C–H Bonds on Organic Polymeric Materials and Related High-Tech Applications. Chem Rev 2013; 113:5547-94. [PMID: 23614481 DOI: 10.1021/cr300246p] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory
of Applied Surface
and Colloid Chemistry, Ministry of Education, College of Chemistry
and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Wantai Yang
- The State Key Laboratory of
Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing
100029, China
| |
Collapse
|
12
|
Samiey B, Ashoori F. Adsorptive removal of methylene blue by agar: effects of NaCl and ethanol. Chem Cent J 2012; 6:14. [PMID: 22339759 PMCID: PMC3296642 DOI: 10.1186/1752-153x-6-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 02/17/2012] [Indexed: 11/10/2022] Open
Abstract
Adsorption of methylene blue (MB) on agar was investigated as a function of temperature (308-328 K), different concentrations of NaCl and HCl and various weight percentages of binary mixtures of ethanol with water. It was observed that the maximum experimental adsorption capacity, qm, exp, in water is up to 50 mg g-1 and decreases with increase in weight percentage of ethanol and NaCl and HCl concentration compared to that of water. Analysis of data using ARIAN model showed that MB adsorbs as monomer and dimer on the surface of agar. Binding constants of MB to agar were calculated using the Temkin isotherm. The process is exothermic in water and other solutions. The mean adsorption energy (E) value indicated binding of MB to agar is chemical adsorption. Kinetics of this interaction obeys from the pseudo-second-order model and diffusion of the MB molecules into the agar is the main rate-controlling step.
Collapse
Affiliation(s)
- Babak Samiey
- Department of Chemistry, Faculty of Science, Lorestan University, 68137-17133, Khoramabad, Iran.
| | | |
Collapse
|
13
|
Martin TA, Herman CT, Limpoco FT, Michael MC, Potts GK, Bailey RC. Quantitative photochemical immobilization of biomolecules on planar and corrugated substrates: a versatile strategy for creating functional biointerfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3762-71. [PMID: 21793535 PMCID: PMC3960923 DOI: 10.1021/am2009597] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Methods for the generation of substratespresenting biomolecules in a spatially controlled manner are enabling tools for applications in biosensor systems, microarray technologies, fundamental biological studies and biointerface science. We have implemented a method to create biomolecular patterns by using light to control the direct covalent immobilization of biomolecules onto benzophenone-modified glass substrates. We have generated substrates presenting up to three different biomolecules patterned in sequence, and demonstrate biomolecular photopatterning on corrugated substrates. The chemistry of the underlying monolayer was optimized to incorporate poly(ethylene glycol) to enable adhesive cell adhesion onto patterned extracellular matrix proteins. Substrates were characterized with contact angle goniometry, AFM, and immunofluorescence microscopy. Importantly, radioimmunoassays were performed to quantify the site density of immobilized biomolecules on photopatterned substrates. Retained function of photopatterned proteins was demonstrated both by native ligand recognition and cell adhesion to photopatterned substrates, revealing that substrates generated with this method are suitable for probing specific cell receptor-ligand interactions. This molecularly general photochemical patterning method is an enabling tool for the creation of substrates presenting both biochemical and topographical variation, which is an important feature of many native biointerfaces.
Collapse
Affiliation(s)
- Teresa A. Martin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Christine T. Herman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Francis T. Limpoco
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Madeline C. Michael
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Gregory K. Potts
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801
| |
Collapse
|
14
|
Herman CT, Potts GK, Michael MC, Tolan NV, Bailey RC. Probing dynamic cell-substrate interactions using photochemically generated surface-immobilized gradients: application to selectin-mediated leukocyte rolling. Integr Biol (Camb) 2011; 3:779-91. [PMID: 21614364 PMCID: PMC3960975 DOI: 10.1039/c0ib00151a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Model substrates presenting biochemical cues immobilized in a controlled and well-defined manner are of great interest for their applications in biointerface studies that elucidate the molecular basis of cell receptor-ligand interactions. Herein, we describe a direct, photochemical method to generate surface-immobilized biomolecular gradients that are applied to the study of selectin-mediated leukocyte rolling. The technique employs benzophenone-modified glass substrates, which upon controlled exposure to UV light (350-365 nm) in the presence of protein-containing solutions facilitate the generation of covalently immobilized protein gradients. Conditions were optimized to generate gradient substrates presenting P-selectin and PSGL-1 (P-selectin glycoprotein ligand-1) immobilized at site densities over a 5- to 10-fold range (from as low as ∼200 molecules μm(-2) to as high as 6000 molecules μm(-2)). The resulting substrates were quantitatively characterized via fluorescence analysis and radioimmunoassays before their use in the leukocyte rolling assays. HL-60 promyelocytes and Jurkat T lymphocytes were assessed for their ability to tether to and roll on substrates presenting immobilized P-selectin and PSGL-1 under conditions of physiologically relevant shear stress. The results of these flow assays reveal the combined effect of immobilized protein site density and applied wall shear stress on cell rolling behavior. Two-component substrates presenting P-selectin and ICAM-1 (intercellular adhesion molecule-1) were also generated to assess the interplay between these two proteins and their effect on cell rolling and adhesion. These proof-of-principle studies verify that the described gradient generation approach yields well-defined gradient substrates that present immobilized proteins over a large range of site densities that are applicable for investigation of cell-materials interactions, including multi-parameter leukocyte flow studies. Future applications of this enabling methodology may lead to new insights into the biophysical phenomena and molecular mechanism underlying complex biological processes such as leukocyte recruitment and the inflammatory response.
Collapse
Affiliation(s)
- Christine T. Herman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Gregory K. Potts
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Madeline C. Michael
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Nicole V. Tolan
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA. Tel: 217-333-0676
| |
Collapse
|
15
|
Abstract
A detailed understanding of the biophysical features that affect cell growth and development is important in guiding the design of biomimetic scaffolds. The cellular microenvironment is a network of structural and functional components that provide mechanical and chemical stimuli, which influence cell function and fate. Important developmental signals are conveyed to cells through interactions with neighboring cells, the extracellular matrix (ECM), and growth factors. Currently, there are number of approaches to create 3D tissue models in vitro that allow for control over cell adhesion, the physical properties of the surrogate matrix, and the spatial distribution of growth factors. This review describes some of the most significant biological features of the ECM, and several engineering methods currently being implemented to design and tune synthetic scaffolds to mimic these features.
Collapse
Affiliation(s)
- Shawn C Owen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010; 31:2701-16. [PMID: 20060580 DOI: 10.1016/j.biomaterials.2009.12.052] [Citation(s) in RCA: 379] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Electroconductive hydrogels (ECHs) are composite biomaterials that bring together the redox switching and electrical properties of inherently conductive electroactive polymers (CEPs) with the facile small molecule transport, high hydration levels and biocompatibility of cross-linked hydrogels. General methods for the synthesis of electroconductive hydrogels as polymer blends and as polymer co-networks via chemical oxidative, electrochemical and/or a combination of chemical oxidation followed by electrochemical polymerization techniques are reviewed. Specific examples are introduced to illustrate the preparation of electroconductive hydrogels that were synthesized from poly(HEMA)-based hydrogels with polyaniline and from poly(HEMA)-based hydrogels with polypyrrole. The key applications of electroconductive hydrogels; as biorecognition membranes for implantable biosensors, as electro-stimulated drug release devices for programmed delivery, and as the low interfacial impedance layers on neuronal prostheses are highlighted. These applications provide great new horizons for these stimuli responsive, biomimetic polymeric materials.
Collapse
Affiliation(s)
- Anthony Guiseppi-Elie
- ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA 23219, USA.
| |
Collapse
|
17
|
Tayalia P, Mooney DJ. Controlled growth factor delivery for tissue engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3269-3285. [PMID: 20882497 DOI: 10.1002/adma.200900241] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Growth factors play a crucial role in information transfer between cells and their microenvironment in tissue engineering and regeneration. They initiate their action by binding to specific receptors on the surface of target cells and the chemical identity, concentration, duration, and context of these growth factors contain information that dictates cell fate. Hence, the importance of exogenous delivery of these molecules in tissue engineering is unsurprising, considering their importance for tissue regeneration. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and their potential toxicity at high systemic levels, suggest that conventional routes of administration are unlikely to be effective. In this review, we provide an overview of the design criteria for growth factor delivery vehicles with respect to the growth factor itself and the microenvironment for delivery. We discuss various methodologies that could be adopted to achieve this localized delivery, and strategies using polymers as delivery vehicles in particular.
Collapse
|
18
|
Norman LL, Stroka K, Aranda-Espinoza H. Guiding Axons in the Central Nervous System: A Tissue Engineering Approach. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:291-305. [DOI: 10.1089/ten.teb.2009.0114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Leann L. Norman
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Kimberly Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
19
|
Yow SZ, Quek CH, Yim EKF, Lim CT, Leong KW. Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells. Biomaterials 2008; 30:1133-42. [PMID: 19041132 DOI: 10.1016/j.biomaterials.2008.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 11/04/2008] [Indexed: 02/08/2023]
Abstract
Living tissues consist of groups of cells organized in a controlled manner to perform a specific function. Spatial distribution of cells within a three-dimensional matrix is critical for the success of any tissue-engineering construct. Fibers endowed with cell-encapsulation capability would facilitate the achievement of this objective. Here we report the synthesis of a cell-encapsulated fibrous scaffold by interfacial polyelectrolyte complexation (IPC) of methylated collagen and a synthetic terpolymer. The collagen component was well distributed in the fiber, which had a mean ultimate tensile strength of 244.6+/-43.0 MPa. Cultured in proliferating medium, human mesenchymal stem cells (hMSCs) encapsulated in the fibers showed higher proliferation rate than those seeded on the scaffold. Gene expression analysis revealed the maintenance of multipotency for both encapsulated and seeded samples up to 7 days as evidenced by Sox 9, CBFA-1, AFP, PPARgamma2, nestin, GFAP, collagen I, osteopontin and osteonectin genes. Beyond that, seeded hMSCs started to express neuronal-specific genes such as aggrecan and MAP2. The study demonstrates the appeal of IPC for scaffold design in general and the promise of collagen-based hybrid fibers for tissue engineering in particular. It lays the foundation for building fibrous scaffold that permits 3D spatial cellular organization and multi-cellular tissue development.
Collapse
Affiliation(s)
- S Z Yow
- Graduate Program in Bioengineering, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | | | | | | | | |
Collapse
|
20
|
Martin BC, Minner EJ, Wiseman SL, Klank RL, Gilbert RJ. Agarose and methylcellulose hydrogel blends for nerve regeneration applications. J Neural Eng 2008; 5:221-31. [PMID: 18503105 DOI: 10.1088/1741-2560/5/2/013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 degrees C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 degrees C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 degrees C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.
Collapse
Affiliation(s)
- Benton C Martin
- Regeneration and Repair Laboratory, Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931-1295, USA
| | | | | | | | | |
Collapse
|
21
|
Li GN, Hoffman-Kim D. Tissue-Engineered Platforms of Axon Guidance. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:33-51. [DOI: 10.1089/teb.2007.0181] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Grace N. Li
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Diane Hoffman-Kim
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| |
Collapse
|
22
|
Rosoff WJ, McAllister R, Esrick MA, Goodhill GJ, Urbach JS. Generating controlled molecular gradients in 3D gels. Biotechnol Bioeng 2005; 91:754-9. [PMID: 15981274 DOI: 10.1002/bit.20564] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A new method for producing molecular gradients of arbitrary shape in thin three dimensional gels is described. Patterns are produced on the surface of the gel by printing with a micropump that dispenses small droplets of solution at controlled rates. The molecules in the solution rapidly diffuse into the gel and create a smooth concentration profile that is independent of depth. The pattern is relatively stable for long times, and its evolution can be accurately described by finite element modeling of the diffusion equation. As a demonstration of the method, direct measurements of protein gradients are performed by quantitative fluorescence microscopy. A complementary technique for measuring diffusion coefficients is also presented. This rapid, flexible, contactless approach to gradient generation is ideally suited for cell culture experiments to investigate the role of gradients of diffusible substances in processes such as chemotaxis, morphogenesis, and pattern formation, as well as for high-throughput screening of system responses to a wide range of chemical concentrations.
Collapse
Affiliation(s)
- W J Rosoff
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | | | | | | | | |
Collapse
|
23
|
Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM. The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 2005; 26:1857-75. [PMID: 15576160 DOI: 10.1016/j.biomaterials.2004.07.006] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/05/2004] [Indexed: 11/16/2022]
Abstract
The construction of tissue-engineered devices for medical applications is now possible in vitro using cell culture and bioreactors. Although methods of incorporating them back into the host are available, current constructs depend purely on diffusion which limits their potential. The absence of a vascular network capable of distributing oxygen and other nutrients within the tissue-engineered device is a major limiting factor in creating vascularised artificial tissues. Though bio-hybrid prostheses such as vascular bypass grafts and skin substitutes have already been developed and are being used clinically, the absence of a capillary bed linking the two systems remains the missing link. In this review, the different approaches currently being or that have been applied to vascularise tissues are identified and discussed.
Collapse
Affiliation(s)
- Ruben Y Kannan
- Biomaterials & Tissue Engineering Centre (BTEC), University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | |
Collapse
|
24
|
Kobayashi H, Kato M, Taguchi T, Ikoma T, Miyashita H, Shimmura S, Tsubota K, Tanaka J. Collagen immobilized PVA hydrogel-hydroxyapatite composites prepared by kneading methods as a material for peripheral cuff of artificial cornea. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2004.08.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Kapur TA, Shoichet MS. Chemically-bound nerve growth factor for neural tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2004; 14:383-94. [PMID: 12747676 DOI: 10.1163/156856203321478883] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to promote regeneration after spinal cord injury, growth factors have been applied in vivo to rescue ailing neurons and provide a path finding signal for regenerating neurites. We previously demonstrated that soluble growth factor concentration gradients can guide axons over long distances, but this model is inherently limited to in vitro applications. To translate the use of growth factor gradients to an implantible device for in vivo studies, we developed a photochemical method to bind nerve growth factor (NGF) to microporous poly(2-hydroxyethylmethacrylate) (PHEMA) gels and tested bioactivity in vitro. A cell adhesive photoreactive poly(allylamine) (PAA) was synthesized and characterized. This photoreactive PAA was applied to the surface of the PHEMA gels to provide both a cell adhesive layer and a photoreactive handle for further NGF immobilization. Using a direct ELISA technique, the amount of NGF immobilized on the surface of PHEMA after UV exposure was determined to be 5.65 +/- 0.82 ng/cm2 or 3.4% of the originally applied NGF. A cell-based assay was performed to determine the bioactivity of the immobilized NGF. Using pheochromocytoma (PC-12) cells, 30 +/- 7% of the cell population responded to bound NGF, a response statistically similar to that of cells cultured on collagen in the presence of 40 ng/ml soluble NGF of 39 +/- 12%. These results demonstrate that PHEMA with photochemically bound NGF is bioactive. This photochemical technique may be useful to spatially control the amount of NGF bound to PHEMA using light and thus build a stable concentration gradient.
Collapse
Affiliation(s)
- Terri Adams Kapur
- Department of Chemical Engineering and Applied Chemistry University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | |
Collapse
|
26
|
Almiñana N, Alsina MA, Espina M, Reig F. Synthesis and physicochemical study of the laminin active sequence: SIKVAV. J Colloid Interface Sci 2003; 263:432-40. [PMID: 12909032 DOI: 10.1016/s0021-9797(03)00344-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis, physicochemical characterization, and interaction with membrane model systems of a peptide derived from the PA22-2 region of laminin are described. Surface activity studies indicate that this peptide is able to spread at the air-water interface being the maximal spreading pressure 20 mN/m at subphase concentrations around 10 micro M. Besides, these peptide molecules are also able to form stable monolayers. Physicochemical studies concerning the interaction of this peptide with lipids, organized in mono and bilayers, were carried out using Langmuir balance experiments and polarization fluorescence techniques. The peptide penetrates better in monolayers of DPPC than in those of PC and forms condensed mixed monolayers with DPPC. Energies of mixing are small thus indicating that deviations from ideality were almost negligible. Interactions with bilayers were studied through microviscosity changes (DPH and TMA-DPH probes), membrane permeability alterations (CF, NBD-PE/dithionite), and fusion promotion (NBD-PE/Rh-PE, resonance energy transfer). Results indicate that this sequence interacts very softly with bilayers without promoting changes in their organization. These data as well as the lack of interaction with erythrocytes suggest that coating liposomes with this peptide through chemical amide bonds can render stable inmunoliposomes for further biological applications.
Collapse
Affiliation(s)
- N Almiñana
- Department of Peptides, Institute for Chemical and Environmental Research, CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | | | | | | |
Collapse
|
27
|
Cao X, Shoichet MS. Investigating the synergistic effect of combined neurotrophic factor concentration gradients to guide axonal growth. Neuroscience 2003; 122:381-9. [PMID: 14614904 DOI: 10.1016/j.neuroscience.2003.08.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Neurotrophic factors direct axonal growth toward the target tissue by a concentration gradient, which is mediated through different tyrosine kinase cell surface receptors. In this study, well-defined concentration gradients of neurotrophic factors (NFs) allowed us to study the synergistic effect of different NFs (e.g. nerve growth factor [NGF], neurotrophin-3 [NT-3] and brain-derived neurotrophic factor [BDNF]) for axonal guidance of embryonic lumbar dorsal root ganglion cells (DRGs). Effective guidance of DRG axons was achieved with a minimum NGF concentration gradient of 133 ng/ml/mm alone, or combined NGF and NT-3 concentration gradients of 80 ng/ml/mm each. Interestingly, the combined concentration gradients of NGF and BDNF did not show any significant synergism at the concentration gradients studied. The synergism observed between NGF and NT-3 indicates that axons may be guided over a 12.5 mm distance, which is significantly greater than that of 7.5 mm calculated by us for NGF alone or that of 2 mm observed by others.
Collapse
Affiliation(s)
- X Cao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5
| | | |
Collapse
|