1
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
2
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
3
|
Tiotiu Cepuc A, Steiropoulos P, Novakova S, Nedeva D, Novakova P, Chong-Neto H, Fogelbach GG, Kowal K. Airway Remodeling in Asthma: Mechanisms, Diagnosis, Treatment, and Future Directions. Arch Bronconeumol 2024:S0300-2896(24)00367-3. [PMID: 39368875 DOI: 10.1016/j.arbres.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Airway remodeling (AR) with chronic inflammation, are key features in asthma pathogenesis. AR characterized by structural changes in the bronchial wall is associated with a specific asthma phenotype with poor clinical outcomes, impaired lung function and reduced treatment response. Most studies focus on the role of inflammation, while understanding the mechanisms driving AR is crucial for developing disease-modifying therapeutic strategies. This review paper summarizes current knowledge on the mechanisms underlying AR, diagnostic tools, and therapeutic approaches. Mechanisms explored include the role of the resident cells and the inflammatory cascade in AR. Diagnostic methods such as bronchial biopsy, lung function testing, imaging, and possible biomarkers are described. The effectiveness on AR of different treatments of asthma including corticosteroids, leukotriene modifiers, bronchodilators, macrolides, biologics, and bronchial thermoplasty is discussed, as well as other possible therapeutic options. AR poses a significant challenge in asthma management, contributing to disease severity and treatment resistance. Current therapeutic approaches target mostly airway inflammation rather than smooth muscle cell dysfunction and showed limited benefits on AR. Future research should focus more on investigating the mechanisms involved in AR to identify novel therapeutic targets and to develop new effective treatments able to prevent irreversible structural changes and improve long-term asthma outcomes.
Collapse
Affiliation(s)
- Angelica Tiotiu Cepuc
- Department of Pulmonology, University Hospital Saint-Luc, Brussels, Belgium; Pole Pneumology, ENT, and Dermatology - LUNS, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Paschalis Steiropoulos
- Department of Pulmonology, Medical School, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Silviya Novakova
- Department of Allergology, University Hospital "Sv. Georgi" Plovdiv, Bulgaria
| | - Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Plamena Novakova
- Department of Allergy, Medical University Sofia, Sofia, Bulgaria
| | - Herberto Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, Brazil
| | | | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology and Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
4
|
Bradding P, Porsbjerg C, Côté A, Dahlén SE, Hallstrand TS, Brightling CE. Airway hyperresponsiveness in asthma: The role of the epithelium. J Allergy Clin Immunol 2024; 153:1181-1193. [PMID: 38395082 DOI: 10.1016/j.jaci.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Airway hyperresponsiveness (AHR) is a key clinical feature of asthma. The presence of AHR in people with asthma provides the substrate for bronchoconstriction in response to numerous diverse stimuli, contributing to airflow limitation and symptoms including breathlessness, wheeze, and chest tightness. Dysfunctional airway smooth muscle significantly contributes to AHR and is displayed as increased sensitivity to direct pharmacologic bronchoconstrictor stimuli, such as inhaled histamine and methacholine (direct AHR), or to endogenous mediators released by activated airway cells such as mast cells (indirect AHR). Research in in vivo human models has shown that the disrupted airway epithelium plays an important role in driving inflammation that mediates indirect AHR in asthma through the release of cytokines such as thymic stromal lymphopoietin and IL-33. These cytokines upregulate type 2 cytokines promoting airway eosinophilia and induce the release of bronchoconstrictor mediators from mast cells such as histamine, prostaglandin D2, and cysteinyl leukotrienes. While bronchoconstriction is largely due to airway smooth muscle contraction, airway structural changes known as remodeling, likely mediated in part by epithelial-derived mediators, also lead to airflow obstruction and may enhance AHR. In this review, we outline the current knowledge of the role of the airway epithelium in AHR in asthma and its implications on the wider disease. Increased understanding of airway epithelial biology may contribute to better treatment options, particularly in precision medicine.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom
| | - Celeste Porsbjerg
- Department of Respiratory Medicine and Infectious Diseases, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Andréanne Côté
- Quebec Heart and Lung Institute, Université Laval, Laval, Quebec, Canada; Department of Medicine, Université Laval, Laval, Quebec, Canada
| | - Sven-Erik Dahlén
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Teal S Hallstrand
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash; Center for Lung Biology, University of Washington, Seattle, Wash.
| | - Christopher E Brightling
- Department of Respiratory Sciences, Leicester Respiratory National Institute for Health and Care Research Biomedical Research Centre, Glenfield Hospital, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
5
|
Lipworth B, Kuo CR, Stewart K, Chan R. Should Airway Hyper-Responsiveness Be Included in the Definition of Clinical Remission With Biologic Therapy in Severe Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:904-907. [PMID: 38097177 DOI: 10.1016/j.jaip.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/31/2023]
Abstract
Airway hyper-responsiveness (AHR) is a tenet of the persistent asthma phenotype along with reversible airway obstruction and type 2 (T2) inflammation. Indirect acting challenges such as mannitol are more closely related to the underlying T2 inflammatory process as compared with direct challenges. In this review article, we summarise the current literature and explore the future role of mannitol AHR in clinical remission with biologics.
Collapse
Affiliation(s)
- Brian Lipworth
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Dundee, United Kingdom.
| | - Chris RuiWen Kuo
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kirsten Stewart
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Rory Chan
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Burgess JK, Weiss DJ, Westergren-Thorsson G, Wigen J, Dean CH, Mumby S, Bush A, Adcock IM. Extracellular Matrix as a Driver of Chronic Lung Diseases. Am J Respir Cell Mol Biol 2024; 70:239-246. [PMID: 38190723 DOI: 10.1165/rcmb.2023-0176ps] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The extracellular matrix (ECM) is not just a three-dimensional scaffold that provides stable support for all cells in the lungs, but also an important component of chronic fibrotic airway, vascular, and interstitial diseases. It is a bioactive entity that is dynamically modulated during tissue homeostasis and disease, that controls structural and immune cell functions and drug responses, and that can release fragments that have biological activity and that can be used to monitor disease activity. There is a growing recognition of the importance of considering ECM changes in chronic airway, vascular, and interstitial diseases, including 1) compositional changes, 2) structural and organizational changes, and 3) mechanical changes and how these affect disease pathogenesis. As altered ECM biology is an important component of many lung diseases, disease models must incorporate this factor to fully recapitulate disease-driver pathways and to study potential novel therapeutic interventions. Although novel models are evolving that capture some or all of the elements of the altered ECM microenvironment in lung diseases, opportunities exist to more fully understand cell-ECM interactions that will help devise future therapeutic targets to restore function in chronic lung diseases. In this perspective article, we review evolving knowledge about the ECM's role in homeostasis and disease in the lung.
Collapse
Affiliation(s)
- Janette K Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD, and
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | | | - Jenny Wigen
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Charlotte H Dean
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
- Centre for Pediatrics and Child Health, Imperial College and Royal Brompton Hospital, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
7
|
Bourdin A, Brusselle G, Couillard S, Fajt ML, Heaney LG, Israel E, McDowell PJ, Menzies-Gow A, Martin N, Mitchell PD, Petousi N, Quirce S, Schleich F, Pavord ID. Phenotyping of Severe Asthma in the Era of Broad-Acting Anti-Asthma Biologics. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:809-823. [PMID: 38280454 DOI: 10.1016/j.jaip.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024]
Abstract
Severe asthma is associated with significant morbidity and mortality despite the maximal use of inhaled corticosteroids and additional controller medications, and has a high economic burden. Biologic therapies are recommended for the management of severe, uncontrolled asthma to help to prevent exacerbations and to improve symptoms and health-related quality of life. The effective management of severe asthma requires consideration of clinical heterogeneity that is driven by varying clinical and inflammatory phenotypes, which are reflective of distinct underlying disease mechanisms. Phenotyping patients using a combination of clinical characteristics such as the age of onset or comorbidities and biomarker profiles, including blood eosinophil counts and levels of fractional exhaled nitric oxide and serum total immunoglobulin E, is important for the differential diagnosis of asthma. In addition, phenotyping is beneficial for risk assessment, selection of treatment, and monitoring of the treatment response in patients with asthma. This review describes the clinical and inflammatory phenotypes of asthma, provides an overview of biomarkers routinely used in clinical practice and those that have recently been explored for phenotyping, and aims to assess the value of phenotyping in severe asthma management in the current era of biologics.
Collapse
Affiliation(s)
- Arnaud Bourdin
- PhyMedExp, University of Montpellier, CNRS, INSERM, CHU Montpellier, Montpellier, France
| | - Guy Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Simon Couillard
- Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Merritt L Fajt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Liam G Heaney
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Elliot Israel
- Pulmonary and Critical Care Medicine, Allergy & Immunology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - P Jane McDowell
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew Menzies-Gow
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; Royal Brompton and Harefield Hospitals, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Neil Martin
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, United Kingdom; University of Leicester, Leicester, United Kingdom
| | | | - Nayia Petousi
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Liege, GIGA I3 Lab, University of Liege, Liege, Belgium
| | - Ian D Pavord
- Respiratory Medicine, NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Tashiro H, Kurihara Y, Kuwahara Y, Takahashi K. Impact of obesity in asthma: Possible future therapies. Allergol Int 2024; 73:48-57. [PMID: 37659887 DOI: 10.1016/j.alit.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/04/2023] Open
Abstract
Obesity is one of the factors associated with the severity of asthma. Obesity is associated with aggravation of the pathophysiology of asthma, including exacerbations, airway inflammation, decreased pulmonary function, and airway hyperresponsiveness. The present review addresses the characteristics of asthma with obesity, focusing especially on the heterogeneity caused by the degree of type 2 inflammation, sex differences, the onset of asthma, and race differences. To understand the severity mechanisms in asthma and obesity, such as corticosteroid resistance, fatty acids, gut microbiome, and cytokines, several basic research studies are evaluated. Finally, possible future therapies, including weight reduction, microbiome-targeted therapies, and other molecular targeted therapies are addressed. We believe that the present review will contribute to better understanding of the severity mechanisms and the establishment of novel treatments for severe asthma patients with obesity.
Collapse
Affiliation(s)
- Hiroki Tashiro
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan.
| | - Yuki Kurihara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuki Kuwahara
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Koichiro Takahashi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
9
|
Kappen J, Diamant Z, Agache I, Bonini M, Bousquet J, Canonica GW, Durham SR, Guibas GV, Hamelmann E, Jutel M, Papadopoulos NG, Roberts G, Shamji MH, Zieglmayer P, Gerth van Wijk R, Pfaar O. Standardization of clinical outcomes used in allergen immunotherapy in allergic asthma: An EAACI position paper. Allergy 2023; 78:2835-2850. [PMID: 37449468 DOI: 10.1111/all.15817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION In allergic asthma patients, one of the more common phenotypes might benefit from allergen immunotherapy (AIT) as add-on intervention to pharmacological treatment. AIT is a treatment with disease-modifying modalities, the evidence for efficacy is based on controlled clinical trials following standardized endpoint measures. However, so far there is a lack of a consensus for asthma endpoints in AIT trials. The aim of a task force (TF) of the European Academy of Allergy and Clinical Immunology (EAACI) is evaluating several outcome measures for AIT in allergic asthma. METHODS The following domains of outcome measures in asthmatic patients have been evaluated for this position paper (PP): (i) exacerbation rate, (ii) lung function, (iii) ICS withdrawal, (iv) symptoms and rescue medication use, (v) questionnaires (PROMS), (vi) bronchial/nasal provocation, (vii) allergen exposure chambers (AEC) and (viii) biomarkers. RESULTS Exacerbation rate can be used as a reliable objective primary outcome; however, there is limited evidence due to different definitions of exacerbation. The time after ICS withdrawal to first exacerbation is considered a primary outcome measure. Besides, the advantages and disadvantages and clinical implications of further domains of asthma endpoints in AIT trials are elaborated in this PP. CONCLUSION This EAACI-PP aims to highlight important aspects of current asthma measures by critically evaluating their applicability for controlled trials of AIT.
Collapse
Affiliation(s)
- Jasper Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | - Matteo Bonini
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Clinical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Jean Bousquet
- Charite Universitatsmedizin Berlin Campus Berlin Buch, MASK-air, Montpellier, France
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic Humanitas University & Research Hospital-IRCCS, Milan, Italy
| | - Stephen R Durham
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - George V Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, UK
| | - Eckard Hamelmann
- Children's Center Bethel, University Hospital Bielefeld, University Bielefeld, Bielefeld, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | | | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Petra Zieglmayer
- Karl Landsteiner University, Competence Center for Allergology and Immunology, Krems, Austria
| | - Roy Gerth van Wijk
- Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
10
|
Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C. Eosinophils and tissue remodeling: Relevance to airway disease. J Allergy Clin Immunol 2023; 152:841-857. [PMID: 37343842 DOI: 10.1016/j.jaci.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
The ability of human tissue to reorganize and restore its existing structure underlies tissue homeostasis in the healthy airways, but in disease can persist without normal resolution, leading to an altered airway structure. Eosinophils play a cardinal role in airway remodeling both in health and disease, driving epithelial homeostasis and extracellular matrix turnover. Physiological consequences associated with eosinophil-driven remodeling include impaired lung function and reduced bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis with nasal polyps. Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling is an important therapeutic consideration. Indeed, there is early evidence that eosinophil attenuation may reduce remodeling and disease progression in asthma. This review provides an overview of tissue remodeling in both health and airway disease with a particular focus on eosinophilic asthma and chronic rhinosinusitis with nasal polyps, as well as the role of eosinophils in these processes and the implications for therapeutic interventions. Areas for future research are also noted, to help improve our understanding of the homeostatic and pathological roles of eosinophils in tissue remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways.
Collapse
Affiliation(s)
- Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Claus Bachert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospital of Münster, Münster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China; Division of Ear, Nose, and Throat Diseases, Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institute, Stockholm, Sweden; Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Leif Bjermer
- Department of Clinical Sciences, Respiratory Medicine, and Allergology, Lund University, Lund, Sweden
| | - Kathleen M Buchheit
- Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Mario Castro
- Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, NC
| | - Yimin Qin
- Global Medical Affairs, Global Specialty and Primary Care, GlaxoSmithKline, Research Triangle Park, NC
| | - Hitasha Rupani
- Department of Respiratory Medicine, University Hospital Southampton National Health Service Foundation Trust, Southampton, United Kingdom
| | - Hironori Sagara
- Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan
| | - Peter Howarth
- Global Medical, Global Specialty and Primary Care, GlaxoSmithKline, Brentford, Middlesex, United Kingdom
| | - Camille Taillé
- Pneumology Department, Reference Center for Rare Pulmonary Diseases, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unit 1152, University of Paris Cité, Paris, France
| |
Collapse
|
11
|
Ciółkowski J, Hydzik P, Rachel M, Mazurek-Durlak Z, Skalska-Izdebska R, Mazurek H. Childhood asthma treatment based on indirect hyperresponsiveness test: Randomized controlled trial. Pediatr Pulmonol 2023; 58:2583-2591. [PMID: 37341585 DOI: 10.1002/ppul.26556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE The purpose of this study was to assess the usefulness of indirect airway hyperresponsiveness (AHR) test using hypertonic saline in determining the dose of inhaled corticosteroids (ICS) to maintain asthma control in children. METHODS A group of 104 patients (7-15 years) with mild-moderate atopic asthma were monitored for their asthma control and treatment for 1 year. Patients were randomly assigned to a symptom-only monitored group and a group with therapy changes based on the symptoms and severity of AHR. Spirometry, exhaled nitric oxide, and blood eosinophils (BEos) were assessed on enrollment and every 3 months thereafter. RESULTS During the study period, the number of mild exacerbations was lower in the AHR group (44 vs. 85; the absolute rate per patient 0.83 vs. 1.67; relative rate 0.49, 95% confidence interval: 0.346-0.717 (p < 0.001)]. Mean changes from baseline in clinical (except asthma control test), inflammatory, and lung function parameters were similar between groups. Baseline BEos correlated with AHR and was a risk factor for recurrent exacerbation in all patients. There was no significant difference in the final ICS dose between AHR and symptoms group: 287 (SD 255) vs. 243 (158) p = 0.092. CONCLUSIONS Adding an indirect AHR test to clinical monitoring of childhood asthma reduced the number of mild exacerbations, with similar current clinical control and final ICS dose as in the symptom-monitored group. The hypertonic saline test appears to be a simple, cheap, and safe tool for monitoring the treatment of mild-to-moderate asthma in children.
Collapse
Affiliation(s)
- Janusz Ciółkowski
- Allergology Outpatient Clinic, The Regional Public Hospital in Lesko, Lesko, Poland
| | - Paweł Hydzik
- Department of Quantitative Methods in the Faculty of Management, Rzeszów University of Technology, Rzeszów, Poland
| | - Marta Rachel
- Institute of Medical Sciences, College of Medical Science, Rzeszów University, Rzeszów, Poland
| | | | - Renata Skalska-Izdebska
- Allergology Outpatient Clinic, The Regional Public Hospital in Lesko, Lesko, Poland
- Institute of Medical Sciences, College of Medical Science, Rzeszów University, Rzeszów, Poland
| | - Henryk Mazurek
- Department of Pneumonology and Cystic Fibrosis, National Research Institute of Tuberculosis and Lung Disorders, Rabka-Zdrój, Poland
- Institute of Health, State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
| |
Collapse
|
12
|
Spahn JD, Brightling CE, O’Byrne PM, Simpson LJ, Molfino NA, Ambrose CS, Martin N, Hallstrand TS. Effect of Biologic Therapies on Airway Hyperresponsiveness and Allergic Response: A Systematic Literature Review. J Asthma Allergy 2023; 16:755-774. [PMID: 37496824 PMCID: PMC10368134 DOI: 10.2147/jaa.s410592] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Background Airway hyperresponsiveness (AHR) is a key feature of asthma. Biologic therapies used to treat asthma target specific components of the inflammatory pathway, and their effects on AHR can provide valuable information about the underlying disease pathophysiology. This review summarizes the available evidence regarding the effects of biologics on allergen-specific and non-allergen-specific airway responses in patients with asthma. Methods We conducted a systematic review in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, including risk-of-bias assessment. PubMed and Ovid were searched for studies published between January 1997 and December 2021. Eligible studies were randomized, placebo-controlled trials that assessed the effects of biologics on AHR, early allergic response (EAR) and/or late allergic response (LAR) in patients with asthma. Results Thirty studies were identified for inclusion. Bronchoprovocation testing was allergen-specific in 18 studies and non-allergen-specific in 12 studies. Omalizumab reduced AHR to methacholine, acetylcholine or adenosine monophosphate (3/9 studies), and reduced EAR (4/5 studies) and LAR (2/3 studies). Mepolizumab had no effect on AHR (3/3 studies), EAR or LAR (1/1 study). Tezepelumab reduced AHR to methacholine or mannitol (3/3 studies), and reduced EAR and LAR (1/1 study). Pitrakinra reduced LAR, with no effect on AHR (1/1 study). Etanercept reduced AHR to methacholine (1/2 studies). No effects were observed for lebrikizumab, tocilizumab, efalizumab, IMA-638 and anti-OX40 ligand on AHR, EAR or LAR; benralizumab on LAR; tralokinumab on AHR; and Ro-24-7472 on AHR or LAR (all 1/1 study each). No dupilumab or reslizumab studies were identified. Conclusion Omalizumab and tezepelumab reduced EAR and LAR to allergens. Tezepelumab consistently reduced AHR to methacholine or mannitol. These findings provide insights into AHR mechanisms and the precise effects of asthma biologics. Furthermore, findings suggest that tezepelumab broadly targets allergen-specific and non-allergic forms of AHR, and the underlying cells and mediators involved in asthma.
Collapse
Affiliation(s)
- Joseph D Spahn
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Wilmington, DE, USA
| | - Christopher E Brightling
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Paul M O’Byrne
- Firestone Institute for Respiratory Health, St Joseph’s Hospital and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Christopher S Ambrose
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Gaithersburg, MD, USA
| | - Neil Martin
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, and the Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Chan R, Lipworth B. Efficacy of biologic therapy on airway hyperresponsiveness in asthma. Ann Allergy Asthma Immunol 2023:S1081-1206(23)00121-7. [PMID: 36841374 DOI: 10.1016/j.anai.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Airway hyperresponsiveness refers to an exaggerated bronchial constrictor response to a given exogenous inhaled agent and is governed by airway smooth muscle along with mucosal inflammation in asthma. In recent years, the advent of biologics and antialarmins has transformed severe asthma treatment in terms of reducing oral-corticosteroid-requiring exacerbations and improving disease control, asthma quality of life, and spirometry-measured lung function. In contrast, there have been comparatively fewer studies investigating the efficacy of biologics in airway hyperresponsiveness. In this focused review, we summarize the existing evidence base in this area regarding omalizumab, mepolizumab, benralizumab, and tezepelumab.
Collapse
Affiliation(s)
- Rory Chan
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom
| | - Brian Lipworth
- Scottish Centre for Respiratory Research, School of Medicine, University of Dundee, Ninewells Hospital, Dundee, Scotland, United Kingdom.
| |
Collapse
|
14
|
Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. J Allergy Clin Immunol 2023; 151:431-446.e16. [PMID: 36243221 DOI: 10.1016/j.jaci.2022.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Airway epithelial cells (AECs) with impaired barrier function contribute to airway remodeling through the activation of epithelial-mesenchymal trophic units (EMTUs). Although the decreased expression of ITGB4 in AECs is implicated in the pathogenesis of asthma, how ITGB4 deficiency impacts airway remodeling remains obscure. OBJECTIVE This study aims to determine the effect of epithelial ITGB4 deficiency on the barrier function of AECs, asthma susceptibility, airway remodeling, and EMTU activation. METHODS AEC-specific ITGB4 conditional knockout mice (ITGB4-/-) were generated and an asthma model was employed by the sensitization and challenge of house dust mite (HDM). EMTU activation-related growth factors were examined in ITGB4-silenced primary human bronchial epithelial cells of healthy subjects after HDM stimulation. Dexamethasone, the inhibitors of JNK phosphorylation or FGF2 were administered for the identification of the molecular mechanisms of airway remodeling in HDM-exposed ITGB4-/- mice. RESULTS ITGB4 deficiency in AECs enhanced asthma susceptibility and airway remodeling by disrupting airway epithelial barrier function. Aggravated airway remodeling in HDM-exposed ITGB4-/- mice was induced through the enhanced activation of EMTU mediated by Src homology domain 2-containing protein tyrosine phosphatase 2/c-Jun N-terminal kinase/Jun N-terminal kinase-dependent transcription factor/FGF2 (SHP2/JNK/c-Jun/FGF2) signaling pathway, which was partially independent of airway inflammation. Both JNK and FGF2 inhibitors significantly inhibited the aggravated airway remodeling and EMTU activation in HDM-exposed ITGB4-/- mice. CONCLUSIONS Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model of asthma through enhanced EMTU activation that is regulated by the SHP2/JNK/c-Jun/FGF2 pathway.
Collapse
|
15
|
Cazzola M, Braido F, Calzetta L, Matera MG, Piraino A, Rogliani P, Scichilone N. The 5T approach in asthma: Triple Therapy Targeting Treatable Traits. Respir Med 2022; 200:106915. [PMID: 35753188 DOI: 10.1016/j.rmed.2022.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Using a therapeutic strategy that is free from traditional diagnostic labels and based on the identification of "treatable traits" (TTs), which are influential in clinical presentations in each patient, might overcome the difficulties in identifying and validating asthma phenotypes and endotypes. Growing evidence is documenting the importance of using the triple therapy with ICS, LABA, and LAMAs in a single inhaler (SITT) in cases of asthma not controlled by ICS/LABA and in the prevention of exacerbations. The identification of TTs may overcome the possibility of using SITT without considering the specific needs of the patient. In effect, it allows a treatment strategy that is closer to the precision strategy now widely advocated for the management of patients with asthma. There are different TTs in asthma that may benefit from treatment with SITT, regardless of guideline recommendations. The airflow limitation and small airway dysfunction are key TTs that are present in different phenotypes/endotypes, do not depend on the degree of T2 inflammation, and respond better than other treatments to SITT. We suggest that the 5T (Triple Therapy Targeting Treatable Traits) approach should be applied to the full spectrum of asthma, not just severe asthma, and, consequently, SITT should begin earlier than currently recommended.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Fulvio Braido
- Department of Allergy and Respiratory Diseases, University of Genoa, Genoa, Italy
| | - Luigino Calzetta
- Unit of Respiratory Diseases and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessio Piraino
- Respiratory Area, Medical Affairs, Chiesi Italia, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Scichilone
- Division of Respiratory Diseases, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Daley-Yates P, Aggarwal B, Lulic Z, Fulmali S, Cruz AA, Singh D. Pharmacology Versus Convenience: A Benefit/Risk Analysis of Regular Maintenance Versus Infrequent or As-Needed Inhaled Corticosteroid Use in Mild Asthma. Adv Ther 2022; 39:706-726. [PMID: 34873657 PMCID: PMC8799535 DOI: 10.1007/s12325-021-01976-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION This study compared the bronchoprotective and benefit/risk profiles of various inhaled corticosteroid (ICS) dosing regimens in mild asthma. METHODS A pharmacokinetic/pharmacodynamic model was developed and validated describing the relationship between ICS dose and time-course for airway bronchoprotection, [provocative concentration of adenosine monophosphate (AMP) causing ≥ 20% decline in forced expiratory volume in 1 s (FEV1) (AMP PC20)], for fluticasone furoate (FF), fluticasone propionate (FP) and budesonide (BUD). For regular ICS maintenance therapy (100% and 50% adherence) and infrequent or as-needed use (dosing 3-4 times per week), treatment effectiveness was expressed as percent time during 28 days when bronchoprotection exceeded either the threshold for a treatment-related bronchoprotective effect (AMP PC20 ≥ 0.25 doubling dose) or the threshold for a clinically significant bronchoprotective effect (AMP PC20 ≥ 1.0 doubling dose). This value was divided by the total ICS dose administered expressed in prednisolone equivalents to give a therapeutic index (TI). RESULTS The model-predicted time course of ICS-induced bronchoprotection with regular daily maintenance dosing and 100% adherence showed that all ICS at the highest recommended doses for mild asthma exceeded the threshold for clinically significant bronchoprotective effect for all or most of the 28-day dosing period, mean (90% CI); 100% (96.1-100), 99.9% (8.0-100) and 100% (58.2-100) with TI values of 16.9, 6.6 and 5.4 for FF 100 µg OD, FP 200 µg BID and BUD 200 µg BID, respectively. For simulated poor adherence (50%) to regular daily maintenance therapy, corresponding mean (90% CI) values were; 75.7% (39.4-89.1), 52.3% (0.7-69.2) and 51.3% (28.6-58.3) with TI values of 25.7, 6.9 and 5.6. For simulated infrequent/as needed use the corresponding values were; 77.0% (37.6-87.0), 25.5% (0.0-38.0) and 26.2% (14.3-31.5) with TI values of 26.1, 6.7 and 5.7. For all regimen/scenarios, FF had the most sustained efficacy and favourable TI followed by FP and BUD. CONCLUSIONS At doses recommended for mild asthma, all ICS regimens provide sustained bronchoprotective efficacy when dosed regularly with high adherence. With poor adherence or use 3-4 times per week (infrequent/as needed), longer-acting ICS molecules will more likely provide sustained protection and a better TI versus shorter duration of action molecules (FF > FP ≥ BUD). These data highlight the benefits of using ICS as regular daily maintenance dosing in mild asthma and the potential risks of under-treatment with ICS (which may occur with ICS/formoterol as-needed approach in mild persistent asthma) associated with reduced levels of bronchoprotection.
Collapse
Affiliation(s)
- Peter Daley-Yates
- Clinical Pharmacology and Experimental Medicine, GlaxoSmithKline Plc., Brentford, London, UK.
| | - Bhumika Aggarwal
- Respiratory, Global Classic and Established Products, GlaxoSmithKline, Singapore, 139234, Singapore
| | - Zrinka Lulic
- Global Classic and Established Products, GlaxoSmithKline, Brentford, London, UK
| | - Sourabh Fulmali
- Respiratory, Global Classic and Established Products, GlaxoSmithKline, Mumbai, India
| | - Alvaro A Cruz
- Faculty of Medicine, Federal University of Bahia and Fundacao ProAR, Salvador, Brazil
| | - Dave Singh
- University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
17
|
Jandl K, Mutgan AC, Eller K, Schaefer L, Kwapiszewska G. The basement membrane in the cross-roads between the lung and kidney. Matrix Biol 2021; 105:31-52. [PMID: 34839001 DOI: 10.1016/j.matbio.2021.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022]
Abstract
The basement membrane (BM) is a specialized layer of extracellular matrix components that plays a central role in maintaining lung and kidney functions. Although the composition of the BM is usually tissue specific, the lung and the kidney preferentially use similar BM components. Unsurprisingly, diseases with BM defects often have severe pulmonary or renal manifestations, sometimes both. Excessive remodeling of the BM, which is a hallmark of both inflammatory and fibrosing diseases in the lung and the kidney, can lead to the release of BM-derived matrikines, proteolytic fragments with distinct biological functions. These matrikines can then influence disease activity at the site of liberation. However, they are also released to the circulation, where they can directly affect the vascular endothelium or target other organs, leading to extrapulmonary or extrarenal manifestations. In this review, we will summarize the current knowledge of the composition and function of the BM and its matrikines in health and disease, both in the lung and in the kidney. By comparison, we will highlight, why the BM and its matrikines may be central in establishing a renal-pulmonary interaction axis.
Collapse
Affiliation(s)
- Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Pharmacology, Medical University of Graz, Graz, Austria
| | - Ayse Ceren Mutgan
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria
| | - Kathrin Eller
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; Otto Loewi Research Center, Department of Physiology, Medical University of Graz, Graz, Austria; Institute for Lung Health (ILH), Giessen, Germany..
| |
Collapse
|
18
|
Zhang S, Fan Y, Qin L, Fang X, Zhang C, Yue J, Bai W, Wang G, Chen Z, Renz H, Skevaki C, Liu X, Xie M. IL-1β augments TGF-β inducing epithelial-mesenchymal transition of epithelial cells and associates with poor pulmonary function improvement in neutrophilic asthmatics. Respir Res 2021; 22:216. [PMID: 34344357 PMCID: PMC8336269 DOI: 10.1186/s12931-021-01808-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
Background Neutrophilic asthmatics (NA) have less response to inhaled corticosteroids. We aimed to find out the predictor of treatment response in NA. Methods Asthmatics (n = 115) and healthy controls (n = 28) underwent clinical assessment during 6-month follow-up with standardized therapy. Asthmatics were categorized by sputum differential cell count. The mRNA expressions were measured by RT-qPCR for sputum cytokines (IFN-γ, IL-1β, IL-27, FOXP3, IL-17A, and IL-5). The protein of IL-1β in sputum supernatant was detected by ELISA. Reticular basement membranes (RBM) were measured in the biopsy samples. The role and signaling pathways of IL-1β mediating the epithelial-mesenchymal transition (EMT) process were explored through A549 cells. Results NA had increased baseline sputum cell IL-1β expression compared to eosinophilic asthmatics (EA). After follow-up, NA had less improvement in FEV1 compared to EA. For all asthmatics, sputum IL-1β mRNA was positively correlated with protein expression. Sputum IL-1β mRNA and protein levels were negatively correlated to FEV1 improvement. After subgrouping, the correlation between IL-1β mRNA and FEV1 improvement was significant in NA but not in EA. Thickness of RBM in asthmatics was greater than that of healthy controls and positively correlated with neutrophil percentage in bronchoalveolar lavage fluid. In vitro experiments, the process of IL-1β augmenting TGF-β1-induced EMT cannot be abrogated by glucocorticoid or montelukast sodium, but can be reversed by MAPK inhibitors. Conclusions IL-1β level in baseline sputum predicts the poor lung function improvement in NA. The potential mechanism may be related to IL-1β augmenting TGF-β1-induced steroid-resistant EMT through MAPK signaling pathways. Trial registration: This study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (IRB ID: 20150406). Supplementary Information The online version contains supplementary material available at 10.1186/s12931-021-01808-7.
Collapse
Affiliation(s)
- Shengding Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Yu Fan
- Department of Respiratory and Critical Care Medicine, Qiandongnanzhou People's Hospital, Kaili, China
| | - Lu Qin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaoyu Fang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Cong Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Junqing Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Wenxue Bai
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihong Chen
- Department of Respiratory and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Harld Renz
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Marburg, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps Universität Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), and the German Center for Lung Research (DZL), Marburg, Germany
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
| | - Min Xie
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China.
| |
Collapse
|
19
|
Cockcroft DW. Methacholine Challenge Testing in the Diagnosis of Asthma. Chest 2021; 158:433-434. [PMID: 32768054 DOI: 10.1016/j.chest.2020.04.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Donald W Cockcroft
- Department of Respirology, University of Saskatchewan, Royal University Hospital, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Pérez de Llano L, Dacal Rivas D, Blanco Cid N, Martin Robles I. Phenotype-Guided Asthma Therapy: An Alternative Approach to Guidelines. J Asthma Allergy 2021; 14:207-217. [PMID: 33737814 PMCID: PMC7966411 DOI: 10.2147/jaa.s266999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in therapy, a substantial proportion of asthmatics remain not well controlled. The classical stepwise approach to pharmacological therapy in adult asthma recommends that treatment is progressively stepped up by increasing the inhaled corticosteroid (ICS) dose or by adding another controller medication- to achieve symptom control and reduce the risk of exacerbations, and stepped down after a period of control. In general, asthma guideline recommendations do not reflect that there are significant differences between ICS in terms of potency. Moreover, they do not consider efficacy and safety separately, incorrectly assuming that "low" and "high" dose categories inevitably correspond with low and high risk of systemic effects. Another point of criticism is the fact that guidelines do not take into account the inflammatory profile of the patient, although substantial groups of patients with mild and moderate asthma have little evidence of "T2-high" inflammation, and by extension are likely to show a poor response to ICS treatment. On the other hand, the latest version of the Global Initiative for Asthma (GINA) equally recommends regular ICS and ICS/formoterol as needed to prevent exacerbations in step 2 patients, without taking into consideration that the therapeutic objectives (exacerbations, symptoms) may differ between individual patients and that different goals may warrant distinct treatment strategies. In this review, we bring to the table several controversial issues concerning asthma treatment and suggest an alternative proposal that takes into consideration the potential side effects of high ICS doses, the patient's inflammatory profile and the therapeutic goals to be achieved.
Collapse
Affiliation(s)
- Luis Pérez de Llano
- Head of the Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo. C/ Doctor Ulises Romero, nº 1, Lugo, 27003, Spain
| | - David Dacal Rivas
- Head of the Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo. C/ Doctor Ulises Romero, nº 1, Lugo, 27003, Spain
| | - Nagore Blanco Cid
- Head of the Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo. C/ Doctor Ulises Romero, nº 1, Lugo, 27003, Spain
| | - Irene Martin Robles
- Head of the Pneumology Service, Lucus Augusti University Hospital, EOXI Lugo, Monforte, Cervo. C/ Doctor Ulises Romero, nº 1, Lugo, 27003, Spain
| |
Collapse
|
21
|
Huang M, Wei Y, Dong J. Epimedin C modulates the balance between Th9 cells and Treg cells through negative regulation of noncanonical NF-κB pathway and MAPKs activation to inhibit airway inflammation in the ovalbumin-induced murine asthma model. Pulm Pharmacol Ther 2021; 65:102005. [PMID: 33636365 DOI: 10.1016/j.pupt.2021.102005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022]
Abstract
Allergic asthma is a common airway inflammatory disease and mainly caused by abnormal immune responses to allergens and viruses. The precise mechanisms of airway inflammation and airway hyper-responsiveness (AHR) are still not completely understood. CD4+ helper T cells (Th cells) serve as critical regulators of allergic immunity. The imbalance between T helper 9 (Th9) cells and forkhead box protein 3 (Foxp3)+ regulatory T (Treg) cells may contribute to airway inflammation in asthma. Epimedin C, a dominant compound isolated from Herba Epimedii, has shown anti-inflammatory effects and the immunoregulatory activity, such as increase of lymphocyte proliferation. However, the protective role of epimedin C in an experimental model of ovalbumin (OVA)-induced allergic airway inflammation and the underlying mechanism remain unknown. Female BALB/c mice were sensitized by intraperitoneal injection (i.p.) of OVA plus aluminum hydroxide (Alum) and subsequently challenged with an aerosol of 3% OVA in saline. Mice were treated with different concentrations of epimedin C (20 mg/kg/d, 40 mg/kg/d, 80 mg/kg/d) for 4 weeks. Experimental endpoints were evaluated via the analysis of AHR to acetyl-β-methacholine (Mch), differential inflammatory cell counts, concentrations of cytokines interleukin-9 (IL-9), IL-4 and IL-10 in bronchoalveolar lavage fluid (BALF), serum OVA-specific IgE level, as well as airway inflammation, mucus secretion and collagen deposition in mice. Mechanistically, we investigated the percentages of Th9 cells and Treg cells, as well as mRNA levels of IL-9 and transcription factor Foxp3 in lungs. Furthermore, the proteins expression of nuclear factor-κB (NF-κB) family members p105/p50, RelA, p100/p52 and RelB, as well as mitogen-activated protein kinase (MAPK) family members extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 MAPK was detected. Epimedin C dose-dependently attenuated AHR, airway inflammation, mucus hypersecretion and collagen deposition in OVA-induced murine asthma model. The expression levels of IL-9, IL-4 and OVA-specific IgE were significantly decreased while IL-10 was increased by epimedin C. We further confirmed that epimedin C decreased the percentage of lung Th9 cells with lower mRNA expression of IL-9 and increased the percentage of lung Treg cells with higher mRNA expression of Foxp3. In addition, epimedin C dose-dependently decreased the protein levels of p52, RelB, phosphorylation of ERK1/2 and p38 MAPK which are pivotal to the development of Th9 cells and Treg cells. Collectively, epimedin C could inhibit pathophysiological features of asthma by reconstruction of the balance between Th9 cells and Treg cells through regulation of the noncanonical NF-κB p52/RelB pathway and MAPKs activation. These findings suggest epimedin C as a potential remedy for inflammatory airway diseases.
Collapse
Affiliation(s)
- Muhua Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China; Institute of Integrative Medicine, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
22
|
Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clin Sci (Lond) 2020; 134:1063-1079. [PMID: 32369100 DOI: 10.1042/cs20191309] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Asthma is a chronic disease of the airways that has long been viewed predominately as an inflammatory condition. Accordingly, current therapeutic interventions focus primarily on resolving inflammation. However, the mainstay of asthma therapy neither fully improves lung function nor prevents disease exacerbations, suggesting involvement of other factors. An emerging concept now holds that airway remodeling, another major pathological feature of asthma, is as important as inflammation in asthma pathogenesis. Structural changes associated with asthma include disrupted epithelial integrity, subepithelial fibrosis, goblet cell hyperplasia/metaplasia, smooth muscle hypertrophy/hyperplasia, and enhanced vascularity. These alterations are hypothesized to contribute to airway hyperresponsiveness, airway obstruction, airflow limitation, and progressive decline of lung function in asthmatic individuals. Consequently, targeting inflammation alone does not suffice to provide optimal clinical benefits. Here we review asthmatic airway remodeling, focusing on airway epithelium, which is critical to maintaining a healthy respiratory system, and is the primary defense against inhaled irritants. In asthma, airway epithelium is both a mediator and target of inflammation, manifesting remodeling and resulting obstruction among its downstream effects. We also highlight the potential benefits of therapeutically targeting airway structural alterations. Since pathological tissue remodeling is likewise observed in other injury- and inflammation-prone tissues and organs, our discussion may have implications beyond asthma and lung disease.
Collapse
|
23
|
Pérez de Llano L, Miravitlles M, Golpe R, Alvarez-Gutiérrez FJ, Cisneros C, Almonacid C, Martinez-Moragon E, Gonzalez-Barcala FJ, Ramos-Barbón D, Plaza V, Lopez-Campos JL, de-Torres JP, Casanova C, Garcia Rivero JL, Rodriguez Hermosa J, Calle Rubio M, Soler-Cataluña JJ, Cosio BG. A Proposed Approach to Chronic Airway Disease (CAD) Using Therapeutic Goals and Treatable Traits: A Look to the Future. Int J Chron Obstruct Pulmon Dis 2020; 15:2091-2100. [PMID: 32943862 PMCID: PMC7481271 DOI: 10.2147/copd.s263430] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow obstruction affects a wide range of airway diseases, the most frequent of which are asthma, COPD, and bronchiectasis; they are clearly identifiable in their extremes, but quite frequently overlap in some of their pathophysiological and clinical characteristics. This has generated the description of new mixed or overlapping disease phenotypes with no clear biological grounds. In this special article, a group of experts provides their perspective and proposes approaching the treatment of chronic airway disease (CAD) through the identification of a series of therapeutic goals (TG) linked to treatable traits (TT) - understood as clinical, physiological, or biological characteristics that are quantifiable using biomarkers. This therapeutic approach needs validating in a clinical trial with the strategy of identification of TG and treatment according to TT for each patient independently of their prior diagnosis.
Collapse
Affiliation(s)
- Luis Pérez de Llano
- Pneumology Service, University Hospital Lucus Augusti, Lugo, EOXI Cervo, Lugo, Monforte, Spain
| | - Marc Miravitlles
- Pneumology Service, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, CIBERES, Barcelona, Spain
| | - Rafael Golpe
- Pneumology Service, University Hospital Lucus Augusti, Lugo, EOXI Cervo, Lugo, Monforte, Spain
| | | | - Carolina Cisneros
- Pneumology Service, La Princesa University Hospital, Madrid, Research Institute La Princesa IIP, Madrid, Spain
| | - Carlos Almonacid
- Pneumology Service, Ramón y Cajal Hospital (Ramon y Cajal Health Research Institute, IRYCIS), Madrid, Spain
| | | | - Francisco-Javier Gonzalez-Barcala
- Faculty of Medicine at the University of Santiago de Compostela, Pneumology Service of the University Clinical Hospital of Santiago de Compostela, CIBERES, Santiago de Compostela, Spain
| | - David Ramos-Barbón
- Pneumology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Vicente Plaza
- Pneumology Service, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Juan Pablo de-Torres
- Division of Respirology and Sleep Medicine, Queen's University, Canada, ON, Canada
| | - Ciro Casanova
- Pneumology Service, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz De Tenerife, Spain
| | | | - Juan Rodriguez Hermosa
- Pneumology Service and Faculty of Medicine, Hospital Clínico San Carlos, Complutense University of Madrid, Madrid, Spain
| | - Myriam Calle Rubio
- Pneumology Service and Faculty of Medicine, Hospital Clínico San Carlos, Complutense University of Madrid, Madrid, Spain
| | | | - Borja G Cosio
- Pneumology Service, Son Espases University Hospital, IdISBa, CIBERES, Clínica Quirón-Rotger, Palma, Spain
| |
Collapse
|
24
|
Wieczfinska J, Sitarek P, Kowalczyk T, Pawliczak R. Leonurus sibiricus root extracts decrease airway remodeling markers expression in fibroblasts. Clin Exp Immunol 2020; 202:28-46. [PMID: 32562256 DOI: 10.1111/cei.13481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022] Open
Abstract
Bronchial asthma is believed to be provoked by the interaction between airway inflammation and remodeling. Airway remodeling is a complex and poorly understood process, and controlling it appears key for halting the progression of asthma and other obstructive lung diseases. Plants synthesize a number of valuable compounds as constitutive products and as secondary metabolites, many of which have curative properties. The aim of this study was to evaluate the anti-remodeling properties of extracts from transformed and transgenic Leonurus sibiricus roots with transformed L. sibiricus roots extract with transcriptional factor AtPAP1 overexpression (AtPAP1). Two fibroblast cell lines, Wistar Institute-38 (WI-38) and human fetal lung fibroblast (HFL1), were incubated with extracts from transformed L. sibiricus roots (TR) and roots with transcriptional factor AtPAP1 over-expression (AtPAP1 TR). Additionally, remodeling conditions were induced in the cultures with rhinovirus 16 (HRV16). The expressions of metalloproteinase 9 (MMP)-9, tissue inhibitor of metalloproteinases 1 (TIMP-1), arginase I and transforming growth factor (TGF)-β were determined by quantitative polymerase chain reaction (qPCR) and immunoblotting methods. AtPAP1 TR decreased arginase I and MMP-9 expression with no effect on TIMP-1 or TGF-β mRNA expression. This extract also inhibited HRV16-induced expression of arginase I, MMP-9 and TGF-β in both cell lines (P < 0·05) Our study shows for the first time to our knowledge, that transformed AtPAP1 TR extract from L. sibiricus root may affect the remodeling process. Its effect can be attributed an increased amount of phenolic acids such as: chlorogenic acid, caffeic acid or ferulic acid and demonstrates the value of biotechnology in medicinal research.
Collapse
Affiliation(s)
- J Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| | - P Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - T Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz, Poland
| | - R Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
25
|
Sabogal Piñeros YS, Dekker T, Smids B, Majoor CJ, Ravanetti L, Villetti G, Civelli M, Facchinetti F, Lutter R. Phosphodiesterase 4 inhibitors attenuate virus-induced activation of eosinophils from asthmatics without affecting virus binding. Pharmacol Res Perspect 2020; 8:e00557. [PMID: 32447834 PMCID: PMC7245579 DOI: 10.1002/prp2.557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
Acute respiratory virus infections, such as influenza and RSV, are predominant causes of asthma exacerbations. Eosinophils act as a double-edged sword in exacerbations in that they are activated by viral infections but also can capture and inactivate respiratory viruses. Phosphodiesterase type 4 (PDE4) is abundantly expressed by eosinophils and has been implicated in their activation. This exploratory study aims to determine whether these opposing roles of eosinophils activation of eosinophils upon interaction with virus can be modulated by selective PDE4 inhibitors and whether eosinophils from healthy, moderate and severe asthmatic subjects respond differently. Eosinophils were purified by negative selection from blood and subsequently exposed to RSV or influenza. Prior to exposure to virus, eosinophils were treated with vehicle or selective PDE4 inhibitors CHF6001 and GSK256066. After 18 hours of exposure, influenza, but not RSV, increased CD69 and CD63 expression by eosinophils from each group, which were inhibited by PDE4 inhibitors. ECP release, although not stimulated by virus, was also attenuated by PDE4 inhibitors. Eosinophils showed an increased Nox2 activity upon virus exposure, which was less pronounced in eosinophils derived from mild and severe asthmatics and was counteracted by PDE4 inhibitors. PDE4 inhibitors had no effect on binding of virus by eosinophils from each group. Our data indicate that PDE4 inhibitors can attenuate eosinophil activation, without affecting virus binding. By attenuating virus-induced responses, PDE4 inhibitors may mitigate virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Yanaika Shari Sabogal Piñeros
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tamara Dekker
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Barbara Smids
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Christof J. Majoor
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lara Ravanetti
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| | - Gino Villetti
- Corporate Pre‐Clinical R&DChiesi Farmaceutici S.p.A.ParmaItaly
| | | | | | - René Lutter
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdamThe Netherlands
- Department of Respiratory MedicineAmsterdam University Medical CentresUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
26
|
Bougard N, Nekoee H, Schleich F, Guissard F, Paulus V, Donneau AF, Louis R. Assessment of diagnostic accuracy of lung function indices and FeNO for a positive methacholine challenge. Biochem Pharmacol 2020; 179:113981. [PMID: 32305435 DOI: 10.1016/j.bcp.2020.113981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/14/2020] [Indexed: 01/08/2023]
Abstract
Demonstration of bronchial hyperresponsiveness is a key feature in asthma diagnosis. Methacholine challenge has proved to be a highly sensitive test to diagnose asthma in patients with chronic respiratory symptoms and preserved baseline lung function (FEV1 > 70% pred.) but is time consuming and may sometimes reveal unpleasant to the patient. We conducted a retrospective study on 270 patients recruited from the University Asthma Clinic of Liege. We have compared the values of several lung function indices and fractional exhaled nitric oxide (FeNO) in predicting a provocative methacholine concentration ≤16 mg/ml on a discovery cohort of 129 patients (57 already on ICS) and on a validation cohort of 141 patients (66 already on ICS). In the discovery study (n = 129), 85 patients (66%) had a positive methacholine challenge with PC20M ≤ 16 mg/ml. Those patients had lower baseline % predicted FEV1 (92% vs. 100%; p < 0.01), lower FEV1/FVC ratio (79% vs. 82%; p < 0.05), higher RV/TLC ratio (114% vs. 100%; p < 0,0001), lower SGaw (specific conductance) (0.76 vs. 0.95; p < 0,001) and higher FeNO (29 ppb vs. 19 ppb; p < 0,01). When performing ROC curve the RV/TLC ratio provided the greatest AUC (0.74, p < 0.001), sGAW had intermediate AUC of 0.69 (p < 0.001) while FeNO, FEV1 and FEV1/FVC ratio were modestly predictive (AUC of 0.65 (p < 0.05), 0,67 (p < 0.001) and 0,63 (p < 0.001). These results were confirmed in the validation study (n = 141). Based on a logistic regression analysis, significant variables associated with positive methacholine challenge were FeNO and RV/TLC (% Pred). A combined application of FeNO and RV/TLC (% Pred) for predicting the PC20M had a specificity of 85%, a sensitivity of 59% and an AUC of 0.79. In the validation study, three variables (RV/TLC, FeNO and FEV1) were independently associated with positive methacholine challenge and the combination of these three variables yielded a specificity of 77%, a sensitivity of 39% and an AUC of 0.77. The RV/TLC ratio combined to FeNO may be of interest to predict significant methacholine bronchial hyperresponsiveness.
Collapse
Affiliation(s)
- N Bougard
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium.
| | - H Nekoee
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| | - F Schleich
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| | - F Guissard
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| | - V Paulus
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| | - A F Donneau
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| | - R Louis
- Pneumology and Public Health Department, University of Liege, CHU Liege, Belgium
| |
Collapse
|
27
|
Selvanathan J, Aaron SD, Sykes JR, Vandemheen KL, FitzGerald JM, Ainslie M, Lemière C, Field SK, McIvor RA, Hernandez P, Mayers I, Mulpuru S, Alvarez GG, Pakhale S, Mallick R, Boulet LP, Gupta S. Performance Characteristics of Spirometry With Negative Bronchodilator Response and Methacholine Challenge Testing and Implications for Asthma Diagnosis. Chest 2020; 158:479-490. [PMID: 32298731 DOI: 10.1016/j.chest.2020.03.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/27/2020] [Accepted: 03/21/2020] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND In patients with a history suggestive of asthma, diagnosis is usually confirmed by spirometry with bronchodilator response (BDR) or confirmatory methacholine challenge testing (MCT). RESEARCH QUESTION We examined the proportion of participants with negative BDR testing who had a positive MCT (and its predictors) result and characteristics of MCT, including effects of controller medication tapering and temporal variability (and predictors of MCT result change), and concordance between MCT and pulmonologist asthma diagnosis. STUDY DESIGN AND METHODS Adults with self-reported physician-diagnosed asthma were recruited by random-digit dialing across Canada. Subjects performed spirometry with BDR testing and returned for MCT if testing was nondiagnostic for asthma. Subjects on controllers underwent medication tapering with serial MCTs over 3 to 6 weeks. Subjects with a negative MCT (the provocative concentration of methacholine that results in a 20% drop in FEV1 [PC20] > 8 mg/mL) off medications were examined by a pulmonologist and had serial MCTs after 6 and 12 months. RESULTS Of 500 subjects (50.5 ± 16.6 years old, 68.0% female) with a negative BDR test for asthma, 215 (43.0%) had a positive MCT. Subjects with prebronchodilator airflow limitation were more likely to have a positive MCT (OR, 1.90; 95% CI, 1.17-3.04). MCT converted from negative to positive, with medication tapering in 18 of 94 (19.1%) participants, and spontaneously over time in 25 of 165 (15.2%) participants. Of 231 subjects with negative MCT, 28 (12.1%) subsequently received an asthma diagnosis from a pulmonologist. INTERPRETATION In subjects with a self-reported physician diagnosis of asthma, absence of bronchodilator reversibility had a negative predictive value of only 57% to exclude asthma. A finding of spirometric airflow limitation significantly increased chances of asthma. MCT results varied with medication taper and over time, and pulmonologists were sometimes prepared to give a clinical diagnosis of asthma despite negative MCT. Correspondingly, in patients for whom a high clinical suspicion of asthma exists, repeat testing appears to be warranted.
Collapse
Affiliation(s)
- Janannii Selvanathan
- Keenan Research Center in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Shawn D Aaron
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON
| | - Jenna R Sykes
- Department of Medicine, Division of Respirology, St. Michael's Hospital, Toronto, ON
| | | | - J Mark FitzGerald
- Centre for Heart and Lung Health, Vancouver Coastal Health Research Institute, Vancouver, BC
| | - Martha Ainslie
- Department of Medicine, University of Manitoba, Winnipeg, MB
| | | | - Stephen K Field
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB
| | - R Andrew McIvor
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON
| | - Paul Hernandez
- Department of Medicine, Dalhousie University, QEII Health Sciences Centre, Halifax, NS
| | - Irvin Mayers
- Department of Medicine, University of Alberta, Edmonton, AB
| | - Sunita Mulpuru
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON
| | - Gonzalo G Alvarez
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON
| | - Smita Pakhale
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON
| | - Ranjeeta Mallick
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON
| | | | - Samir Gupta
- Keenan Research Center in the Li Ka Shing Knowledge Institute of St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Department of Medicine, Division of Respirology, St. Michael's Hospital, Toronto, ON.
| | | |
Collapse
|
28
|
Beasley R, Harper J, Bird G, Maijers I, Weatherall M, Pavord ID. Inhaled Corticosteroid Therapy in Adult Asthma. Time for a New Therapeutic Dose Terminology. Am J Respir Crit Care Med 2020; 199:1471-1477. [PMID: 30645143 DOI: 10.1164/rccm.201810-1868ci] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Global Initiative for Asthma guidelines use the traditional terminology of "low," "medium," and "high" doses of inhaled corticosteroids (ICS) to define daily maintenance doses of 100 to 250 μg, >250 to 500 μg, and >500 μg, respectively, of fluticasone propionate or equivalent for adults with asthma. This concise clinical review proposes that this terminology is not evidence based and that prescribing practice based on this terminology may lead to the use of inappropriately excessive doses of ICS. Specifically, the ICS dose that achieves 80-90% of the maximum obtainable benefit is currently classified as a low dose, with the description of two higher dose levels of medium and high, which are associated with significant risk of systemic adverse effects. Asthma guidelines and clinician prescribing practice need to be modified in accordance with the currently available evidence of the dose-response relationship of ICS in adult asthma. We propose a reclassification of ICS doses based on a "standard daily dose," which is defined as 200-250 μg of fluticasone propionate or equivalent, representing the dose at which approximately 80-90% of the maximum achievable therapeutic benefit of ICS is obtained in adult asthma across the spectrum of severity. It is recommended that ICS treatment be started at these standard doses, which then represent the doses at which maintenance ICS are prescribed at step 2 and within ICS/long-acting β-agonist combination therapy at step 3. The opportunity is available to prescribe higher doses within ICS/long-acting β-agonist maintenance therapy in accordance with the stepwise approach to asthma treatment at step 4.
Collapse
Affiliation(s)
- Richard Beasley
- 1 Medical Research Institute of New Zealand, Wellington, New Zealand.,2 Victoria University of Wellington, Wellington, New Zealand.,3 Capital & Coast District Health Board, Wellington, New Zealand
| | - James Harper
- 1 Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Grace Bird
- 1 Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Ingrid Maijers
- 1 Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Mark Weatherall
- 3 Capital & Coast District Health Board, Wellington, New Zealand.,4 University of Otago Wellington, Wellington, New Zealand; and
| | - Ian D Pavord
- 5 Oxford Respiratory, National Institute for Health Research Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Rassouli A, Tarikhi HK, Sadeghi GS, Tabarraei H, Sasani F, Ghaffari S, Fayaz MA, Hayes AW. Effects of COX inhibitors on responsiveness of the tracheal tract to acetylcholine and histamine and their relationship with LTC4 and PGE2 levels of bronchoalveolar lavage fluid in allergic Guinea pigs. Toxicol Mech Methods 2020; 30:317-323. [PMID: 32031029 DOI: 10.1080/15376516.2020.1727597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Nonsteroidal anti-inflammatory drugs (NSAIDs) intervene in the COX (cyclooxygenase) pathways which generate two important inflammation mediators, prostaglandins (PGs) and leukotriene (LTs). Contradictory claims regarding the effect of NSAIDs in asthmatic patients continues to be an issue. The present study investigated the effects of COX inhibitors on the responsiveness of the tracheal tract and on the levels of LTC4 and PGE2 in cells of the bronchoalveolar lavage fluid in an allergic guinea pig model.Materials and Methods: Adult male Dunkin-Hartley guinea pigs (250 - 300 g) were divided into seven groups of six animals each. Four COX inhibitors, aspirin (200 mg/kg and 20 mg/kg), indomethacin (10 mg/kg), ketoprofen (10 mg/kg), and celecoxib (25 mg/kg), were given orally on day 17 to allergy induced guinea pigs at 0, 12, and 24 h before ovalbumin challenge on day 18. PGF2 and LT4 were measured in the bronchoalveolar lavage fluid as well as inflammatory cell count and total protein. Tracheal responsiveness to acetylcholine (Ach) and histamine (His) also was evaluated.Results: An augment in the response of the trachea to Ach and His, as well as overt allergenic signs including short breath, wheezing and sneezing, was observed. The most significant increase in tracheal hyper-responsiveness was observed in the ketoprofen-treated group with similar but less pronounced changes observed in the indomethacin-treated group. Although some variables increased with the aspirin and celecoxib treatments, overall the tracheal sensitivity was reduced. Inflammatory cells including eosinophils and neutrophils corresponded to the changes observed for each treatment group.Conclusion: Ketoprofen and indomethacin increased the tracheal sensibility to Ach and His; therefore, their administration is not recommended in patients susceptible to allergy.
Collapse
Affiliation(s)
- Ali Rassouli
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Iran
| | | | - Goudarz Sadeghi Sadeghi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Hadi Tabarraei
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Farhang Sasani
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Sepideh Ghaffari
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| |
Collapse
|
30
|
Cockcroft DW, Davis BE, Blais CM. Comparison of methacholine and mannitol challenges: importance of method of methacholine inhalation. Allergy Asthma Clin Immunol 2020; 16:14. [PMID: 32082392 PMCID: PMC7014722 DOI: 10.1186/s13223-020-0410-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/28/2020] [Indexed: 11/24/2022] Open
Abstract
Background Direct inhalation challenges (e.g. methacholine) are stated to be more sensitive and less specific for a diagnosis of asthma than are indirect challenges (e.g. exercise, non-isotonic aerosols, mannitol, etc.). However, data surrounding comparative sensitivity and specificity for methacholine compared to mannitol challenges are conflicting. When methacholine is inhaled by deep total lung capacity (TLC) inhalations, deep inhalation inhibition of bronchoconstriction leads to a marked loss of diagnostic sensitivity when compared to tidal breathing (TB) inhalation methods. We hypothesized that deep inhalation methacholine methods with resulting bronchoprotection may be the explanation for conflicting sensitivity/specificity data. Methods We reviewed 27 studies in which methacholine and mannitol challenges were performed in largely the same individuals. Methacholine was inhaled by dosimeter TLC methods in 13 studies and by tidal breathing in 14 studies. We compared the rates of positive methacholine (stratified by inhalation method) and mannitol challenges in both asthmatics and non-asthmatics. Results When methacholine was inhaled by TLC inhalations the prevalence of positive tests in asthmatics, 60.2% (548/910), was similar to mannitol, 58.9% (537/912). By contrast, when methacholine was inhaled by tidal breathing the prevalence of positive tests in asthmatics 83.1% (343/413) was more than double that of mannitol, 41.5% (146/351). In non-asthmatics, the two methacholine methods resulted in positive tests in 18.8% (142/756) and 16.2% (27/166) by TLC and TB inhalations respectively. This compares to an overall 8.3% (n = 76) positive rate for mannitol in 913 non-asthmatics. Conclusion These data support the hypothesis that the conflicting data comparing methacholine and mannitol sensitivity and specificity are due to the method of methacholine inhalation. Tidal breathing methacholine methods have a substantially greater sensitivity for a diagnosis of asthma than either TLC dosimeter methacholine challenge methods or mannitol challenge. Methacholine challenges should be performed by tidal breathing as per recent guideline recommendations. Methacholine (more sensitive) and mannitol (more specific) will thus have complementary diagnostic features.
Collapse
Affiliation(s)
- Donald W Cockcroft
- 1Department of Medicine, University of Saskatchewan, Saskatoon, SK Canada.,2Royal University Hospital, 103 Hospital Drive, Saskatoon, SK S7N0W8 Canada
| | - Beth E Davis
- 1Department of Medicine, University of Saskatchewan, Saskatoon, SK Canada
| | | |
Collapse
|
31
|
IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways. J Allergy Clin Immunol 2019; 145:808-817.e2. [PMID: 31805312 DOI: 10.1016/j.jaci.2019.10.037] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Specific inflammatory pathways are indicated to contribute to severe asthma, but their individual involvement in the development of airway hyperresponsiveness remains unexplored. OBJECTIVE This experimental study in human small bronchi aimed to provide insight into which of the type 2 and type 17 cytokines cause hyperresponsiveness of airway smooth muscle. METHODS Explanted small bronchi isolated from human lung tissue and human airway smooth muscle cells were treated for 2 and 1 day(s), respectively, with 100 ng/mL of IL-4, IL-5, IL-13, or IL-17A, and contractile responses, Ca2+ mobilization, and receptor expression were assessed. RESULTS Treatment with IL-13 increased the potency of histamine, carbachol, and leukotriene D4 as contractile agonists. IL-4, but not IL-5 or IL-17A, also increased the potency of histamine. In human airway smooth muscle cells, IL-13 and IL-4, but not IL-5 and IL-17A, enhanced the histamine-induced Ca2+ mobilization that was accompanied with increased mRNA expression of histamine H1 and cysteinyl leukotriene CysLT1 receptors. RNA sequencing of isolated bronchi confirmed the IL-13-mediated upregulation of H1 and CysLT1 receptors, without showing an alteration of muscarinic M3 receptors. Dexamethasone had no effects on IL-13-induced hyperresponsiveness in human bronchi, the increased Ca2+ mobilization, or the enhanced receptor expression. In contrast, antagonism of the common receptor for IL-13 and IL-4 by the biologic dupilumab prevented the effects of both IL-13 and IL-4 in human bronchi and human airway smooth muscle cells. CONCLUSIONS The glucocorticoid-insensitive hyperrresponsiveness in isolated human airways induced by IL-13 and IL-4 provides further evidence that the IL-4Rα pathway should be targeted as a new strategy for the treatment of airway hyperresponsiveness in asthma.
Collapse
|
32
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
33
|
Bourdin A, Bjermer L, Brightling C, Brusselle GG, Chanez P, Chung KF, Custovic A, Diamant Z, Diver S, Djukanovic R, Hamerlijnck D, Horváth I, Johnston SL, Kanniess F, Papadopoulos N, Papi A, Russell RJ, Ryan D, Samitas K, Tonia T, Zervas E, Gaga M. ERS/EAACI statement on severe exacerbations in asthma in adults: facts, priorities and key research questions. Eur Respir J 2019; 54:13993003.00900-2019. [PMID: 31467120 DOI: 10.1183/13993003.00900-2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023]
Abstract
Despite the use of effective medications to control asthma, severe exacerbations in asthma are still a major health risk and require urgent action on the part of the patient and physician to prevent serious outcomes such as hospitalisation or death. Moreover, severe exacerbations are associated with substantial healthcare costs and psychological burden, including anxiety and fear for patients and their families. The European Academy of Allergy and Clinical Immunology (EAACI) and the European Respiratory Society (ERS) set up a task force to search for a clear definition of severe exacerbations, and to also define research questions and priorities. The statement includes comments from patients who were members of the task force.
Collapse
Affiliation(s)
- Arnaud Bourdin
- Université de Montpellier, CHU Montpellier, PhyMedExp, INSERM, CNRS, Montpellier, France
| | - Leif Bjermer
- Dept of Respiratory Medicine and Allergy, Lung and Allergy research Unit, Lund, Sweden
| | - Christopher Brightling
- Dept of Infection, Immunity and Inflammation, Institute for Lung Health, NIHR BRC Respiratory Medicine, University of Leicester, Leicester, UK
| | - Guy G Brusselle
- Dept of Respiratory Diseases, Ghent University Hospital, Ghent, Belgium
| | | | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, UK
| | - Adnan Custovic
- Dept of Paediatrics, Imperial College London, London, UK
| | - Zuzana Diamant
- Dept of Respiratory Medicine and Allergology, Skane University Hospital, Lund, Sweden.,Respiratory and Allergy Research, QPS Netherlands, The Netherlands
| | - Sarah Diver
- Dept of Respiratory Sciences, College of Life Sciences, Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Ratko Djukanovic
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Ildikó Horváth
- National Koranyi Institute for Pulmonology, and Dept of Public Health, Semmelweis University, Budapest, Hungary
| | | | | | - Nikos Papadopoulos
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.,Allergy Dept, 2nd Pediatric Clinic, University of Athens, Athens, Greece
| | - Alberto Papi
- Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Richard J Russell
- Institute for Lung Health, NIHR Leicester Biomedical Research Centre, Dept of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Dermot Ryan
- Allergy and Respiratory Research Group, Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK.,Woodbrook Medical Centre, Loughborough, UK
| | | | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | | | - Mina Gaga
- 7th Respiratory Medicine Dept, Athens Chest Hospital, Athens, Greece
| |
Collapse
|
34
|
Hur GY, Broide DH. Genes and Pathways Regulating Decline in Lung Function and Airway Remodeling in Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:604-621. [PMID: 31332973 PMCID: PMC6658410 DOI: 10.4168/aair.2019.11.5.604] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/14/2022]
Abstract
Asthma is a common disorder of the airways characterized by airway inflammation and by decline in lung function and airway remodeling in a subset of asthmatics. Airway remodeling is characterized by structural changes which include airway smooth muscle hypertrophy/hyperplasia, subepithelial fibrosis due to thickening of the reticular basement membrane, mucus metaplasia of the epithelium, and angiogenesis. Epidemiologic studies suggest that both genetic and environmental factors may contribute to decline in lung function and airway remodeling in a subset of asthmatics. Environmental factors include respiratory viral infection-triggered asthma exacerbations, and tobacco smoke. There is also evidence that several asthma candidate genes may contribute to decline in lung function, including ADAM33, PLAUR, VEGF, IL13, CHI3L1, TSLP, GSDMB, TGFB1, POSTN, ESR1 and ARG2. In addition, mediators or cytokines, including cysteinyl leukotrienes, matrix metallopeptidase-9, interleukin-33 and eosinophil expression of transforming growth factor-β, may contribute to airway remodeling in asthma. Although increased airway smooth muscle is associated with reduced lung function (i.e. forced expiratory volume in 1 second) in asthma, there have been few long-term studies to determine how individual pathologic features of airway remodeling contribute to decline in lung function in asthma. Clinical studies with inhibitors of individual gene products, cytokines or mediators are needed in asthmatic patients to identify their individual role in decline in lung function and/or airway remodeling.
Collapse
Affiliation(s)
- Gyu Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Garcia-Marcos L, Edwards J, Kennington E, Aurora P, Baraldi E, Carraro S, Gappa M, Louis R, Moreno-Galdo A, Peroni DG, Pijnenburg M, Priftis KN, Sanchez-Solis M, Schuster A, Walker S. Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma research innovation partnership (EARIP). Clin Exp Allergy 2019; 48:104-120. [PMID: 29290104 DOI: 10.1111/cea.13080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diagnosis of asthma is currently based on clinical history, physical examination and lung function, and to date, there are no accurate objective tests either to confirm the diagnosis or to discriminate between different types of asthma. This consensus exercise reviews the state of the art in asthma diagnosis to identify opportunities for future investment based on the likelihood of their successful development, potential for widespread adoption and their perceived impact on asthma patients. Using a two-stage e-Delphi process and a summarizing workshop, a group of European asthma experts including health professionals, researchers, people with asthma and industry representatives ranked the potential impact of research investment in each technique or tool for asthma diagnosis and monitoring. After a systematic review of the literature, 21 statements were extracted and were subject of the two-stage Delphi process. Eleven statements were scored 3 or more and were further discussed and ranked in a face-to-face workshop. The three most important diagnostic/predictive tools ranked were as follows: "New biological markers of asthma (eg genomics, proteomics and metabolomics) as a tool for diagnosis and/or monitoring," "Prediction of future asthma in preschool children with reasonable accuracy" and "Tools to measure volatile organic compounds (VOCs) in exhaled breath."
Collapse
Affiliation(s)
- L Garcia-Marcos
- Respiratory and Allergy Units, Arrixaca University Children's Hospital, University of Murcia & IMIB Research Institute, Murcia, Spain
| | | | | | - P Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, University College London (UCL) Great Ormond Street Institute of Child Health, London, UK
| | - E Baraldi
- Women's and Children's Health Department, University of Padua, Padova, Italy
| | - S Carraro
- Women's and Children's Health Department, University of Padua, Padova, Italy
| | - M Gappa
- Children's Hospital & Research Institute, Marienhospital Wesel, Wesel, Germany
| | - R Louis
- Department of Respiratory Medicine, University of Liege, Liege, Belgium
| | - A Moreno-Galdo
- Paediatric Pulmonology Unit, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - D G Peroni
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - M Pijnenburg
- Paediatrics/Paediatric Respiratory Medicine, Erasmus MC - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - K N Priftis
- Department of Paediatrics, Athens University Medical School, Attikon General Hospital, Athens, Greece
| | - M Sanchez-Solis
- Respiratory and Allergy Units, Arrixaca University Children's Hospital, University of Murcia & IMIB Research Institute, Murcia, Spain
| | - A Schuster
- Department of Paediatrics, University Hospital, Düsseldorf, Germany
| | | | | |
Collapse
|
36
|
Kuo CR, Jabbal S, Anderson W, Lipworth BJ. Pragmatic evaluation of inhaled corticosteroid particle size formulations on asthma control. Clin Exp Allergy 2019; 49:1321-1327. [PMID: 31264282 DOI: 10.1111/cea.13453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extra-fine particle formulations of inhaled corticosteroid (ICS) are associated with improved lung delivery. OBJECTIVES A pragmatic study to assess patient-reported outcomes after switching from fine to extra-fine particle ICS in persistent asthma. METHODS Twenty-four patients (mean age 48 year, FEV1 84%, ACQ 1.67) received 4 weeks run-in with a constant dose of fine particle ICS (mean dose 710 µg), followed by switching to an equivalent dose of extra-fine particle hydrofluoroalkane beclomethasone dipropionate (mean dose 355µg). Asthma control questionnaire (ACQ), the primary outcome and mini asthma quality of life questionnaire (mAQLQ) were measured pre- and post-run-in (baseline) and after 4 weeks and 8 weeks of switching. RESULTS Comparing pre- vs post-run-in, there were no differences for ACQ: 1.67 vs 1.65 or AQLQ: 5.08 vs 5.34. There were mean (95%CI) improvements (P < 0.001) from baseline after 8 weeks for ACQ: -0.53 (-0.83, -0.23) and AQLQ: 0.69 (0.35, 1.04), which exceeded the minimal clinically important difference (MCID) of 0.5 for both. There were also differences (P < 0.05) in domiciliary symptoms and reliever use. There were no significant changes at 8 weeks in lung function, FeNO or blood eosinophils. CONCLUSIONS Pragmatic switching from fine to extra-fine particle ICS at half the dose was associated with clinically relevant improvements in asthma control and quality of life, but not lung function or type 2 biomarkers.
Collapse
Affiliation(s)
- Chris RuiWen Kuo
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sunny Jabbal
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - William Anderson
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
37
|
Kuo CR, Spears M, Haughney J, Smith A, Miller J, Bradshaw T, Murray L, Williamson P, Lipworth B. Scottish consensus statement on the role of FeNO in adult asthma. Respir Med 2019; 155:54-57. [PMID: 31299469 DOI: 10.1016/j.rmed.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/14/2019] [Accepted: 07/05/2019] [Indexed: 01/15/2023]
Abstract
Fractional exhaled nitric oxide (FeNO) is the only available point of care test to assess type-2 inflammation in asthma. In making a diagnosis of asthma, FeNO should be used together with blood eosinophils and spirometry, alongside a history. Raised FeNO in conjunction with blood eosinophilia are treatable traits of type 2 inflammation in asthma, which in turn may guide personalised management. A FeNO suppression test can be used to assess adherence and device use with ICS therapy. Furthermore FeNO may be used to provide feedback to patients in response to ICS, especially when spirometry is normal. FeNO may facilitate appropriate referral to secondary care for more definitive specialist investigations. In summary, FeNO is cost effective in the diagnosis and management of asthma and should be incorporated into primary and secondary care as part of routine clinical practice.
Collapse
Affiliation(s)
- Chris RuiWen Kuo
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, UK
| | - Mark Spears
- Respiratory Medicine, Forth Valley Royal Hospital, Larbert, FK5 4WR, UK
| | - John Haughney
- Clinical R&D, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Andrew Smith
- Department of Respiratory Medicine, University Hospital Wishaw, ML2 0DP, UK
| | - Joy Miller
- Respiratory Medicine Unit, Aberdeen Royal Infirmary, University of Aberdeen, AB25 2ZN, UK
| | - Tracey Bradshaw
- Respiratory Medicine Unit, Royal Infirmary of Edinburgh, EH16 4SA, UK
| | - Lorna Murray
- Department of Respiratory Medicine, Raigmore Hospital, Inverness, IV2 4AG, UK
| | | | - Brian Lipworth
- Scottish Centre for Respiratory Research, Ninewells Hospital and Medical School, University of Dundee, DD1 9SY, UK.
| |
Collapse
|
38
|
Levin G, Rottensctreich A, Picard E, Avital A, Springer C, Cohen S. The correlation of adenosine challenge test results with subsequent clinical course among young children with suspected asthma: a retrospective cohort study. Pediatr Pulmonol 2019; 54:1087-1092. [PMID: 30997750 DOI: 10.1002/ppul.24337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/09/2019] [Accepted: 03/30/2019] [Indexed: 01/04/2023]
Abstract
AIM Our aim was to evaluate the correlation of Adenosine monophosphate challenge test (AMP-PCW) results with the patients' subsequent clinical course. METHODS We performed a 6-year retrospective cohort study of young children with suspected asthma who underwent AMP-PCW test. RESULTS Fifty four children were included in the study (median age, 50.5 months; range, 26-90). AMP-PCW was positive in 35 (65%) children. During the 3-year follow-up period, among 22 of 35 patients in the positive AMP-PCW group and among 17 of 19 in the negative AMP-PCW group-prophylactic therapy was not changed. Prophylactic therapy was initiated or its dose was escalated in 12 of 13 (92.3%) of the children with a positive AMP-PCW test compared to none of the children with a negative challenge test (P < 0.001). Prophylactic therapy was discontinued in only one (7.6%) of the children with a positive test as compared to two (100%) of the children with a negative test (P < 0.001). There were significantly fewer severe asthma exacerbations during a 3-year follow-up period after the challenge test as compared to the preceding 3-year period both in children with a positive (from 34 to 9 total events, P = 0.01) or a negative challenge test (from 16 to 0 events P = 0.01). The severity of airway hyper responsiveness was found to associate with the number of severe asthma exacerbations (P = 0.04) and with a diagnosis of asthma during the following 3 years (P = 0.02). CONCLUSIONS AMP-PCW test results correlates with the subsequent clinical course of young children with suspected asthma performing the test.
Collapse
Affiliation(s)
- Gabriel Levin
- Department of Obstetrics & Gynecology, Hadassah University Medical Center, Jerusalem, Israel
| | - Amihai Rottensctreich
- Department of Obstetrics & Gynecology, Hadassah University Medical Center, Jerusalem, Israel
| | - Elie Picard
- Pediatric Pulmonary Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| | - Avraham Avital
- Institute of Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Chaim Springer
- Institute of Pulmonology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shlomo Cohen
- Pediatric Pulmonary Unit, Shaare Zedek Medical Center, Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
39
|
Asano T, Kanemitsu Y, Takemura M, Fukumitsu K, Kurokawa R, Inoue Y, Takeda N, Yap JMG, Ito K, Kitamura Y, Fukuda S, Ohkubo H, Maeno K, Ito Y, Oguri T, Niimi A. Small airway inflammation is associated with residual airway hyperresponsiveness in Th2-high asthma. J Asthma 2019; 57:933-941. [PMID: 31164013 DOI: 10.1080/02770903.2019.1628251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Asthma is characterized by airway inflammation, variable airflow obstruction, and airway hyperresponsiveness (AHR). Generally, AHR takes longer to resolve than does airflow obstruction or clinical symptoms. AHR occasionally persists despite adequate asthma treatment.Objective: To evaluate factors which associates with residual AHR in patients with seemingly remitted airway inflammation.Methods: Patients who exhibited high fractional exhaled nitric oxide (FeNO) levels (>25 ppb) at the first visit (Visit 1) and normalized FeNO levels (<25 ppb) after adequate asthma treatment, including inhaled corticosteroid administration (Visit 2), were analyzed. Patients underwent a blood test, FeNO and small airway/alveolar nitric oxide concentration (CANO) measurements and a methacholine challenge test (continuous inhalation method) at both visits. Clinical indices were compared between patients with and without residual AHR.Results: Fifty patients were analyzed. All exhibited high FeNO levels at Visit 1 [mean, 54.0 ppb (95% confidence interval, 42.4-65.5)] and improvement of FeNO levels at Visit 2 [20.4 (19.2-21.6)] (p < 0.0001). Thirty-three patients (66%) had remission of AHR at Visit 2. No significant differences were observed between patients with and without residual AHR in terms of FeNO levels, lung function parameters and blood eosinophil counts at both visits. CANO level at Visit 2 was the only factor that significantly differed between patients with residual AHR [2.7 (1.9-3.6)] and those who achieved AHR remission [0.8 (0.5-1.0)] (p < 0.0001).Conclusion: Small airway inflammation, as assessed by CANO, was associated with residual AHR in patients with Th2-high asthma.
Collapse
Affiliation(s)
- Takamitsu Asano
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshihiro Kanemitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Takemura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kensuke Fukumitsu
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ryota Kurokawa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoshitsugu Inoue
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Norihisa Takeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jennifer Maries G Yap
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keima Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yuki Kitamura
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoshi Fukuda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirotsugu Ohkubo
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Ken Maeno
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Ito
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsuya Oguri
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
40
|
Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol 2019; 18:96-108. [PMID: 29389730 DOI: 10.1097/aci.0000000000000426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Asthma features a high degree of heterogeneity in both pathophysiology and therapeutic response, resulting in many asthma patients being treated inadequately. Biomarkers indicative of underlying pathological processes could be used to identify disease subtypes, determine prognosis and to predict or monitor treatment response. However, the newly identified as well as more established biomarkers have different applications and limitations. RECENT FINDINGS Conventional markers for type 2-high asthma, such as blood eosinophils, fraction of exhaled nitric oxide, serum IgE and periostin, feature limited sensitivity and specificity despite their significant correlations. More distinctive models have been developed by combining biomarkers and/or using omics techniques. Recently, a model with a positive predictive value of 100% for identification of type 2-high asthma based on a combination of minimally invasive biomarkers was developed. SUMMARY Individualisation of asthma treatment regimens on the basis of biomarkers is necessary to improve asthma control. However, the suboptimal properties of currently available conventional biomarkers limit its clinical utility. Newly identified biomarkers and models based on combinations and/or omics analysis must be validated and standardised before they can be routinely applied in clinical practice. The development of robust biomarkers will allow development of more efficacious precision medicine-based treatment approaches for asthma.
Collapse
|
41
|
Comberiati P, Katial RK, Covar RA. Bronchoprovocation Testing in Asthma: An Update. Immunol Allergy Clin North Am 2019; 38:545-571. [PMID: 30342579 DOI: 10.1016/j.iac.2018.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Bronchial hyperresponsiveness (BHR) is defined as a heightened bronchoconstrictive response to airway stimuli. It complements the cardinal features in asthma, such as variable or reversible airflow limitation and airway inflammation. Although BHR is considered a pathophysiologic hallmark of asthma, it should be acknowledged that this property of the airway is dynamic, because its severity and even presence can vary over time with disease activity, triggers or specific exposure, and with treatment. In addition, it is important to recognize that there is a component that is not reflective of a specific disease entity.
Collapse
Affiliation(s)
- Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, 56126 Pisa, Italy; Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Rohit K Katial
- National Jewish Health, 1400 Jackson Street (J321), Denver, CO 80206, USA
| | - Ronina A Covar
- National Jewish Health, 1400 Jackson Street (J321), Denver, CO 80206, USA.
| |
Collapse
|
42
|
Abstract
Antenatal and preschool factors are key in determining the progression to pre-school wheeze and eosinophilic school age asthma. The conventional view of eosinophilic asthma is that airway inflammation is the fundamental underlying abnormality, and airway inflammation and hyper-responsiveness are secondary; in fact, these three are parallel processes. Very early structural changes, independent of inflammation and infection, are associated with early airway hyper-responsiveness and later adverse respiratory outcomes. There is a bidirectional relationship between structural airway wall changes and airway inflammation, with airway contraction per se leading to the release of growth factors, and inflammatory pathways promoting airway remodeling. Early viral infection (and increasingly being appreciated, bacterial infection) is important in wheeze outcomes. There is evidence of abnormal immune function including cytokine release before the onset of viral infections. However, viral infections may also have prolonged effects on the host immune system, and the evidence for beneficial and adverse effects of viral infection is conflicting. In older children and adults, asthmatic epithelial cells show impaired interferon responses to viral infection, but only in the presence of uncontrolled type 2 inflammation, implying these are secondary phenomena. There are also compelling data relating the innate immune system to later asthma and atopy, and animal studies suggest that the effects of a high endotoxin, microbiologically diverse environment may be modulated via the epithelial alarmin IL-33. Whereas, previously only viral infection was thought to be important, early bacterial colonization of the upper airway is coming to the fore, associated with a mixed pattern of TH1/TH2/TH17 cytokine secretion, and adverse long term outcomes. Bacterial colonization is probably a marker of a subtle immune deficiency, rather than directly causal. The airway and gut microbiome critically impacts the development of Type 2 inflammatory responses. However, Type 2 inflammatory cytokines, which are critical both to progression from pre-school wheeze to eosinophilic asthma, and sustaining the eosinophilic asthmatic state, are not implicated in the very early development of the disease. Taken together, the evidence is that the earliest cytokine and chemokine signals will come from the study of bronchial epithelial cell function and their interactions with viruses and the microbiome.
Collapse
Affiliation(s)
- Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| |
Collapse
|
43
|
Abstract
The recent Lancet commission has highlighted that "asthma" should be used to describe a clinical syndrome of wheeze, breathlessness, chest tightness, and sometimes cough. The next step is to deconstruct the airway into components of fixed and variable airflow obstruction, inflammation, infection and altered cough reflex, setting the airway disease in the context of extra-pulmonary co-morbidities and social and environmental factors. The emphasis is always on delineating treatable traits, including variable airflow obstruction caused by airway smooth muscle constriction (treated with short- and long-acting β-2 agonists), eosinophilic airway inflammation (treated with inhaled corticosteroids) and chronic bacterial infection (treated with antibiotics with benefit if it is driving the disease). It is also important not to over-treat the untreatable, such as fixed airflow obstruction. These can all be determined using simple, non-invasive tests such as spirometry before and after acute administration of a bronchodilator (reversible airflow obstruction); peripheral blood eosinophil count, induced sputum, exhaled nitric oxide (airway eosinophilia); and sputum or cough swab culture (bacterial infection). Additionally, the pathophysiology of risk domains must be considered: these are risk of an asthma attack, risk of poor airway growth, and in pre-school children, risk of progression to eosinophilic school age asthma. Phenotyping the airway will allow more precise diagnosis and targeted treatment, but it is important to move to endotypes, especially in the era of increasing numbers of biologicals. Advances in -omics technology allow delineation of pathways, which will be particularly important in TH2 low eosinophilic asthma, and also pauci-inflammatory disease. It is very important to appreciate the difficulties of cluster analysis; a patient may have eosinophilic airway disease because of a steroid resistant endotype, because of non-adherence to basic treatment, and a surge in environmental allergen burden. Sophisticated -omics approaches will be reviewed in this manuscript, but currently they are not being used in clinical practice. However, even while they are being evaluated, management of the asthmas can and should be improved by considering the pathophysiologies of the different airway diseases lumped under that umbrella term, using simple, non-invasive tests which are readily available, and treating accordingly.
Collapse
Affiliation(s)
- Andrew Bush
- Departments of Paediatrics and Paediatric Respiratory Medicine, Royal Brompton Harefield NHS Foundation Trust and Imperial College, London, United Kingdom
| |
Collapse
|
44
|
Hoyte FCL, Gross LM, Katial RK. Exhaled Nitric Oxide: An Update. Immunol Allergy Clin North Am 2018; 38:573-585. [PMID: 30342580 DOI: 10.1016/j.iac.2018.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fractional concentration of exhaled nitric oxide (FENO) is a biomarker used to identify allergic airway inflammation. Because it is noninvasive and easy to obtain, its utility has been studied in the diagnosis and management of several respiratory diseases. Much of the research has been done in asthma, and many studies support the use of FENO in aiding diagnosing asthma, predicting steroid responsiveness, and preventing exacerbations by guiding medication dosage and assessing adherence.
Collapse
Affiliation(s)
- Flavia C L Hoyte
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | - Lara M Gross
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA; Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado, 13001 E 17th Place, Aurora, CO 80045, USA
| | - Rohit K Katial
- Division of Allergy and Immunology, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| |
Collapse
|
45
|
Plantier L, Beydon N, Chambellan A, Degano B, Delclaux C, Dewitte JD, Dinh-Xuan AT, Garcia G, Kauffmann C, Paris C, Perez T, Poussel M, Wuyam B, Zerah-Lancner F, Chenuel B. [Guidelines for methacholine provocation testing]. Rev Mal Respir 2018; 35:759-775. [PMID: 30097294 DOI: 10.1016/j.rmr.2018.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/15/2018] [Indexed: 12/01/2022]
Abstract
Bronchial challenge with the direct bronchoconstrictor agent methacholine is commonly used for the diagnosis of asthma. The "Lung Function" thematic group of the French Pulmonology Society (SPLF) elaborated a series of guidelines for the performance and the interpretation of methacholine challenge testing, based on French clinical guideline methodology. Specifically, guidelines are provided with regard to the choice of judgment criteria, the management of deep inspirations, and the role of methacholine bronchial challenge in the care of asthma, exercise-induced asthma, and professional asthma.
Collapse
Affiliation(s)
- L Plantier
- CEPR/Inserm UMR1100, CHRU de Tours, service de pneumologie et explorations fonctionnelles respiratoires, université François-Rabelais, 37044 Tours cedex 9, France.
| | - N Beydon
- Unité fonctionnelle d'exploration fonctionnelle respiratoire et du sommeil, AP-HP, hôpital Armand-Trousseau, 75012 Paris, France
| | - A Chambellan
- Inserm UMR1087, explorations fonctionnelles et réhabilitation respiratoire, l'institut du thorax, CHU, 44093 Nantes cedex 1, France
| | - B Degano
- Service d'explorations fonctionnelles, hôpital Jean-Minjoz, 25000 Besançon, France
| | - C Delclaux
- Inserm U1141, DHU PROTECT, service de physiologie explorations fonctionnelles pédiatriques-CPPS, AP-HP, hôpital Robert-Debré, université Paris Diderot, 75019 Paris, France
| | - J-D Dewitte
- Santé au travail-laboratoire d'étude et de recherche en sociologie, UFR médecine et sciences de la santé, université de Bretagne occidentale, 29238 Brest cedex 3, France
| | - A T Dinh-Xuan
- Service de physiologie-explorations fonctionnelles, université Paris Descartes, AP-HP, hôpital Cochin, 75014 Paris, France
| | - G Garcia
- Service de physiologie, Inserm UMR999, AP-HP, hôpital de Bicêtre, 94270 Le Kremlin-Bicêtre cedex, France
| | - C Kauffmann
- Service d'explorations fonctionnelles respiratoires, CHU, 63000 Clermont-Ferrand, France
| | - C Paris
- EA7892, service de pathologie professionnelle, université de Lorraine, CHU de Nancy, 54500 Vandœuvre-Les-Nancy, France
| | - T Perez
- Clinique de pneumologie, centre de compétences maladies pulmonaires rares, CHRU de Lille, hôpital Albert-Calmette, 59037 Lille, France
| | - M Poussel
- Antenne médicale de prévention du dopage, EA 3450, service des examens de la fonction respiratoire et de l'aptitude à l'exercice médecine du sport, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| | - B Wuyam
- Laboratoire HP2, Inserm 1042, service sport et pathologies, CHU de Grenoble, hôpital Sud, 38130 Echirolles, France
| | - F Zerah-Lancner
- Service de physiologie-explorations fonctionnelles, AP-HP, hôpital Henri-Mondor, 94000 Créteil, France
| | - B Chenuel
- Antenne médicale de prévention du dopage, EA 3450, service des examens de la fonction respiratoire et de l'aptitude à l'exercice médecine du sport, CHRU de Nancy Brabois, 54500 Vandœuvre-lès-Nancy, France
| | | |
Collapse
|
46
|
Chen J, Miller M, Unno H, Rosenthal P, Sanderson MJ, Broide DH. Orosomucoid-like 3 (ORMDL3) upregulates airway smooth muscle proliferation, contraction, and Ca 2+ oscillations in asthma. J Allergy Clin Immunol 2018; 142:207-218.e6. [PMID: 28889952 PMCID: PMC5842097 DOI: 10.1016/j.jaci.2017.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/25/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a major feature of asthma attributed predominantly to an extrinsic immune/inflammatory response increasing airway smooth muscle (ASM) contractility. OBJECTIVE We investigated whether increased ASM expression of orosomucoid-like 3 (ORMDL3), a gene on chromosome 17q21 highly linked to asthma, induced increased ASM proliferation and contractility in vitro and influenced airway contractility and calcium flux in ASM in precision-cut lung slices (PCLSs) from wild-type and hORMDL3Zp3-Cre mice (which express increased levels of human ORMDL3 [hORMDL3]). METHODS Levels of ASM proliferation and contraction were assessed in ASM cells transfected with ORMDL3 in vitro. In addition, airway contractility and calcium oscillations were quantitated in ASM cells in PCLSs derived from naive wild-type and naive hORMDL3Zp3-Cre mice, which do not have a blood supply. RESULTS Increased ASM expression of ORMDL3 in vitro resulted in increased ASM proliferation and contractility. PCLSs derived from naive hORMDL3Zp3-Cre mice, which do not have airway inflammation, exhibit increased airway contractility with increased calcium oscillations in ASM cells. Increased ASM ORMDL3 expression increases levels of ASM sarcoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), which increases ASM proliferation and contractility. CONCLUSION Overall, these studies provide evidence that an intrinsic increase in ORMDL3 expression in ASM can induce increased ASM proliferation and contractility, which might contribute to increased airway hyperresponsiveness in the absence of airway inflammation in asthmatic patients.
Collapse
Affiliation(s)
- Jun Chen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, and the Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - Marina Miller
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Hirotoshi Unno
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Peter Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, Calif
| | - Michael J Sanderson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Mass
| | - David H Broide
- Department of Medicine, University of California, San Diego, La Jolla, Calif.
| |
Collapse
|
47
|
Nayak AP, Deshpande DA, Penn RB. New targets for resolution of airway remodeling in obstructive lung diseases. F1000Res 2018; 7. [PMID: 29904584 PMCID: PMC5981194 DOI: 10.12688/f1000research.14581.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Airway remodeling (AR) is a progressive pathological feature of the obstructive lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). The pathology manifests itself in the form of significant, progressive, and (to date) seemingly irreversible changes to distinct respiratory structural compartments. Consequently, AR correlates with disease severity and the gradual decline in pulmonary function associated with asthma and COPD. Although current asthma/COPD drugs manage airway contraction and inflammation, none of these effectively prevent or reverse features of AR. In this review, we provide a brief overview of the features and putative mechanisms affecting AR. We further discuss recently proposed strategies with promise for deterring or treating AR.
Collapse
Affiliation(s)
- Ajay P Nayak
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| | - Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, USA
| |
Collapse
|
48
|
Shaw D. Putting the brake on accelerated lung function decline in asthma. Eur Respir J 2018; 51:51/2/1702630. [PMID: 29444922 DOI: 10.1183/13993003.02630-2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/11/2023]
|
49
|
Agustí A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, Louis R, McDonald VM, Sterk PJ, Thomas M, Vogelmeier C, Pavord ID. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J 2017; 50:50/4/1701655. [PMID: 29051276 DOI: 10.1183/13993003.01655-2017] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
On February 21, 2017, a European Respiratory Society research seminar held in Barcelona discussed how to best apply precision medicine to chronic airway diseases such as asthma and chronic obstructive pulmonary disease. It is now clear that both are complex and heterogeneous diseases, that often overlap and that both require individualised assessment and treatment. This paper summarises the presentations and discussions that took place during the seminar. Specifically, we discussed the need for a new taxonomy of human diseases, the role of different players in this scenario (exposome, genes, endotypes, phenotypes, biomarkers and treatable traits) and a number of unanswered key questions in the field. We also addressed how to deploy airway precision medicine in clinical practice today, both in primary and specialised care. Finally, we debated the type of research needed to move the field forward.
Collapse
Affiliation(s)
- Alvar Agustí
- Respiratory Institute, Hospital Clínic, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - Mona Bafadhel
- Dept of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard Beasley
- Medical Research Institute of New Zealand, Wellington, New Zealand
| | - Elisabeth H Bel
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Rosa Faner
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Spain
| | - Peter G Gibson
- The Centre of Excellence in Severe Asthma, Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Renaud Louis
- Pneumology Dept, CHU Liege, GIGA I3 research group, University of Liege, Liege, Belgium
| | - Vanessa M McDonald
- The Centre of Excellence in Severe Asthma, Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Peter J Sterk
- Dept of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
| | - Mike Thomas
- Primary Care and Population Sciences, University of Southampton, Aldermoor Health Centre, Southampton, UK
| | - Claus Vogelmeier
- University of Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Ian D Pavord
- Dept of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR Biomedical Research Centre, University of Oxford and Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | |
Collapse
|
50
|
Galant SP, Komarow HD, Shin HW, Siddiqui S, Lipworth BJ. The case for impulse oscillometry in the management of asthma in children and adults. Ann Allergy Asthma Immunol 2017; 118:664-671. [PMID: 28583260 DOI: 10.1016/j.anai.2017.04.009] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To provide a clinical rationale for including impulse oscillometry (IOS) as a part of standard office-based asthma assessment. DATA SOURCES PubMed and Google search, limited to English language and human disease, with the keywords IOS and asthma. STUDY SELECTIONS Articles included in this review were based on the expert opinion and previous publications by the authors. RESULTS In children, IOS was more useful than spirometry in identifying asthma and uncontrolled asthma and predicting loss of control and exacerbations. IOS predicts young children at risk for loss of lung function with age and the potential for early intervention to prevent further sequelae. In adults, peripheral airway impairment detected by IOS or spirometry (ie, forced expiratory flow between 25% and 75%) commonly occurs across severity, and each measure may be complementary in predicting loss of control even with normal forced expiratory volume in 1 second. Extrafine inhaled corticosteroids with or without long-acting β-agonists proved superior to standard particle aerosols in improving IOS-detected peripheral airway obstruction. Our data also suggest that currently available commercial reference values for lung resistance at 5 Hz and lung reactance at 5 Hz are applicable across diverse populations, but further studies are needed. CONCLUSION The findings of this review suggest that IOS can add value to traditional clinical and spirometric assessment and thus improve management of asthma in children and adults, as well as have the potential to detect early dysfunction of the peripheral airways, which may result in better outcomes.
Collapse
Affiliation(s)
| | - Hirsh D Komarow
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hye-Won Shin
- Pediatrics and Pediatrics Exercise and Genomics Research Center, University of California, Irvine, Irvine, California
| | - Salman Siddiqui
- Department of Infection, Immunity and Inflammation, Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester, England
| | - Brian J Lipworth
- Scottish Centre for Respiratory Research Ninewells Hospital, Dundee, Scotland
| |
Collapse
|