1
|
Onaolapo MC, Alabi OD, Akano OP, Olateju BS, Okeleji LO, Adeyemi WJ, Ajayi AF. Lecithin and cardiovascular health: a comprehensive review. Egypt Heart J 2024; 76:92. [PMID: 39001966 PMCID: PMC11246377 DOI: 10.1186/s43044-024-00523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Cardiovascular diseases are one of the prime causes of mortality globally. Therefore, concerted efforts are made to prevent or manage disruptions from normal functioning of the cardiovascular system. Disruption in lipid metabolism is a major contributor to cardiovascular dysfunction. This review examines how lecithin impacts lipid metabolism and cardiovascular health. It emphasizes lecithin's ability to reduce excess low-density lipoproteins (LDL) while specifically promoting the synthesis of high-density lipoprotein (HDL) particles, thus contributing to clearer understanding of its role in cardiovascular well-being. Emphasizing the importance of lecithin cholesterol acyltransferase (LCAT) in the reverse cholesterol transport (RCT) process, the article delves into its contribution in removing surplus cholesterol from cells. This review aims to clarify existing literature on lipid metabolism, providing insights for targeted strategies in the prevention and management of atherosclerotic cardiovascular disease (ASCVD). This review summarizes the potential of lecithin in cardiovascular health and the role of LCAT in cholesterol metabolism modulation, based on articles from 2000 to 2023 sourced from databases like MEDLINE, PubMed and the Scientific Electronic Library Online. MAIN BODY While studies suggest a positive correlation between increased LCAT activities, reduced LDL particle size and elevated serum levels of triglyceride-rich lipoprotein (TRL) markers in individuals at risk of ASCVD, the review acknowledges existing controversies. The precise nature of LCAT's potential adverse effects remains uncertain, with varying reports in the literature. Notably, gastrointestinal symptoms such as diarrhea and nausea have been sporadically documented. CONCLUSIONS The review calls for a comprehensive investigation into the complexities of LCAT's impact on cardiovascular health, recognizing the need for a nuanced understanding of its potential drawbacks. Despite indications of potential benefits, conflicting findings warrant further research to clarify LCAT's role in atherosclerosis.
Collapse
Affiliation(s)
- Moyinoluwa Comfort Onaolapo
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria
| | - Olubunmi Dupe Alabi
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | | | | | | | - Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Oyo State, Nigeria.
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria.
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
| |
Collapse
|
2
|
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges. Arch Biochem Biophys 2021; 703:108850. [PMID: 33753033 DOI: 10.1016/j.abb.2021.108850] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022]
Abstract
Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.
Collapse
|
3
|
Kim HC, Suresh MV, Singh VV, Arick DQ, Machado-Aranda DA, Raghavendran K, Won YY. Polymer Lung Surfactants. ACS APPLIED BIO MATERIALS 2018; 1:581-592. [PMID: 30627707 PMCID: PMC6322699 DOI: 10.1021/acsabm.8b00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Animal-derived lung surfactants annually save 40 000 infants with neonatal respiratory distress syndrome (NRDS) in the United States. Lung surfactants have further potential for treating about 190 000 adult patients with acute respiratory distress syndrome (ARDS) each year. To this end, the properties of current therapeutics need to be modified. Although the limitations of current therapeutics have been recognized since the 1990s, there has been little improvement. To address this gap, our laboratory has been exploring a radically different approach in which, instead of lipids, proteins, or peptides, synthetic polymers are used as the active ingredient. This endeavor has led to an identification of a promising polymer-based lung surfactant candidate, poly(styrene-b-ethylene glycol) (PS-PEG) polymer nanomicelles. PS-PEG micelles produce extremely low surface tension under high compression because PS-PEG micelles have a strong affinity to the air-water interface. NMR measurements support that PS-PEG micelles are less hydrated than ordinary polymer micelles. Studies using mouse models of acid aspiration confirm that PS-PEG lung surfactant is safe and efficacious.
Collapse
Affiliation(s)
- Hyun Chang Kim
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Vikas V. Singh
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Davis Q. Arick
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Krishnan Raghavendran
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Abstract
This review summarizes evidence that the impact of protein binding of the activity of antibiotics is multifaceted and more complex than indicated by the numerical value of protein binding alone. A plethora of studies has proven that protein binding of antibiotics matters, as the free fraction only is antibacterially active and governs pharmacokinetics. Several studies have indicated that independent from protein binding of immunoglobulin G, albumin, α1-acid-glycoprotein, and pulmonary surfactant acted synergistically with antibacterial agents, thus suggesting that some intrinsic properties of serum proteins may have mediated serum-antibiotic synergisms. It has been demonstrated that IgG and albumin permeabilized Gram-negative and Gram-positive bacteria and facilitated the uptake of poorly penetrating antibiotics. Alpha-1-acid-glycoprotein and pulmonary surfactant also exerted a permeabilizing activity, but proof that this property results in a sensitizing effect is missing. The permeabilizing effect of serum proteins may explain why serum-antibiotic synergisms do not represent a general phenomenon but are limited to specific drug-bug associations only. Although evidence has been generated to support the hypothesis that native serum proteins interact synergistically with antibiotics, systematic and well-controlled studies have to be performed to substantiate this phenomenon. The interactions between serum proteins and bacterial surfaces are driven by physicochemical forces. However, preparative techniques, storage conditions, and incubation methods have a significant impact on the intrinsic activities of these serum proteins affecting serum-antibiotic synergisms, so these techniques have to be standardized; otherwise, contradictory data or even artifacts will be generated.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institute for Infection Medicine, Kiel, Germany
| |
Collapse
|
5
|
Echaide M, Autilio C, Arroyo R, Perez-Gil J. Restoring pulmonary surfactant membranes and films at the respiratory surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1725-1739. [PMID: 28341439 DOI: 10.1016/j.bbamem.2017.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 02/08/2023]
Abstract
Pulmonary surfactant is a complex of lipids and proteins assembled and secreted by the alveolar epithelium into the thin layer of fluid coating the respiratory surface of lungs. There, surfactant forms interfacial films at the air-water interface, reducing dramatically surface tension and thus stabilizing the air-exposed interface to prevent alveolar collapse along respiratory mechanics. The absence or deficiency of surfactant produces severe lung pathologies. This review describes some of the most important surfactant-related pathologies, which are a cause of high morbidity and mortality in neonates and adults. The review also updates current therapeutic approaches pursuing restoration of surfactant operative films in diseased lungs, mainly through supplementation with exogenous clinical surfactant preparations. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Mercedes Echaide
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Chiara Autilio
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Raquel Arroyo
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain
| | - Jesus Perez-Gil
- Dept. Biochemistry, Faculty of Biology, and Research Institute "Hospital 12 de Octubre", Complutense University, Madrid, Spain.
| |
Collapse
|
6
|
Hobi N, Giolai M, Olmeda B, Miklavc P, Felder E, Walther P, Dietl P, Frick M, Pérez-Gil J, Haller T. A small key unlocks a heavy door: The essential function of the small hydrophobic proteins SP-B and SP-C to trigger adsorption of pulmonary surfactant lamellar bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2124-34. [DOI: 10.1016/j.bbamcr.2016.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/15/2016] [Accepted: 04/27/2016] [Indexed: 02/07/2023]
|
7
|
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films. Chem Phys Lipids 2014; 185:153-75. [PMID: 25260665 DOI: 10.1016/j.chemphyslip.2014.09.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/06/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
The respiratory surface in the mammalian lung is stabilized by pulmonary surfactant, a membrane-based system composed of multiple lipids and specific proteins, the primary function of which is to minimize the surface tension at the alveolar air-liquid interface, optimizing the mechanics of breathing and avoiding alveolar collapse, especially at the end of expiration. The goal of the present review is to summarize current knowledge regarding the structure, lipid-protein interactions and mechanical features of surfactant membranes and films and how these properties correlate with surfactant biological function inside the lungs. Surfactant mechanical properties can be severely compromised by different agents, which lead to surfactant inhibition and ultimately contributes to the development of pulmonary disorders and pathologies in newborns, children and adults. A detailed comprehension of the unique mechanical and rheological properties of surfactant layers is crucial for the diagnostics and treatment of lung diseases, either by analyzing the contribution of surfactant impairment to the pathophysiology or by improving the formulations in surfactant replacement therapies. Finally, a short review is also included on the most relevant experimental techniques currently employed to evaluate lung surfactant mechanics, rheology, and inhibition and reactivation processes.
Collapse
|
8
|
Lopez-Rodriguez E, Pérez-Gil J. Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1568-85. [PMID: 24525076 DOI: 10.1016/j.bbamem.2014.01.028] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 01/22/2014] [Accepted: 01/27/2014] [Indexed: 01/01/2023]
Abstract
Pulmonary surfactant is an essential lipid-protein complex to maintain an operative respiratory surface at the mammalian lungs. It reduces surface tension at the alveolar air-liquid interface to stabilise the lungs against physical forces operating along the compression-expansion breathing cycles. At the same time, surfactant integrates elements establishing a primary barrier against the entry of pathogens. Lack or deficiencies of the surfactant system are associated with respiratory pathologies, which treatment often includes supplementation with exogenous materials. The present review summarises current models on the molecular mechanisms of surfactant function, with particular emphasis in its biophysical properties to stabilise the lungs and the molecular alterations connecting impaired surfactant with diseased organs. It also provides a perspective on the current surfactant-based strategies to treat respiratory pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Elena Lopez-Rodriguez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain; Institute for Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany; Biomedical Research in End Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research, Hannover, Germany
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Bodega F, Sironi C, Porta C, Zocchi L, Agostoni E. Pleural mesothelium lubrication after phospholipase treatment. Respir Physiol Neurobiol 2014; 194:49-53. [PMID: 24486606 DOI: 10.1016/j.resp.2014.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 11/28/2022]
Abstract
Coefficient of kinetic friction (μ) of rabbit pleural mesothelium increased after short treatment of specimens with phospholipase C. This increase was removed by addition of a solution with hyaluronan or sialomucin, as previously shown in post-blotting Ringer or after short pronase treatment. After phospholipase μ decreased with increase in sliding velocity, but at highest velocity it was still greater than control; this difference was removed by addition of hyaluronan or sialomucin, as in post-blotting Ringer or after short pronase treatment. Hyaluronan placed on specimen before phospholipase treatment reduced increase in μ by protecting phospholipids from enzyme, as shown by others for alveolar and synovial phospholipids. Samples of parietal pleura stained with silver nitrate showed that mesothelial cells were not disrupted by short phospholipase treatment. Instead, they were disrupted if this treatment was preceded by a short pronase treatment; but even after this disruption addition of hyaluronan or sialomucin brought μ back to control.
Collapse
Affiliation(s)
- Francesca Bodega
- Dipartimento di Fisiopatologia e dei Trapianti, Sezione di Fisiologia Umana, Università degli Studi di Milano, Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia e dei Trapianti, Sezione di Fisiologia Umana, Università degli Studi di Milano, Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia e dei Trapianti, Sezione di Fisiologia Umana, Università degli Studi di Milano, Milan, Italy
| | - Luciano Zocchi
- Dipartimento di Fisiopatologia e dei Trapianti, Sezione di Fisiologia Umana, Università degli Studi di Milano, Milan, Italy
| | - Emilio Agostoni
- Dipartimento di Fisiopatologia e dei Trapianti, Sezione di Fisiologia Umana, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
10
|
Martínez Sarrasague M, Cimato A, Piehl L, Brites F, Facorro G. Effect of serum lipoproteins and cholesterol on an exogenous pulmonary surfactant. ESR analysis of structural changes and their relation with surfactant activity. Respir Physiol Neurobiol 2013; 189:581-7. [PMID: 23994827 DOI: 10.1016/j.resp.2013.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/02/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022]
Abstract
The study of structural changes in the surfactant may help to understand the mechanisms by which the surfactant is inactivated by serum. Here, we compared the in vitro effects of serum, albumin, lipoproteins (VLDL, LDL, HDL) and cholesterol on the dynamic and structural properties of surfactant suspensions by electronic spin resonance and surface tension measurements. Our results showed that albumin seems to be responsible for macrostructure disaggregation and increased rigidity in the hydrophobic region, but it did not affect surfactant activity. Fluidity in the polar area seems to be critical for proper physiological activity, and the changes induced by serum observed in this area would be generated by HDL or cholesterol, but the amount of cholesterol transferred by serum is not significant. Statistical analysis showed that surfactant activity correlated with the fluidity in the polar area but not with that in the hydrophobic region. We obtained strong evidence that among all the serum components tested, HDL is the one that causes the structural changes that compromise surfactant performance.
Collapse
Affiliation(s)
- María Martínez Sarrasague
- Cátedra de Física, Departamento de Fisicomatemática, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
11
|
How to overcome surfactant dysfunction in meconium aspiration syndrome? Respir Physiol Neurobiol 2013; 187:58-63. [DOI: 10.1016/j.resp.2013.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 01/06/2023]
|
12
|
Zuo YY, Neumann AW. Pulmonary Surfactant and its in vitro Assessment Using Axisymmetric Drop Shape Analysis (ADSA): A Review. TENSIDE SURFACT DET 2013. [DOI: 10.3139/113.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Recent progress in the study of pulmonary surfactant is reviewed. The first half of this paper provides general background in both physiological and clinical perspectives. The second half focuses on the in vitro assessment of pulmonary surfactant using methods based on a drop shape technique, Axisymmetric Drop Shape Analysis (ADSA). Theories, experiments, and techniques of image analysis used in these ADSA methods are briefly described. Typical applications of these methods are discussed in detail. It is concluded that the accuracy, versatility, and simplicity of these ADSA methods render them suitable to the study of pulmonary surfactant.
Collapse
|
13
|
Lu KW, Taeusch HW, Clements JA. Hyaluronan with dextran added to therapeutic lung surfactants improves effectiveness in vitro and in vivo. Exp Lung Res 2013; 39:191-200. [PMID: 23638643 DOI: 10.3109/01902148.2013.791893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Surfactants in current clinical use are largely ineffective in treating acute lung injury (ALI)/ acute respiratory distress syndrome. In part, this ineffectiveness is due to inactivation of surfactant by serum leakage into the alveoli. Previously, we reported that adding hyaluronan and some nonionic polymers to synthetic lipids combined with native SP-B and SP-C enhanced surface activity. In this study, we first tested two therapeutic lung surfactants and then retested after adding hyaluronan, polyethylene glycol or dextran alone or in two-polymer combinations including hyaluronan in the absence or presence of serum. Surface activities were measured in a modified bubble surfactometer. Results indicate that the inhibition threshold (defined as the amount of serum required to produce a minimum surface tension above 10 mN/m after 5 minutes of cycling) was 35 times higher with hyaluronan plus dextran added to Infasurf than with Infasurf alone, and better than all other mixtures tested. The threshold for Survanta with hyaluronan plus polyethylene glycol was 7 times higher than Survanta alone. We next tested selected surfactant mixtures in an animal model that mimicked ALI. All measurements of lung function showed significant improvement (P ≤ .05) with hyaluronan, or with hyaluronan and dextran added to Infasurf compared to Infasurf alone. Also, for these two groups, lung function was still improving at the end of the experiment. We conclude that certain polymers added to clinical surfactants can greatly increase resistance to inactivation in vitro, while in vivo, both Infasurf mixtures containing hyaluronan tended to normalize measures of lung function unlike other mixtures tested.
Collapse
Affiliation(s)
- Karen W Lu
- Department of Pediatrics, University of California, San Francisco, California 94110, USA.
| | | | | |
Collapse
|
14
|
Properties of mixed monolayers of clinical lung surfactant, serum albumin and hydrophilic polymers. Colloids Surf B Biointerfaces 2013; 101:135-42. [DOI: 10.1016/j.colsurfb.2012.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/30/2012] [Indexed: 02/01/2023]
|
15
|
López-Rodríguez E, Ospina OL, Echaide M, Taeusch HW, Pérez-Gil J. Exposure to polymers reverses inhibition of pulmonary surfactant by serum, meconium, or cholesterol in the captive bubble surfactometer. Biophys J 2012; 103:1451-9. [PMID: 23062337 DOI: 10.1016/j.bpj.2012.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/26/2012] [Accepted: 08/06/2012] [Indexed: 12/29/2022] Open
Abstract
Dysfunction of pulmonary surfactant in the lungs is associated with respiratory pathologies such as acute respiratory distress syndrome or meconium aspiration syndrome. Serum, cholesterol, and meconium have been described as inhibitory agents of surfactant's interfacial activity once these substances appear in alveolar spaces during lung injury and inflammation. The deleterious action of these agents has been only partly evaluated under physiologically relevant conditions. We have optimized a protocol to assess surfactant inhibition by serum, cholesterol, or meconium in the captive bubble surfactometer. Specific measures of surface activity before and after native surfactant was exposed to inhibitors included i), film formation, ii), readsorption of material from surface-associated reservoirs, and iii), interfacial film dynamics during compression-expansion cycling. Results show that serum creates a steric barrier that impedes surfactant reaching the interface. A mechanical perturbation of this barrier allows native surfactant to compete efficiently with serum to form a highly surface-active film. Exposure of native surfactant to cholesterol or meconium, on the other hand, modifies the compressibility of surfactant films though optimal compressibility properties recover on repetitive compression-expansion cycling. Addition of polymers like dextran or hyaluronic acid to surfactant fully reverses inhibition by serum. These polymers also prevent surfactant inhibition by cholesterol or meconium, suggesting that the protective action of polymers goes beyond the mere enhancement of interfacial adsorption as described by depletion force theories.
Collapse
Affiliation(s)
- Elena López-Rodríguez
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Visualizing the analogy between competitive adsorption and colloid stability to restore lung surfactant function. Biophys J 2012; 102:777-86. [PMID: 22385848 DOI: 10.1016/j.bpj.2012.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/11/2011] [Accepted: 01/09/2012] [Indexed: 01/11/2023] Open
Abstract
We investigated a model of acute respiratory distress syndrome in which the serum protein albumin adsorbs to an air-liquid interface and prevents the thermodynamically preferable adsorption of the clinical lung surfactant Survanta by inducing steric and electrostatic energy barriers analogous to those that prevent colloidal aggregation. Chitosan and polyethylene glycol (PEG), two polymers that traditionally have been used to aggregate colloids, both allow Survanta to quantitatively displace albumin from the interface, but through two distinct mechanisms. Direct visualization with confocal microscopy shows that the polycation chitosan coadsorbs to interfacial layers of both Survanta and albumin, and also colocalizes with the anionic domains of Survanta at the air-liquid interface, consistent with it eliminating the electrostatic repulsion by neutralizing the surface charges on albumin and Survanta. In contrast, the PEG distribution does not change during the displacement of albumin by Survanta, consistent with PEG inducing a depletion attraction sufficient to overcome the repulsive energy barrier toward adsorption.
Collapse
|
17
|
Lu KW, Pérez-Gil J, Echaide M, Taeusch HW. Pulmonary surfactant proteins and polymer combinations reduce surfactant inhibition by serum. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:2366-73. [PMID: 21741354 PMCID: PMC3156878 DOI: 10.1016/j.bbamem.2011.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is an inflammatory condition that can be associated with capillary leak of serum into alveoli causing inactivation of surfactant. Resistance to inactivation is affected by types and concentrations of surfactant proteins, lipids, and polymers. Our aim was to investigate the effects of different combinations of these three components. A simple lipid mixture (DPPC/POPG) or a more complex lipid mixture (DPPC/POPC/POPG/cholesterol) was used. Native surfactant proteins SP-B and SP-C obtained from pig lung lavage were added either singly or combined at two concentrations. Also, non-ionic polymers polyethylene glycol and dextran and the anionic polymer hyaluronan were added either singly or in pairs with hyaluronan included. Non-ionic polymers work by different mechanisms than anionic polymers, thus the purpose of placing them together in the same surfactant mixture was to evaluate if the combination would show enhanced beneficial effects. The resulting surfactant mixtures were studied in the presence or absence of serum. A modified bubble surfactometer was used to evaluate surface activities. Mixtures that included both SP-B and SP-C plus hyaluronan and either dextran or polyethylene glycol were found to be the most resistant to inhibition by serum. These mixtures, as well as some with either SP-B or SP-C with combined polymers were as or more resistant to inactivation than native surfactant. These results suggest that improved formulations of lung surfactants are possible and may be useful in reducing some types of surfactant inactivation in treating lung injuries.
Collapse
Affiliation(s)
- Karen W Lu
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
18
|
Nakahara H, Lee S, Krafft MP, Shibata O. Fluorocarbon-hybrid pulmonary surfactants for replacement therapy--a Langmuir monolayer study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18256-18265. [PMID: 21049919 DOI: 10.1021/la103118d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Effective additives to pulmonary surfactant (PS) preparations for therapy of respiratory distress syndrome (RDS) are being intensively sought. We report here the investigation of the effects of partially fluorinated amphiphiles (PFA) on the surface behavior of a model PS formulation. When small amounts of a partially fluorinated alcohol C(8)F(17)C(m)H(2m)OH (F8HmOH, m = 5 and 11) are added to the PS model preparation (a dipalmitoylphosphatidylcholine (DPPC)/Hel 13-5 peptide mixture) considered here, the effectiveness of the latter in in vitro pulmonary functions is enhanced. The mechanism for the improved efficacy depends on the hydrophobic chain length of the added PFA molecules. The shorter PFA, F8H5OH, when incorporated in the monolayer of the PS model preparation, promotes a disordered liquid-expanded (LE) phase upon lateral compression (fluidization). In contrast, the addition of the longer PFA, F8H11OH, reduces the disordered LE/ordered liquid-condensed (LC) phase transition pressure and promotes the growth of ordered domains (solidification). Furthermore, compression-expansion cycles suggest that F8H5OH, when incorporated in the PS model preparation, undergoes an irreversible elimination into the subphase, whereas F8H11OH enhances the squeeze-out phenomenon of the SP-B mimicking peptide, which is important in pulmonary functions and is related to the formation of a solid-like monolayer at the surface and of a surface reservoir just below the surface. F8H11OH particularly reinforces the effectiveness of DPPC in terms of minimum reachable surface tension, and of preservation of the integrated hysteresis area between compression and expansion isotherms, the two latter parameters being generally accepted indices for assessing PS efficacy. We suggest that PFA amphiphiles may be useful potential additives for synthetic PS preparations destined for treatment of RDS in premature infants and in adults.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Biophysical Chemistry, Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | | | | | | |
Collapse
|
19
|
Combined effects of polymers and KL4 peptide on surface activity of pulmonary surfactant lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1129-34. [DOI: 10.1016/j.bbamem.2010.02.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/29/2010] [Accepted: 02/22/2010] [Indexed: 01/08/2023]
|
20
|
Zasadzinski JA, Stenger PC, Shieh I, Dhar P. Overcoming rapid inactivation of lung surfactant: analogies between competitive adsorption and colloid stability. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:801-28. [PMID: 20026298 PMCID: PMC2834873 DOI: 10.1016/j.bbamem.2009.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/13/2009] [Accepted: 12/15/2009] [Indexed: 01/05/2023]
Abstract
Lung surfactant (LS) is a mixture of lipids and proteins that line the alveolar air-liquid interface, lowering the interfacial tension to levels that make breathing possible. In acute respiratory distress syndrome (ARDS), inactivation of LS is believed to play an important role in the development and severity of the disease. This review examines the competitive adsorption of LS and surface-active contaminants, such as serum proteins, present in the alveolar fluids of ARDS patients, and how this competitive adsorption can cause normal amounts of otherwise normal LS to be ineffective in lowering the interfacial tension. LS and serum proteins compete for the air-water interface when both are present in solution either in the alveolar fluids or in a Langmuir trough. Equilibrium favors LS as it has the lower equilibrium surface pressure, but the smaller proteins are kinetically favored over multi-micron LS bilayer aggregates by faster diffusion. If albumin reaches the interface, it creates an energy barrier to subsequent LS adsorption that slows or prevents the adsorption of the necessary amounts of LS required to lower surface tension. This process can be understood in terms of classic colloid stability theory in which an energy barrier to diffusion stabilizes colloidal suspensions against aggregation. This analogy provides qualitative and quantitative predictions regarding the origin of surfactant inactivation. An important corollary is that any additive that promotes colloid coagulation, such as increased electrolyte concentration, multivalent ions, hydrophilic non-adsorbing polymers such as PEG, dextran, etc. added to LS, or polyelectrolytes such as chitosan, also promotes LS adsorption in the presence of serum proteins and helps reverse surfactant inactivation. The theory provides quantitative tools to determine the optimal concentration of these additives and suggests that multiple additives may have a synergistic effect. A variety of physical and chemical techniques including isotherms, fluorescence microscopy, electron microscopy and X-ray diffraction show that LS adsorption is enhanced by this mechanism without substantially altering the structure or properties of the LS monolayer.
Collapse
Affiliation(s)
- Joseph A Zasadzinski
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA.
| | | | | | | |
Collapse
|
21
|
Iwanicki JL, Lu KW, Taeusch HW. Reductions of phospholipase A2inhibition of pulmonary surfactant with hyaluronan. Exp Lung Res 2010; 36:167-74. [DOI: 10.3109/01902140903234186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Acosta EJ, Policova Z, Lee S, Dang A, Hair ML, Neumann AW. Restoring the activity of serum-inhibited bovine lung extract surfactant (BLES) using cationic additives. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:489-97. [DOI: 10.1016/j.bbamem.2010.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 01/07/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
|
23
|
Acosta EJ, Policova Z, Lee S, Dang A, Hair ML, Neumann AW. Restoring the charge and surface activity of bovine lung extract surfactants with cationic and anionic polysaccharides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:882-90. [PMID: 20144883 DOI: 10.1016/j.bbamem.2010.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/25/2009] [Accepted: 01/25/2010] [Indexed: 11/24/2022]
Abstract
Chitosan, a cationic polysaccharide, has been found to improve the surface activity of lung surfactant extracts in the presence of various inhibitors. It has been proposed that chitosan binds to anionic lipids (e.g. phosphatidyl glycerols) in lung surfactants, producing stable lipid films at the air-water interface. This binding also reverses the net charge of the surfactant aggregates, from negative to positive. Unfortunately, positively charged aggregates may adsorb or interact with the negatively charged epithelial tissue, leading to poor surfactant performance. To address this issue an anionic polysaccharide, dextran sulfate (dexS), was used as a secondary coating to reverse the charge of chitosan-lung surfactant extracts without affecting the surface activity of the preparation. The dynamic surface tension and zeta potential of bovine lipid extract surfactant (BLES) containing chitosan chloride (chiCl) and dexS were evaluated as a function of dexS concentration. These studies were conducted in the absence and presence of sodium bicarbonate buffer, and in the absence and presence of bovine serum used as model inhibitor. It was determined that using an appropriate concentration of dexS, especially at physiological pH, it is possible to restore the negative charge of the surfactant aggregates, and retain their surface activity, even in the presence of bovine serum. High concentrations of dexS affect the binding of chiCl to BLES, and the surface activity of the preparation.
Collapse
Affiliation(s)
- Edgar J Acosta
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S3E5, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Stenger PC, Wu G, Miller CE, Chi EY, Frey SL, Lee KYC, Majewski J, Kjaer K, Zasadzinski JA. X-ray diffraction and reflectivity validation of the depletion attraction in the competitive adsorption of lung surfactant and albumin. Biophys J 2009; 97:777-86. [PMID: 19651036 DOI: 10.1016/j.bpj.2009.05.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/03/2009] [Accepted: 05/05/2009] [Indexed: 12/22/2022] Open
Abstract
Lung surfactant (LS) and albumin compete for the air-water interface when both are present in solution. Equilibrium favors LS because it has a lower equilibrium surface pressure, but the smaller albumin is kinetically favored by faster diffusion. Albumin at the interface creates an energy barrier to subsequent LS adsorption that can be overcome by the depletion attraction induced by polyethylene glycol (PEG) in solution. A combination of grazing incidence x-ray diffraction (GIXD), x-ray reflectivity (XR), and pressure-area isotherms provides molecular-resolution information on the location and configuration of LS, albumin, and polymer. XR shows an average electron density similar to that of albumin at low surface pressures, whereas GIXD shows a heterogeneous interface with coexisting LS and albumin domains at higher surface pressures. Albumin induces a slightly larger lattice spacing and greater molecular tilt, similar in effect to a small decrease in the surface pressure. XR shows that adding PEG to the LS-albumin subphase restores the characteristic LS electron density profile at the interface, and confirms that PEG is depleted near the interface. GIXD shows the same LS Bragg peaks and Bragg rods as on a pristine interface, but with a more compact lattice corresponding to a small increase in the surface pressure. These results confirm that albumin adsorption creates a physical barrier that inhibits LS adsorption, and that PEG in the subphase generates a depletion attraction between the LS aggregates and the interface that enhances LS adsorption without substantially altering the structure or properties of the LS monolayer.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stenger PC, Isbell SG, St Hillaire D, Zasadzinski JA. Rediscovering the Schulze-Hardy rule in competitive adsorption to an air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10045-50. [PMID: 19705897 PMCID: PMC2734920 DOI: 10.1021/la9009724] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ratio of divalent to monovalent ion concentration necessary to displace the surface-active protein, albumin, by lung surfactant monolayers and multilayers at an air-water interface scales as 2(-6), the same concentration dependence as the critical flocculation concentration (CFC) for colloids with a high surface potential. Confirming this analogy between competitive adsorption and colloid stability, polymer-induced depletion attraction and electrostatic potentials are additive in their effects; the range of the depletion attraction, twice the polymer radius of gyration, must be greater than the Debye length to have an effect on adsorption.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, USA
| | | | | | | |
Collapse
|
26
|
Kinematic viscosity of therapeutic pulmonary surfactants with added polymers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:632-7. [PMID: 19366601 DOI: 10.1016/j.bbamem.2009.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/05/2009] [Accepted: 01/12/2009] [Indexed: 11/23/2022]
Abstract
The addition of various polymers to pulmonary surfactants improves surface activity in experiments both in vitro and in vivo. Although the viscosity of surfactants has been investigated, the viscosity of surfactant polymer mixtures has not. In this study, we have measured the viscosities of Survanta and Infasurf with and without the addition of polyethylene glycol, dextran or hyaluronan. The measurements were carried out over a range of surfactant concentrations using two concentrations of polymers at two temperatures. Our results indicate that at lower surfactant concentrations, the addition of any polymers increased the viscosity. However, the addition of polyethylene glycol and dextran to surfactants at clinically used concentrations can substantially lower viscosity. Addition of hyaluronan at clinical surfactant concentrations slightly increased Infasurf viscosity and produced little change in Survanta viscosity. Effects of polymers on viscosity correlate with changes in size and distribution of surfactant aggregates and the apparent free volume of liquid as estimated by light microscopy. Aggregation of surfactant vesicles caused by polymers may therefore not only improve surface activity as previously shown, but may also affect viscosity in ways that could improve surfactant distribution in vivo.
Collapse
|
27
|
Stenger PC, Palazoglu OA, Zasadzinski JA. Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1033-43. [PMID: 19366599 DOI: 10.1016/j.bbamem.2009.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/24/2008] [Accepted: 01/12/2009] [Indexed: 01/07/2023]
Abstract
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106-5080, USA
| | | | | |
Collapse
|
28
|
Stenger PC, Isbell SG, Zasadzinski JA. Molecular weight dependence of the depletion attraction and its effects on the competitive adsorption of lung surfactant. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:2032-40. [PMID: 18433716 PMCID: PMC2575753 DOI: 10.1016/j.bbamem.2008.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/25/2008] [Accepted: 03/17/2008] [Indexed: 11/24/2022]
Abstract
Albumin competes with lung surfactant for the air-water interface, resulting in decreased surfactant adsorption and increased surface tension. Polyethylene glycol (PEG) and other hydrophilic polymers restore the normal rate of surfactant adsorption to the interface, which re-establishes low surface tensions on compression. PEG does so by generating an entropic depletion attraction between the surfactant aggregates and interface, reducing the energy barrier to adsorption imposed by the albumin. For a fixed composition of 10 g/L (1% wt.), surfactant adsorption increases with the 0.1 power of PEG molecular weight from 6 kDa-35 kDa as predicted by simple excluded volume models of the depletion attraction. The range of the depletion attraction for PEG with a molecular weight below 6 kDa is less than the dimensions of albumin and there is no effect on surfactant adsorption. PEG greater than 35 kDa reaches the overlap concentration at 1% wt. resulting in both decreased depletion attraction and decreased surfactant adsorption. Fluorescence images reveal that the depletion attraction causes the surfactant to break through the albumin film at the air-water interface to spread as a monolayer. During this transition, there is a coexistence of immiscible albumin and surfactant domains. Surface pressures well above the normal equilibrium surface pressure of albumin are necessary to force the albumin from the interface during film compression.
Collapse
Affiliation(s)
- Patrick C Stenger
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, USA
| | | | | |
Collapse
|
29
|
Bronchoalveolar lavage with pulmonary surfactant/dextran mixture improves meconium clearance and lung functions in experimental meconium aspiration syndrome. Eur J Pediatr 2008; 167:851-7. [PMID: 17952467 DOI: 10.1007/s00431-007-0596-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Surfactant lung lavage is a promising approach in the treatment of meconium aspiration syndrome (MAS). We hypothesise that the enrichment of modified natural surfactant with dextran will enhance meconium clearance from the airspaces during lung lavage and improve lung function in experimental MAS. Human meconium (30 mg/ml; 4 ml/kg) was instilled into the tracheal cannula of anaesthetised and paralysed adult rabbits to induce respiratory failure. The animals were then lavaged with saline (Sal), surfactant without (Surf) and with dextran (Surf+dex). Lung lavage (10 ml/kg in three portions) was performed with diluted surfactant (Curosurf, 10 mg/ml, 100 mg/kg) without or with dextran (3 mg/mg of surfactant phospholipids) or saline and the animals were conventionally ventilated with 100% O(2) for an additional hour. Lung functions were measured prior to and after meconium instillation, and 10, 30 and 60 min after lavage. The recovery of meconium in bronchoalveolar lavage (BAL) fluid was quantified. More meconium solids was recovered in the surfactant-lavaged than in the saline-lavaged groups (Surf: 12.4 +/- 3.9% and Surf+dex: 17.5 +/- 3.5% vs. Sal: 4.8 +/- 1.0%; both P < 0.01). Moreover, more meconium solids was obtained by Curosurf/dextran than by Curosurf-only lavage (P < 0.05). In the Surf group, the values for PaO(2)/FiO(2) were significantly higher than in the controls (at 60 min: 24.5 +/- 4.2 kPa vs.9.1 +/- 2.2 kPa, P < 0.01). An additional increase in oxygenation was seen in the Surf+dex group (at 60 min: 34.2 +/- 8.1 kPa, P vs. Surf group <0.01). The lung-thorax compliance was higher in the Surf+dex group in comparison with the Sal and Surf groups (at 60 min: 9.6 +/- 0.9 vs.7.6 +/- 1.2, P < 0.01 and 8.0 +/- 0.7 ml/kPa/kg, P < 0.05). The enrichment of Curosurf with dextran improves meconium clearance and lung functions in surfactant-lavaged rabbits with meconium aspiration.
Collapse
|
30
|
Atomic force microscopy studies of functional and dysfunctional pulmonary surfactant films, II: albumin-inhibited pulmonary surfactant films and the effect of SP-A. Biophys J 2008; 95:2779-91. [PMID: 18539636 DOI: 10.1529/biophysj.108.130732] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary surfactant (PS) dysfunction because of the leakage of serum proteins into the alveolar space could be an operative pathogenesis in acute respiratory distress syndrome. Albumin-inhibited PS is a commonly used in vitro model for studying surfactant abnormality in acute respiratory distress syndrome. However, the mechanism by which PS is inhibited by albumin remains controversial. This study investigated the film organization of albumin-inhibited bovine lipid extract surfactant (BLES) with and without surfactant protein A (SP-A), using atomic force microscopy. The BLES and albumin (1:4 w/w) were cospread at an air-water interface from aqueous media. Cospreading minimized the adsorption barrier for phospholipid vesicles imposed by preadsorbed albumin molecules, i.e., inhibition because of competitive adsorption. Atomic force microscopy revealed distinct variations in film organization, persisting up to 40 mN/m, compared with pure BLES monolayers. Fluorescence confocal microscopy confirmed that albumin remained within the liquid-expanded phase of the monolayer at surface pressures higher than the equilibrium surface pressure of albumin. The remaining albumin mixed with the BLES monolayer so as to increase film compressibility. Such an inhibitory effect could not be relieved by repeated compression-expansion cycles or by adding surfactant protein A. These experimental data indicate a new mechanism of surfactant inhibition by serum proteins, complementing the traditional competitive adsorption mechanism.
Collapse
|
31
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Pulmonary surfactant adsorption is increased by hyaluronan or polyethylene glycol. Colloids Surf B Biointerfaces 2008; 62:243-9. [DOI: 10.1016/j.colsurfb.2007.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 09/05/2007] [Accepted: 10/17/2007] [Indexed: 01/06/2023]
|
33
|
Therapeutic effects of exogenous surfactant enriched with dextran in newborn rabbits with respiratory failure induced by airway instillation of albumin. Pulm Pharmacol Ther 2008; 21:393-400. [DOI: 10.1016/j.pupt.2007.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 10/04/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022]
|
34
|
Kang N, Policova Z, Bankian G, Hair ML, Zuo YY, Neumann AW, Acosta EJ. Interaction between chitosan and bovine lung extract surfactants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:291-302. [DOI: 10.1016/j.bbamem.2007.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 09/27/2007] [Accepted: 10/02/2007] [Indexed: 11/28/2022]
|
35
|
Abstract
Although there is no doubt that administration of exogenous surfactant to very preterm babies who have respiratory distress syndrome is safe and efficacious, surfactant inactivation or deficiency plays a role in the pathophysiology of other pulmonary disorders affecting newborn infants. Preliminary data suggest that there may be a role for surfactant administration to babies who have meconium aspiration syndrome, pneumonia, and possibly bronchopulmonary dysplasia. Further investigation is necessary but seems warranted.
Collapse
Affiliation(s)
- Thierry Lacaze-Masmonteil
- Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Zuo YY, Alolabi H, Shafiei A, Kang N, Policova Z, Cox PN, Acosta E, Hair ML, Neumann AW. Chitosan enhances the in vitro surface activity of dilute lung surfactant preparations and resists albumin-induced inactivation. Pediatr Res 2006; 60:125-30. [PMID: 16864690 DOI: 10.1203/01.pdr.0000227558.14024.57] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chitosan is a natural, cationic polysaccharide derived from fully or partially deacetylated chitin. Chitosan is capable of inducing large phospholipid aggregates, closely resembling the function of nonionic polymers tested previously as additives to therapeutic lung surfactants. The effects of chitosan on improving the surface activity of a dilute lung surfactant preparation, bovine lipid extract surfactant (BLES), and on resisting albumin-induced inactivation were studied using a constrained sessile drop (CSD) method. Also studied in parallel were the effects of polyethylene glycol (PEG, 10 kD) and hyaluronan (HA, 1240 kD). Both adsorption and dynamic cycling studies showed that chitosan is able to significantly enhance the surface activity of 0.5 mg/mL BLES and to resist albumin-induced inactivation at an extremely low concentration of 0.05 mg/mL, 1000 times smaller than the usual concentration of PEG and 20 times smaller than HA. Optical microscopy found that chitosan induced large surfactant aggregates even in the presence of albumin. Cytotoxicity tests confirmed that chitosan has no deleterious effect on the viability of lung epithelial cells. The experimental results suggest that chitosan may be a more effective polymeric additive to lung surfactant than the other polymers tested so far.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ochs M, Schüttler M, Stichtenoth G, Herting E. Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran. Respir Res 2006; 7:86. [PMID: 16756655 PMCID: PMC1489943 DOI: 10.1186/1465-9921-7-86] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 06/06/2006] [Indexed: 02/07/2023] Open
Abstract
Background Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM) and stereology allows the differentiation of active (large aggregates = LA) and inactive (small aggregates = SA) subtypes. Methods To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf), Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL), multilamellar vesicles (MV), unilamellar vesicles (UV)] were determined stereologically. Results All preparations contained LBL and MV (corresponding to LA) as well as UV (corresponding to SA). The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV) ratio (resembling the SA/LA ratio) increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. Conclusion Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Anatomy, Experimental Morphology, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
- Department of Anatomy, Division of Electron Microscopy, University of Göttingen, Kreuzbergring 36, D-37075 Göttingen, Germany
| | - Markus Schüttler
- Department of Anatomy, Division of Electron Microscopy, University of Göttingen, Kreuzbergring 36, D-37075 Göttingen, Germany
| | - Guido Stichtenoth
- Department of Pediatrics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lübeck, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| |
Collapse
|
38
|
Gross T, Zmora E, Levi-Kalisman Y, Regev O, Berman A. Lung-surfactant-meconium interaction: in vitro study in bulk and at the air-solution interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3243-50. [PMID: 16548584 DOI: 10.1021/la0521241] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Lung surfactants (LSs) form a monolayer at the lung's alveoli air-solution interface and play a crucial role in making normal breathing possible by reducing the surface tension. LS are affected by various agents that hamper their normal functioning. Tobacco smoke [Bringezu, F.; Pinkerton, K. E.; Zasadzinski, J. A. Langmuir 2003, 19, 2900-2907] and meconium, the first excrement of the newborn, are examples for such LS poison. In neonates, intrauterine aspiration of meconium is a known cause for morbidity and mortality. We studied in vitro the interactions between modified porcine LSs (Curosurf), used as LS replacement, and meconium, as well as between their artificial analogues, phospholipids mixture, and taurocholic acid (TA), respectively. The interactions were examined both in the bulk solution and at the air-water interface, representing the pre- and postnatal situations. It was found that the artificial analogues represent the natural system reliably and exhibit similar effects. TA, a principle component of bile, is an amphiphilic sterol compound in which the hydrophilic and hydrophobic moieties are presented at different faces of the sterol plane. Here we found that TA affects the structure of both monolayers at the interface and surfactant aggregates in solution. A likely poisoning mechanism is by stereoselective penetration of TA into the lamellar or monolayer structures, thus disrupting the contiguous structure of the intact monolayer or the bilayer vesicle structure.
Collapse
Affiliation(s)
- T Gross
- Department of Biotechnology Engineering, Neonatal Intensive Care Unit, Soroka Medical Center, Ben-Gurion University, Beer-Sheva, 84105, Israel
| | | | | | | | | |
Collapse
|
39
|
Stichtenoth G, Jung P, Walter G, Johansson J, Robertson B, Curstedt T, Herting E. Polymyxin B/pulmonary surfactant mixtures have increased resistance to inactivation by meconium and reduce growth of gram-negative bacteria in vitro. Pediatr Res 2006; 59:407-11. [PMID: 16492980 DOI: 10.1203/01.pdr.0000200806.32822.e6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary surfactant is inactivated in meconium aspiration syndrome and neonatal pneumonia. Development of an exogenous surfactant less sensitive to inactivation might be useful for treating these diseases. We investigated in vitro whether addition of the cationic cyclic membrane cross-linking peptide polymyxin B (PxB) and/or calcium chloride (CaCl2) to modified porcine surfactant Curosurf increases resistance to meconium-induced inactivation of surface activity while antimicrobial activity of PxB is maintained. To study bacterial proliferation, Escherichia coli, group B streptococci (GBS), or Staphylococcus aureus were incubated 0-5 h in saline or in meconium in the presence or absence of Curosurf with or without PxB. PxB and CaCl2 improved spreading and adsorption of Curosurf. Curosurf plus CaCl2/PxB needed a 4-fold increase of meconium concentration to increase dynamic surface tension significantly compared with Curosurf plus CaCl2 alone, indicating that PxB further increases the resistance of Curosurf to meconium-induced inactivation. Meconium alone like meconium/Curosurf promoted growth of E. coli and GBS, but addition of Curosurf/PxB or PxB alone significantly reduced the growth of E. coli. Biophysical and antibacterial properties of Curosurf and PxB may be combined into a useful adjunct in the treatment of neonatal Gram-negative pneumonia and/or meconium aspiration syndrome.
Collapse
Affiliation(s)
- Guido Stichtenoth
- Department of Clinical Chemistry, Laboratory for Surfactant Research, Karolinska Hospital, Sweden.
| | | | | | | | | | | | | |
Collapse
|
40
|
Mokry J, Mokra D, Antosova M, Bulikova J, Calkovska A, Nosalova G. Dexamethasone alleviates meconium-induced airway hyperresponsiveness and lung inflammation in rabbits. Pediatr Pulmonol 2006; 41:55-60. [PMID: 16229002 DOI: 10.1002/ppul.20330] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of dexamethasone on in vitro airway reactivity associated with lung inflammation were investigated in rabbits with meconium aspiration. Oxygen-ventilated adult rabbits received an intratracheal bolus of 4 ml/kg body weight of saline (Sal, n = 4) or human meconium (25 mg/ml). Thirty minutes later, meconium-instilled animals intravenously received 0.5 mg/kg of dexamethasone (Dexa, n = 6), or were left without treatment (Meco, n = 5). The animals were ventilated for a further 5 hr and then sacrificed. The left lungs were lavaged with saline, and the white blood cell (WBC) count was estimated. Tracheal and right-lung tissue strips were placed into organ chambers with Krebs-Henseleit solution. Cumulative doses of histamine (10(-8)-10(-3) mol/l) and acetylcholine (10(-8)-10(-3) mol/l) were added to the chambers, and recordings of contractions were made after a 30-min loading phase with a tension of 4 grams, and another 30-min adaptation phase with a tension of 2 g. Tracheal smooth muscle in vitro reactivity to histamine was higher in the Meco than in the Sal group, and dexamethasone decreased the reactivity compared to the Meco group (P < 0.05). Lung tissue in vitro reactivity to histamine was slightly higher in the Meco than in the Sal group (P > 0.05), and dexamethasone decreased the reactivity compared to both the Meco and Sal groups (P < 0.05). No between-group differences were observed in tracheal or lung in vitro reactivity to acetylcholine (P > 0.05). In the Meco group, blood WBC (P > 0.05) and neutrophil (P < 0.05) counts were lower than in the Sal and Dexa groups. Lung neutrophils and eosinophils were higher in both the Meco and Dexa groups than in the Sal group (P < 0.01). Dexamethasone decreased neutrophils (P < 0.05) compared to the Meco group. Meconium-induced airway hyperreactivity to histamine and lung inflammation were alleviated by dexamethasone.
Collapse
Affiliation(s)
- Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
41
|
Musante G, Schnitzler E. Different therapeutic perspectives for novel exogenous surfactant preparations*. Crit Care Med 2006; 34:260-1. [PMID: 16374197 DOI: 10.1097/01.ccm.0000190899.62359.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Zuo YY, Gitiafroz R, Acosta E, Policova Z, Cox PN, Hair ML, Neumann AW. Effect of humidity on the adsorption kinetics of lung surfactant at air-water interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:10593-601. [PMID: 16262325 DOI: 10.1021/la0517078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The in vitro adsorption kinetics of lung surfactant at air-water interfaces is affected by both the composition of the surfactant preparations and the conditions under which the assessment is conducted. Relevant experimental conditions are surfactant concentration, temperature, subphase pH, electrolyte concentration, humidity, and gas composition of the atmosphere exposed to the interface. The effect of humidity on the adsorption kinetics of a therapeutic lung surfactant preparation, bovine lipid extract surfactant (BLES), was studied by measuring the dynamic surface tension (DST). Axisymmetric drop shape analysis (ADSA) was used in conjunction with three different experimental methodologies, i.e., captive bubble (CB), pendant drop (PD), and constrained sessile drop (CSD), to measure the DST. The experimental results obtained from these three methodologies show that for 100% relative humidity (RH) at 37 degrees C the rate of adsorption of BLES at an air-water interface is substantially slower than for low humidity. It is also found that there is a difference in the rate of surface tension decrease measured from the PD and CB/CSD methods. These experimental results agree well with an adsorption model that considers the combined effects of entropic force, electrostatic interaction, and gravity. These findings have implications for the development and evaluation of new formulations for surfactant replacement therapy.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Mechanical and Industrial Engineering, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Dehority W, Lu KW, Clements J, Goerke J, Pittet JF, Allen L, Taeusch HW. Polyethylene glycol-surfactant for lavage lung injury in rats. Pediatr Res 2005; 58:913-8. [PMID: 16183815 DOI: 10.1203/01.pdr.0000182581.39561.01] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addition of ionic and nonionic water-soluble polymers to pulmonary surfactants in the presence of inactivating substances prevents surfactant inactivation in vitro and improves lung function in several models of lung injury. However, a recent report found opposite effects when surfactant plus polyethylene glycol (PEG) was used to treat lung injury caused by saline lung lavage. Therefore, we examined the reasons why the polymer effect is less evident in the saline lung lavage lung injury model. We treated rats with lavage lung injury with a commercial lung surfactant extract derived from bovine lung (Survanta) with or without addition of PEG. Groups treated with Survanta + PEG had significantly higher static post mortem lung volumes than groups treated with Survanta. However, groups treated with Survanta + PEG had more tracheal fluid and no significant benefit in arterial oxygenation compared with the group treated with Survanta, despite our use of measures to reduce pulmonary edema. Measurements after intravascular injections of (125)I-labeled albumin confirmed that addition of PEG increased extravascular lung water and that this effect is mitigated by furosemide. We conclude that surfactant + PEG mixtures are less effective in lavage injury than in other forms of lung injury because of increased extravascular lung water.
Collapse
Affiliation(s)
- Walter Dehority
- Department of Pediatrics, San Francisco General Hospital/University of California-San Francisco, San Francisco, California 94110, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Calkovska A, Some M, Linderholm B, Johansson J, Curstedt T, Robertson B. Biophysical and Physiological Properties of Porcine Surfactant Enriched with Polymyxin B. Neonatology 2005; 88:101-8. [PMID: 15860913 DOI: 10.1159/000085524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Accepted: 12/06/2004] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We examined whether the biophysical and physiological properties of Curosurf were improved by the cyclic amphipathic decapeptide polymyxin B (PxB). METHODS Curosurf was diluted to 1-5 mg/ml with PxB added at 1, 2 or 3% (w/w). Albumin was added at 40 mg/ml. Minimum surface tension (gammamin) during surface compression was determined for each mixture with pulsating bubble. Immature newborn rabbits were treated with 2.5 ml/kg of Curosurf 80 mg/ml, or Curosurf 32 mg/ml with or without 2% PxB and ventilated for up to 5 h. RESULTS At surfactant concentration 2 mg/ml, gammamin was high (17 +/- 8.9 mN/m) but remained low (2.7 +/- 0.8 mN/m) when PxB was added. Albumin inactivated Curosurf at both 2 and 3.5 mg/ml; this inactivation was prevented by 2% PxB. Treatment of newborn rabbits with Curosurf 80 mg/kg + 2% PxB significantly decreased incidence of pneumothorax in comparison with controls but had no significant effect on lung-thorax compliance or alveolar expansion. CONCLUSION Addition of 2% PxB improves surface activity of Curosurf at low concentration, increases its resistance to inactivation by albumin, and reduces the incidence of pneumothorax in immature newborn rabbits undergoing prolonged ventilation.
Collapse
Affiliation(s)
- A Calkovska
- Laboratory for Surfactant Research, Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
45
|
Lu KW, Goerke J, Clements JA, Taeusch HW. Hyaluronan reduces surfactant inhibition and improves rat lung function after meconium injury. Pediatr Res 2005; 58:206-10. [PMID: 16055934 DOI: 10.1203/01.pdr.0000169981.06266.3e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hyaluronan (HA), an ionic polymer, is normally present in the alveolar subphase and is known to decrease lung surfactant inactivation caused by serum in vitro. In this study, we examined whether HA can ameliorate the inactivating effects of meconium in vitro and in vivo. Surface activities of various mixtures of Survanta, HA, and meconium were measured using a modified pulsating bubble surfactometer. With meconium, almost all surface activity measures were improved by the addition of HA of several molecular weights at a concentration of 0.25%. Anesthetized, paralyzed rats were maintained on positive-pressure ventilation. After lung injury by instillation of meconium, they were treated with Survanta, Survanta with HA, or control mixtures. Serial measures of blood gases and peak inspiratory pressure were recorded for the duration of the experiment. When the Survanta plus HA group was compared with the Survanta alone group, arterial oxygen tension averaged 117% higher, peak inspiratory pressure was 27% lower at the end of the experiment, and lung compliance also showed significant improvement. These results indicate that HA added to Survanta decreases inactivation caused by meconium in vitro and improves gas exchange and pulmonary mechanics of animals with meconium-induced acute lung injury.
Collapse
Affiliation(s)
- Karen W Lu
- Department of Pediatrics, University of California, San Francisco, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
46
|
Lu KW, Robertson B, Taeusch HW. Dextran or Polyethylene Glycol Added to Curosurf for Treatment of Meconium Lung Injury in Rats. Neonatology 2005; 88:46-53. [PMID: 15767742 DOI: 10.1159/000084458] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 12/23/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND In experimental lung injuries, improvement of lung function after treatment with surfactant/polymer mixtures may depend on both type of polymer and the specific surfactant. In vitro studies suggest that dextran is more effective when mixed with Curosurf, and polyethylene glycol (PEG) is more effective when mixed with Survanta. We therefore wanted to find out whether these results held true in an animal model of acute lung injury. OBJECTIVE To compare the response to therapy of PEG vs. dextran when added to Curosurf after meconium lung injury. METHODS Lung injury was produced by intratracheal instillation of meconium (30 and 4 ml/kg). One hour after injury, Curosurf (35 mg/ml) with or without 5% dextran (68 kDa) or 5% PEG (10 kDa) was given. Arterial blood gases and peak inspiratory pressures were measured for 3 h after treatment while animals were supported by volume-regulated ventilation. Then animals were sacrificed and pressure volume relationships, lung wet/dry weights, and histology were assessed. RESULTS Initially, improved PaO2 and inspiratory pressure occurred for both Curosurf/PEG and Curosurf/dextran groups compared with Curosurf, but at three hours, peak inspiratory pressure and PaO2 remained significantly improved for the Curosurf/dextran but not for Curosurf/PEG groups when compared with Curosurf alone. Total lung capacity at the end of the experiment was also significantly increased in the Curosurf/dextran group, but not the Curosurf/PEG group when compared with Curosurf. CONCLUSION Under these experimental conditions, Curosurf/dextran mixtures provided a better therapeutic response than Curosurf/PEG or Curosurf.
Collapse
Affiliation(s)
- Karen W Lu
- Department of Pediatrics, University of California-San Francisco, San Franscisco, Calif. 94110, USA
| | | | | |
Collapse
|
47
|
Abstract
The hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of surface-active lipids to the air-liquid interface of the alveoli and are essential for alveolar stability and gas exchange. Synthetic surfactant preparations must contain at least one of these hydrophobic proteins, or analogs thereof, to have optimal effects when administered into the airways of patients with lung diseases. However, development of clinically active artificial surfactants has turned out to be more complicated than initially anticipated since the native hydrophobic proteins are structurally complex or unstable in pure form. The proteins have been replaced by different analogs which have the right conformation without forming oligomers. Increased understanding of the surfactant proteins will hopefully lead to development of effective synthetic surfactants which can be produced in large quantities for treatment of a wide range of respiratory disorders. Furthermore, the lipid composition seems to be important, as well as a high lipid concentration in the suspension. For successful treatment of many respiratory diseases, it is also desirable that the synthetic surfactant resists inactivation by plasma components leaking into the alveoli.
Collapse
Affiliation(s)
- Tore Curstedt
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
48
|
Lu JJ, Yu LMY, Cheung WWY, Goldthorpe IA, Zuo YY, Policova Z, Cox PN, Neumann AW. Poly(ethylene glycol) (PEG) enhances dynamic surface activity of a bovine lipid extract surfactant (BLES). Colloids Surf B Biointerfaces 2005; 41:145-51. [PMID: 15737540 DOI: 10.1016/j.colsurfb.2004.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Accepted: 11/28/2004] [Indexed: 11/30/2022]
Abstract
Shortage or malfunction of pulmonary surfactant in alveolar space leads to a critical condition termed respiratory distress syndrome (RDS). Surfactant replacement therapy, the major method to treat RDS, is an expensive treatment. In this paper, the effect of poly(ethylene glycol) (PEG) to improve dynamic surface activity of a bovine lipid extract surfactant (BLES) was studied by axisymmetric drop shape analysis (ADSA) and a captive bubble method. The activity of BLES+PEG mixtures was compared to that of a natural surfactant containing surfactant proteins A and D. When PEG was added into BLES mixtures, the surface tension hysteresis of BLES films was minimized when the films were compressed by more than 50%. PEG also helps to quickly restore surfactant films after film collapse. Thus, as far as surface tension effects go, the findings suggest that PEG might be used as a substitute for surfactant-associated protein SP-A in therapeutic surfactant products, and might also be used to reduce the amount of BLES required in clinical applications.
Collapse
Affiliation(s)
- James J Lu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ont., Canada M5S 3G8
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hyaluronan (HA) is an anionic polymer and a constituent of alveolar fluid that can bind proteins, phospholipids, and water. Previous studies have established that nonionic polymers improve the surface activity of pulmonary surfactants by decreasing inactivation of surfactant. In this work, we investigate whether HA can also have beneficial effects when added to surfactants. We used a modified pulsating bubble surfactometer to measure mixtures of several commercially available pulmonary surfactants or native calf surfactant with and without serum inactivation. Surface properties such as equilibrium surface tension, minimum and maximum surface tensions on compression and expansion of a surface film, and degree of surface area reduction required to reach a surface tension of 10 mN/m were measured. In the presence of serum, addition of HA dramatically improved the surface activities of all four surfactants and in some cases in the absence of serum as well. These results indicate that HA reduces inactivation of surfactants caused by serum and add evidence that endogenous HAs may interact with alveolar surfactant under normal and abnormal conditions.
Collapse
Affiliation(s)
- Karen W Lu
- San Francisco General Hospital, Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Meconium aspiration syndrome (MAS) is an important cause of respiratory distress in the term infant. Therapy for the disease remains problematic, and newer treatments such as high-frequency ventilation and inhaled nitric oxide are being applied with increasing frequency. There is a significant disturbance of the pulmonary surfactant system in MAS, with a wealth of experimental data indicating that inhibition of surfactant function in the alveolar space is an important element of the pathophysiology of the disease. This inhibition may be mediated by meconium, plasma proteins, haemoglobin and oedema fluid, and, at least in vitro, can be overcome by increasing surfactant phospholipid concentration. These observations have served as the rationale for administration of exogenous surfactant preparations in MAS, initially as standard bolus therapy and, more recently, in association with therapeutic lung lavage. Bolus surfactant therapy in ventilated infants with MAS has been found to improve oxygenation in most studies, although there are a significant proportion of nonresponders and in many cases the effect is transient. Pooled data from randomised controlled trials of surfactant therapy suggest a benefit in terms of a reduction in the requirement for extracorporeal membrane oxygenation (relative risk 0.48 in surfactant-treated infants) but no diminution of air leak or ventilator days. Current evidence would support the use of bolus surfactant therapy on a case by case basis in nurseries with a relatively high mortality associated with MAS, or the lack of availability of other forms of respiratory support such as high-frequency ventilation or nitric oxide. If used, bolus surfactant should be administered as early as practicable to infants who exhibit significant parenchymal disease, at a phospholipid dose of at least 100 mg/kg, rapidly instilled into the trachea. Natural surfactant or a third-generation synthetic surfactant should be used and the dosage repeated every 6 hours until oxygenation has improved. Lung lavage with dilute surfactant has recently emerged as an alternative to bolus therapy in MAS, which has the advantage of removing surfactant inhibitors from the alveolar space in addition to augmenting surfactant phospholipid concentration. Combined animal and human data suggest that lung lavage can remove significant amounts of meconium and alveolar debris, and thereby improve oxygenation and pulmonary mechanics. Arterial oxygen saturation inevitably falls during lavage but has been noted to recover relatively rapidly, even in infants with severe disease. Several randomised controlled trials of surfactant lavage in MAS are underway, and until the results are known, lavage must be considered an unproven and experimental therapy.
Collapse
Affiliation(s)
- Peter A Dargaville
- Department of Paediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia.
| | | |
Collapse
|