1
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Winkler AA, Chabuz C, McIntosh CND, Lekakis G. The Need for Innovation in Rhinoplasty. Facial Plast Surg 2022; 38:440-446. [DOI: 10.1055/s-0042-1748954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AbstractRhinoplasty is a challenging surgery and results are not always perfect. There are many obstacles to achieving optimal results. Among these are inadequate instrumentation, the unpredictability of healing, imprecise planning, and many more. Furthermore, selecting patients who can most benefit from surgery is equally important. In this article, some of the more pressing areas of rhinoplasty that need innovation are discussed. From proper patient selection, to advances in education, to the standardization of training programs, to the development of sophisticated implants, the future of rhinoplasty surgery lies in continued creativity and innovation.
Collapse
Affiliation(s)
- Andrew A. Winkler
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carolyn Chabuz
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Garyfalia Lekakis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Dykewicz MS, Wallace DV, Amrol DJ, Baroody FM, Bernstein JA, Craig TJ, Dinakar C, Ellis AK, Finegold I, Golden DBK, Greenhawt MJ, Hagan JB, Horner CC, Khan DA, Lang DM, Larenas-Linnemann DES, Lieberman JA, Meltzer EO, Oppenheimer JJ, Rank MA, Shaker MS, Shaw JL, Steven GC, Stukus DR, Wang J, Dykewicz MS, Wallace DV, Dinakar C, Ellis AK, Golden DBK, Greenhawt MJ, Horner CC, Khan DA, Lang DM, Lieberman JA, Oppenheimer JJ, Rank MA, Shaker MS, Stukus DR, Wang J, Dykewicz MS, Wallace DV, Amrol DJ, Baroody FM, Bernstein JA, Craig TJ, Finegold I, Hagan JB, Larenas-Linnemann DES, Meltzer EO, Shaw JL, Steven GC. Rhinitis 2020: A practice parameter update. J Allergy Clin Immunol 2020; 146:721-767. [PMID: 32707227 DOI: 10.1016/j.jaci.2020.07.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
This comprehensive practice parameter for allergic rhinitis (AR) and nonallergic rhinitis (NAR) provides updated guidance on diagnosis, assessment, selection of monotherapy and combination pharmacologic options, and allergen immunotherapy for AR. Newer information about local AR is reviewed. Cough is emphasized as a common symptom in both AR and NAR. Food allergy testing is not recommended in the routine evaluation of rhinitis. Intranasal corticosteroids (INCS) remain the preferred monotherapy for persistent AR, but additional studies support the additive benefit of combination treatment with INCS and intranasal antihistamines in both AR and NAR. Either intranasal antihistamines or INCS may be offered as first-line monotherapy for NAR. Montelukast should only be used for AR if there has been an inadequate response or intolerance to alternative therapies. Depot parenteral corticosteroids are not recommended for treatment of AR due to potential risks. While intranasal decongestants generally should be limited to short-term use to prevent rebound congestion, in limited circumstances, patients receiving regimens that include an INCS may be offered, in addition, an intranasal decongestant for up to 4 weeks. Neither acupuncture nor herbal products have adequate studies to support their use for AR. Oral decongestants should be avoided during the first trimester of pregnancy. Recommendations for use of subcutaneous and sublingual tablet allergen immunotherapy in AR are provided. Algorithms based on a combination of evidence and expert opinion are provided to guide in the selection of pharmacologic options for intermittent and persistent AR and NAR.
Collapse
Affiliation(s)
- Mark S Dykewicz
- Section of Allergy and Immunology, Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, School of Medicine, Saint Louis University, St Louis, Mo.
| | - Dana V Wallace
- Department of Medicine, Nova Southeastern Allopathic Medical School, Fort Lauderdale, Fla
| | - David J Amrol
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC
| | - Fuad M Baroody
- Department of Otolaryngology-Head and Neck Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| | - Jonathan A Bernstein
- Allergy Section, Division of Immunology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Timothy J Craig
- Departments of Medicine and Pediatrics, Penn State University, Hershey, Pa
| | - Chitra Dinakar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, Stanford University, Stanford, Calif
| | - Anne K Ellis
- Division of Allergy and Immunology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Ira Finegold
- Division of Allergy and Immunology, Department of Medicine, Mount Sinai West, New York, NY
| | - David B K Golden
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, John Hopkins University, Baltimore, Md
| | - Matthew J Greenhawt
- Section of Allergy and Immunology, Department of Pediatrics, Children's Hospital Colorado, School of Medicine, University of Colorado, Aurora, Colo
| | - John B Hagan
- Division of Allergic Diseases, Mayo Clinic, Rochester, Minn
| | - Caroline C Horner
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, School of Medicine, Washington University, St Louis, Mo
| | - David A Khan
- Division of Allergy and Immunology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Tex
| | - David M Lang
- Department of Allergy and Clinical Immunology, Respiratory Institute, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, Ohio
| | | | - Jay A Lieberman
- Division of Pulmonology Allergy and Immunology, Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, Tenn
| | - Eli O Meltzer
- Division of Allergy and Immunology, Department of Pediatrics, School of Medicine, University of California, San Diego, Calif; Allergy and Asthma Medical Group and Research Center, San Diego, Calif
| | - John J Oppenheimer
- Division of Pulmonary & Critical Care Medicine and Allergic & Immunologic Diseases, Department of Internal Medicine, University of Medicine and Dentistry of New Jersey-Rutgers New Jersey Medical School, New Brunswick, NJ; Pulmonary and Allergy Associates, Morristown, NJ
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic in Arizona, Scottsdale, Ariz
| | - Marcus S Shaker
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | | | | | - David R Stukus
- Division of Allergy and Immunology, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, The Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Altuntaş E, Yener G, Doğan R, Aksoy F, Şerif Aydın M, Karataş E. Effects of a Thermosensitive In Situ Gel Containing Mometasone Furoate on a Rat Allergic Rhinitis Model. Am J Rhinol Allergy 2018; 32:132-138. [PMID: 29644886 DOI: 10.1177/1945892418764951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Mometasone furoate, one of the second generation intranasal corticosteroids, is currently used in suspension form due to its poor solubility. However, this is not favorable for nasal application because of the rapid elimination of the instilled drug from the nasal cavity by mucociliary clearance and delayed onset of action due to the slow dissolution of drug in suspension. Objective The aim of this study was to determine the antiallergic effects of mucoadhesive thermosensitive in situ gel containing mometasone furoate that we developed previously to prolong the contact between the drug and nasal mucosa and to prevent drainage of the formulation in an ovalbumin-induced rat model of allergic rhinitis. Methods An experimental allergic rhinitis model was developed in female Wistar albino rats by intraperitoneal injection of ovalbumin every 2 days for 14 days followed by its repeated intranasal instillation for 7 consecutive days. Intranasal instillation of ovalbumin was continued every other day for 14 days. Mometasone furoate in situ gel (5 μg/10 µl), mometasone furoate suspension (5 μg/10 µl), and physiological saline (10 µl) were administered into the bilateral nasal cavities from day 22 to day 35. Antiallergic effects were evaluated through histopathological evaluation, analysis of ovalbumin-specific serum immunoglobulin E, and a symptom score. Results Mometasone furoate in situ gel significantly decreased the nasal symptoms and ovalbumin-specific serum immunoglobulin E level as compared with mometasone furoate suspension and physiological saline. Additionally, inflammatory histological symptoms such as mucosal edema, vascular dilatation, eosinophil infiltration, and loss of cilia within the nasal mucosa of allergic rhinitis model rats were remarkably improved with the treatment of mometasone furoate in situ gel. Conclusion These results suggest that mometasone furoate in situ gel has a better therapeutic potential for the treatment of allergic rhinitis compared to mometasone furoate suspension.
Collapse
Affiliation(s)
- Ebru Altuntaş
- 1 Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul, Turkey
| | - Gülgün Yener
- 1 Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Fatih, Istanbul, Turkey
| | - Remzi Doğan
- 2 Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Fadlullah Aksoy
- 2 Department of Otorhinolaryngology, Bezmialem Vakif University, Fatih, Istanbul, Turkey
| | - Mehmet Şerif Aydın
- 3 Medipol Regenerative and Restorative Medicine Research Center, Istanbul Medipol University, Beykoz, Istanbul, Turkey
| | - Ersin Karataş
- 4 Department of Molecular Biology and Genetics, Gebze Technical University Cayirova/Kocaeli, Turkey
| |
Collapse
|
5
|
Işık S, Karaman M, Adan A, Kıray M, Bağrıyanık HA, Sözmen ŞÇ, Kozanoğlu İ, Karaman Ö, Baran Y, Uzuner N. Intraperitoneal mesenchymal stem cell administration ameliorates allergic rhinitis in the murine model. Eur Arch Otorhinolaryngol 2016; 274:197-207. [PMID: 27380271 DOI: 10.1007/s00405-016-4166-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/22/2016] [Indexed: 12/26/2022]
Abstract
Previous studies showed that bone marrow-derived mesenchymal stem cells (BMSCs) could ameliorate a variety of immune-mediated and inflammatory diseases due to their immunomodulatory and anti-inflammatory effects. In this study, we developed a mouse model of ovalbumin (OVA) induced allergic inflammation in the upper airways and evaluated the effects of the intraperitoneal administration of BMSCs on allergic inflammation. Twenty-five BALB/c mice were divided into five groups; group I (control group), group II (sensitized and challenged with OVA and treated with saline-placebo group), group III (sensitized and challenged with OVA and treated with 1 × 106 BMSCs), group IV (sensitized and challenged with OVA and treated with 2 × 106 BMSCs), and group V (sensitized and challenged with phosphate buffered saline (PBS) and treated with 1 × 106 BMSCs). Histopathological features (number of goblet cells, eosinophils and mast cells, basement membrane, epithelium thickness, and subepithelial smooth muscle thickness) of the upper and lower airways and BMSCs migration to nasal and lung tissue were evaluated using light and confocal microscopes. Levels of cytokines in the nasal lavage fluid and lung tissue supernatants were measured using enzyme-linked immunosorbent assay (ELISA). Confocal microscopic analysis showed that there was no significant amount of BMSCs in the nasal and lung tissues of group V. However, significant amount of BMSCs were observed in group III and IV. In OVA-induced AR groups (group II, III, and IV), histopathological findings of chronic asthma, such as elevated subepithelial smooth muscle thickness, epithelium thickness, and number of goblet and mast cells, were determined. Furthermore, the number of nasal goblet and eosinophil cells, histopathological findings of chronic asthma, and IL-4, IL-5, IL-13, and NO levels was significantly lower in both BMSCs-treated groups compared to the placebo group. Our findings indicated that histopathological findings of chronic asthma were also observed in mice upon AR induction. BMSCs migrated to the nasal and lung tissues following intraperitoneal delivery and ameliorated to the airway remodeling and airway inflammation both in the upper and lower airways via the inhibition of T helper (Th) 2 immune response in the murine model of AR.
Collapse
Affiliation(s)
- Sakine Işık
- Department of Pediatric Allergy and Immunology, Dokuz Eylul University, Balçova, 35330, Izmir, Turkey.
| | - Meral Karaman
- Department of Microbiology, Dokuz Eylul University, Izmir, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Müge Kıray
- Department of Physiology, Dokuz Eylul University, Izmir, Turkey
| | | | - Şule Çağlayan Sözmen
- Department of Pediatric Allergy and Immunology, Dokuz Eylul University, Balçova, 35330, Izmir, Turkey
| | | | - Özkan Karaman
- Department of Pediatric Allergy and Immunology, Dokuz Eylul University, Balçova, 35330, Izmir, Turkey
| | - Yusuf Baran
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Nevin Uzuner
- Department of Pediatric Allergy and Immunology, Dokuz Eylul University, Balçova, 35330, Izmir, Turkey
| |
Collapse
|
6
|
Surda P, Fokkens WJ. Novel, Alternative, and Controversial Therapies of Rhinitis. Immunol Allergy Clin North Am 2016; 36:401-23. [PMID: 27083111 DOI: 10.1016/j.iac.2015.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rhinitis is a multifactorial disease characterized by sneezing, rhinorrhea, postnasal drip, and nasal congestion. This condition affects 10% to 40% of the population and is responsible for billions of spent health care dollars and impairment in quality of life for those affected. Currently available medical and vaccine therapies are effective for a large segment of this population; however, a subset of patients still has difficult-to-control rhinitis. This article reviews the current progress being made in novel drug and vaccine development and delves into alternative medical, surgical, and homeopathic strategies that may be promising adjunctive treatments for the difficult-to-treat rhinitis patient.
Collapse
Affiliation(s)
- Pavol Surda
- Department of Otorhinolaryngology, Academic Medical Center, Meibergdreef 29, Amsterdam 1105 AZ, The Netherlands
| | - Wytske J Fokkens
- Department of Otorhinolaryngology, Academic Medical Center, Meibergdreef 29, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
7
|
Abstract
BACKGROUND The parasympathetic nervous system contributes to the pathophysiology of multiple forms of allergic and nonallergic rhinitis. Stimulation of the parasympathetic nervous system leads to glandular activation, which produces watery secretions. In excess, these secretions discharge from the anterior Nares and produce the symptom of watery anterior rhinorrhea. METHOD Review of literature. RESULTS Treatment with topical, intranasal anticholinergic drugs inhibits activation of the nasal mucosal glands and is effective in reducing the watery secretions associated with parasympathetic stimulation of the glands with little, if any, effect on the symptoms of congestion and sneezing. In general, these drugs have no systemic adverse effects, but can cause crusting and local irritation. CONCLUSION Anticholinergic drugs are useful for the treatment of anterior rhinorrhea associated with allergic and nonallergic rhinitis.
Collapse
|
8
|
Assanasen P, Baroody FM, Haney L, deTineo M, Naureckas E, Solway J, Naclerio RM. Elevation of the Nasal Mucosal Surface Temperature After Warming of the Feet Occurs Via a Neural Reflex. Acta Otolaryngol 2009. [DOI: 10.1080/00016480310000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Abstract
Cold air-induced rhinitis is a common complaint of individuals with chronic allergic or nonallergic rhinitis and those with no chronic nasal disease. It is characterized by rhinorrhea, nasal congestion, and nasal burning that appear within minutes of exposure to cold air and dissipate soon after exposure is terminated. The symptoms of cold-air rhinitis are reproduced experimentally with nasal cold-air provocation. This procedure has shown that nasal mast cell activation and sensory nerve stimulation are associated with the development of nasal symptoms. Sensory nerve activation generates a cholinergic reflex that leads to rhinorrhea; therefore, anticholinergic agents are highly effective in treating cold-air rhinitis. Experimental data suggest that individuals with nasal cold-air sensitivity may have reduced ability to compensate for the water loss that occurs during exposure to cold air. Therefore, the symptoms of cold air-induced rhinitis may reflect the activation of compensatory mechanisms to restore mucosal homeostasis.
Collapse
Affiliation(s)
- Alvaro A Cruz
- Division of Allergy, Immunology, and Transplantation, National Institutes of Health, Bethesda, MD 20817-6601, USA
| | | |
Collapse
|
10
|
Sahin-Yilmaz A, Pinto JM, de Tineo M, Elwany S, Naclerio RM. Familial aggregation of nasal conditioning capacity. J Appl Physiol (1985) 2007; 103:1078-81. [PMID: 17641214 DOI: 10.1152/japplphysiol.00299.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In our previous studies on nasal conditioning, we observed a large variability among individuals to condition inspired air. Although we previously investigated various physiological parameters (age, sex, nasal mucosal temperature, heart rate, blood pressure, and nasal volume) that might underlie these differences, we have been unable to explain this variability. Many proteins and molecules, which are under genetic control and could affect nasal conditioning, are involved in water transport,. In this study, we hypothesized that familial factors may contribute to the differences in nasal conditioning capacity (NCC). We performed a prospective study of 47 sibling pairs. Cold dry air was delivered to the nose, and the total water gradient (TWG) was calculated to determine the NCC. We found a highly significant intraclass correlation of 0.53 (P < 0.0001) between sibling pairs for the TWG. These results suggest that there is a familial basis for nasal conditioning and a large enough genetic component to search for genes explaining the observed correlation.
Collapse
Affiliation(s)
- Asli Sahin-Yilmaz
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago, 5841 S. Maryland Ave., MC 1035, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
11
|
Wen WD, Yuan F, Wang JL, Hou YP. Botulinum toxin therapy in the ovalbumin-sensitized rat. Neuroimmunomodulation 2007; 14:78-83. [PMID: 17713354 DOI: 10.1159/000107422] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Accepted: 04/17/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The aim of this study was to determine whether intranasal administration of botulinum toxin type A (BTX-A) could relieve the typical symptoms of allergic rhinitis (AR) and alter substance P (SP)- and vasoactive intestinal peptide (VIP)-immunoreactive (IR) expression in nasal mucosa of AR animals sensitized with ovalbumin (OVA). METHODS AR was induced by intraperitoneal injection of OVA followed by its repeated intranasal instillation in female Wistar rats. Some AR animals were intranasally treated with a cotton strip containing BTX-A (10 U per nostril) for 1 h. After BTX-A treatment, OVA was repeatedly instilled in AR and AR + BTX-A groups every 2 days for 10 days. Subsequently, nasal symptoms were evaluated, and nasal secretions collected. Finally, the nasal mucosae of all animals were prepared for histological and immunohistochemical assessment. RESULTS BTX-A administration alleviated typical AR symptoms including rhinorrhea, nasal itching and sneezing, and subsequent intranasal repeated challenge with OVA did not trigger AR symptoms. After BTX-A treatment, inflammatory histological characteristics within the nasal mucosa of AR animals were absent, but atrophy of serous glands was observed. BTX-A decreased dense SP-IR and VIP-IR cells and fibers within and beneath the epithelium, around blood vessels and close to serous glands in AR animals. CONCLUSION Local BTX-A treatment is an effective method to reduce AR symptoms. BTX-A decreased the excessive SP-IR and VIP-IR expression induced by OVA. Therefore, BTX-A may affect the nasal mucosa via the suppression of neuropeptides, playing a major role in autonomous mucosal innervation in the pathophysiology of AR.
Collapse
Affiliation(s)
- Wei-Dong Wen
- School of Life Science, Lanzhou University, Lanzhou, PR China
| | | | | | | |
Collapse
|
12
|
Pinto JM, Assanasen P, Baroody FM, Naureckas E, Naclerio RM. Alpha-adrenoreceptor blockade with phenoxybenzamine does not affect the ability of the nose to condition air. J Appl Physiol (1985) 2005; 99:128-33. [PMID: 15746297 DOI: 10.1152/japplphysiol.00857.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the nose is to warm and humidify air. We have previously shown that raising nasal mucosal temperature by immersing feet in warm water increases the amount of water evaporated by the nose as air passes through it (nasal conditioning capacity; Abbott D, Baroody F, Naureckas E, and Naclerio R. Am J Rhinol 15: 41-45, 2001). To investigate further the effect of nasal mucosal temperature on nasal conditioning capacity, we raised the temperature through alpha-adrenoreceptor blockade by intranasally administering phenoxybenzamine. We hypothesized that blocking alpha-adrenoreceptors during inhalation of cold, dry air would lead to an increase in nasal blood flow, surface temperature, and nasal conditioning capacity, as measured by the water gradient. After appropriate pilot studies, we performed a double-blind, placebo-controlled, two-way crossover study in nine nonatopic, healthy subjects by studying the effect of treatment with intranasal phenoxybenzamine. Nasal mucosal temperature increased significantly after administration of phenoxybenzamine and was associated with a significantly smaller net decrease in nasal mucosal temperature after exposure to cold, dry air (P < 0.05). However, there were no significant differences in nasal conditioning capacity between treatments (P > 0.05). Phenoxybenzamine decreased the symptom of rhinorrhea after exposure to cold, dry air (P < 0.05), but congestion was not different between individuals given phenoxybenzamine and placebo (P > 0.05). Our data demonstrate that phenoxybenzamine, despite raising mucosal temperature and not affecting nasal volume, did not affect the ability of the nose to warm and humidify air.
Collapse
Affiliation(s)
- Jayant M Pinto
- Section of Otolaryngology-Head and Neck Surgery, The Pritzker School of Medicine, The Univ. of Chicago, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
13
|
Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM. Supine position decreases the ability of the nose to warm and humidify air. J Appl Physiol (1985) 2001; 91:2459-65. [PMID: 11717205 DOI: 10.1152/jappl.2001.91.6.2459] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that decreasing nasal air volume (i.e., increasing nasal turbinate blood volume) improves nasal air conditioning. We performed a randomized, two-way crossover study on the conditioning capacity of the nose in six healthy subjects in the supine and upright position. Cold, dry air (CDA) was delivered to the nose via a nasal mask, and the temperature and humidity of air were measured before it entered and after it exited the nasal cavity. The total water gradient (TWG) across the nose was calculated and represents the nasal conditioning capacity. Nasal volume decreased significantly from baseline without changing the mucosal temperature when subjects were placed in the supine position (P < 0.01). TWG in supine position was significantly lower than that in upright position (P < 0.001). In the supine position, nasal mucosal temperature after CDA exposure was significantly lower than that in upright position (P < 0.01). Our data show that placing subjects in the supine position decreased the ability of the nose to condition CDA compared with the upright position, in contrast to our hypothesis.
Collapse
Affiliation(s)
- P Assanasen
- Section of Otolaryngology-Head and Neck Surgery, The Pritzker School of Medicine, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- M J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Edward Hines, Jr., Veterans Affairs Hospital, Hines, Illinois 6041, USA.
| |
Collapse
|
15
|
Assanasen P, Baroody FM, Naureckas E, Solway J, Naclerio RM. The nasal passage of subjects with asthma has a decreased ability to warm and humidify inspired air. Am J Respir Crit Care Med 2001; 164:1640-6. [PMID: 11719303 DOI: 10.1164/ajrccm.164.9.2103086] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We previously showed that individuals with seasonal allergic rhinitis (SAR) had a reduced ability to condition air, which was improved by inflammation. We hypothesized that individuals with perennial allergic rhinitis (PAR) would condition air like SAR with inflammation. Because individuals with asthma usually have inflammation in the nose, we hypothesized that they would condition air like individuals with PAR. We performed a prospective, parallel study on 15 normal subjects, 15 subjects with SAR outside their allergy season, 15 subjects with PAR, and 15 subjects with asthma. Cold, dry air (CDA) was delivered to the nose and the temperature and humidity of the air were measured before entering and after exiting the nasal cavity. The total water gradient (TWG) was calculated and represents the nasal conditioning capacity. The TWG in the SAR group was significantly lower than that in normal subjects. There were no significant differences in TWG between the PAR and normal groups. Subjects with asthma had a significantly lower TWG than did normal subjects. There was a significant negative correlation between TWG and Aas score in the group with asthma (r(s) = -0.8, p = 0.0007). Our data show that subjects with asthma have a reduced ability of the nose to condition CDA compared with normal subjects, but which is similar to SAR out of season.
Collapse
Affiliation(s)
- P Assanasen
- The Section of Otolaryngology-Head and Neck Surgery, The Pritzker School of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|