1
|
Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Crit Care 2024; 28:292. [PMID: 39227925 PMCID: PMC11373266 DOI: 10.1186/s13054-024-05069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/17/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response, often culminating in multiple organ dysfunction and high mortality rates. In recent years, there has been a growing recognition of the pivotal role played by mitochondrial damage in driving the progression of sepsis. Various factors contribute to mitochondrial impairment during sepsis, encompassing mechanisms such as reactive nitrogen/oxygen species generation, mitophagy inhibition, mitochondrial dynamics change, and mitochondrial membrane permeabilization. Damaged mitochondria actively participate in shaping the inflammatory milieu by triggering key signaling pathways, including those mediated by Toll-like receptors, NOD-like receptors, and cyclic GMP-AMP synthase. Consequently, there has been a surge of interest in developing therapeutic strategies targeting mitochondria to mitigate septic pathogenesis. This review aims to delve into the intricate mechanisms underpinning mitochondrial dysfunction during sepsis and its significant impact on immune dysregulation. Moreover, we spotlight promising mitochondria-targeted interventions that have demonstrated therapeutic efficacy in preclinical sepsis models.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Harshini Sheeja Prabhakaran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory for Disease Proteomics, Chongqing, 400038, China.
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
2
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Hobai IA. CARDIOMYOCYTE REPROGRAMMING IN ANIMAL MODELS OF SEPTIC SHOCK. Shock 2023; 59:200-213. [PMID: 36730767 DOI: 10.1097/shk.0000000000002024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT Cardiomyocyte reprogramming plays a pivotal role in sepsis-induced cardiomyopathy through the induction or overexpression of several factors and enzymes, ultimately leading to the characteristic decrease in cardiac contractility. The initial trigger is the binding of LPS to TLR-2, -3, -4, and -9 and of proinflammatory cytokines, such as TNF, IL-1, and IL-6, to their respective receptors. This induces the nuclear translocation of nuclear factors, such as NF-κB, via activation of MyD88, TRIF, IRAK, and MAPKs. Among the latter, ROS- and estrogen-dependent p38 and ERK 1/2 are proinflammatory, whereas JNK may play antagonistic, anti-inflammatory roles. Nuclear factors induce the synthesis of cytokines, which can amplify the inflammatory signal in a paracrine fashion, and of several effector enzymes, such as NOS-2, NOX-1, and others, which are ultimately responsible for the degradation of cardiomyocyte contractility. In parallel, the downregulation of enzymes involved in oxidative phosphorylation causes metabolic reprogramming, followed by a decrease in ATP production and the release of fragmented mitochondrial DNA, which may augment the process in a positive feedback loop. Other mediators, such as NO, ROS, the enzymes PI3K and Akt, and adrenergic stimulation may play regulatory roles, but not all signaling pathways that mediate cardiac dysfunction of sepsis do that by regulating reprogramming. Transcription may be globally modulated by miRs, which exert protective or amplifying effects. For all these mechanisms, differentiating between modulation of cardiomyocyte reprogramming versus systemic inflammation has been an ongoing but worthwhile experimental challenge.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, GRB 444, Boston, MA
| |
Collapse
|
5
|
Kuang L, Zhu Y, Wu Y, Peng X, Tian K, Liu L, Li T. Synergetic Effect of 4-Phenylbutyric Acid in Combination with Cyclosporine A on Cardiovascular Function in Sepsis Rats via Inhibition of Endoplasmic Reticulum Stress and Mitochondrial Permeability Transition Pore Opening. Front Pharmacol 2021; 12:770558. [PMID: 34916944 PMCID: PMC8670008 DOI: 10.3389/fphar.2021.770558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/01/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Sepsis/septic shock is a common complication in the intensive care unit, and the opening of the mitochondrial permeability transition pore (mPTP), as well as the endoplasmic reticulum stress (ERS), play important roles in this situation. Whether the combination of anti-ERS and anti-mPTP by 4-phenylbutyric acid (PBA) and Cyclosporine A (CsA) could benefit sepsis is unclear. Methods: The cecal ligation and puncture-induced septic shock models were replicated in rats, and lipopolysaccharide (LPS)-challenged primary vascular smooth muscle cells and H9C2 cardiomyocytes in vitro models were also used. The therapeutic effects of CsA, PBA, and combined administration on oxygen delivery, cardiac and vascular function, vital organ injury, and the underlying mechanisms were observed. Results: Septic shock significantly induced cardiovascular dysfunction, hypoperfusion, and organ injury and resulted in high mortality in rats. Conventional treatment including fluid resuscitation, vasoactive agents, and antibiotics slightly restored tissue perfusion and organ function in septic rats. Supplementation of CsA or PBA improved the tissue perfusion, organ function, and survival of septic shock rats. The combined application of PBA and CsA could significantly enhance the beneficial effects, compared with using PBA or CsA alone. Further study showed that PBA enhanced CsA-induced cardiovascular protection, which contributed to better therapeutic effects. Conclusion: Anti-ERS and anti-mPTP-opening by the combination of PBA and CsA was beneficial to septic shock. PBA enforced the CsA-associated cardiovascular protection and contributed to the synergetic effect.
Collapse
Affiliation(s)
- Lei Kuang
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Zhu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yue Wu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoyong Peng
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kunlun Tian
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangming Liu
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Department of Shock and Transfusion, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
6
|
Wu C, Zhang Z, Zhang W, Liu X. Mitochondrial dysfunction and mitochondrial therapies in heart failure. Pharmacol Res 2021; 175:106038. [PMID: 34929300 DOI: 10.1016/j.phrs.2021.106038] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide in the last decade, accompanied by immense health and economic burdens. Heart failure (HF), as the terminal stage of many cardiovascular diseases, is a common, intractable, and costly medical condition. Despite significant improvements in pharmacologic and device therapies over the years, life expectancy for this disease remains poor. Current therapies have not reversed the trends in morbidity and mortality as expected. Thus, there is an urgent need for novel potential therapeutic agents. Although the pathophysiology of the failing heart is extraordinarily complex, targeting mitochondrial dysfunction can be an effective approach for potential treatment. Increasing evidence has shown that mitochondrial abnormalities, including altered metabolic substrate utilization, impaired mitochondrial oxidative phosphorylation (OXPHOS), increased reactive oxygen species (ROS) formation, and aberrant mitochondrial dynamics, are closely related to HF. Here, we reviewed the findings on the role of mitochondrial dysfunction in HF, along with novel mitochondrial therapeutics and their pharmacological effects.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Abstract
Multiple organ dysfunction syndrome (MODS) is one of the most common syndromes of critical illness and the leading cause of mortality among critically ill patients. Multiple organ dysfunction syndrome is the clinical consequence of a dysregulated inflammatory response, triggered by clinically diverse factors with the main pillar of management being invasive organ support. During the last years, the advances in the clarification of the molecular pathways that trigger, mitigate, and determine the outcome of MODS have led to the increasing recognition of MODS as a distinct disease entity with distinct etiology, pathophysiology, and potential future therapeutic interventions. Given the lack of effective treatment for MODS, its early recognition, the early intensive care unit admission, and the initiation of invasive organ support remain the most effective strategies of preventing its progression and improving outcomes.
Collapse
Affiliation(s)
- Nicholas M Gourd
- Department of Intensive Care Medicine, Derriford Hospital, 6634University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom.,Faculty of Medicine and Dentistry, 6634University of Plymouth, Plymouth, United Kingdom
| | - Nikitas Nikitas
- Department of Intensive Care Medicine, Derriford Hospital, 6634University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| |
Collapse
|
9
|
Lautz AJ, Zingarelli B. Age-Dependent Myocardial Dysfunction in Critically Ill Patients: Role of Mitochondrial Dysfunction. Int J Mol Sci 2019; 20:ijms20143523. [PMID: 31323783 PMCID: PMC6679204 DOI: 10.3390/ijms20143523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial dysfunction is common in septic shock and post-cardiac arrest but manifests differently in pediatric and adult patients. By conventional echocardiographic parameters, biventricular systolic dysfunction is more prevalent in children with septic shock, though strain imaging reveals that myocardial injury may be more common in adults than previously thought. In contrast, diastolic dysfunction in general and post-arrest myocardial systolic dysfunction appear to be more widespread in the adult population. A growing body of evidence suggests that mitochondrial dysfunction mediates myocardial depression in critical illness; alterations in mitochondrial electron transport system function, bioenergetic production, oxidative and nitrosative stress, uncoupling, mitochondrial permeability transition, fusion, fission, biogenesis, and autophagy all may play key pathophysiologic roles. In this review we summarize the epidemiologic and clinical phenotypes of myocardial dysfunction in septic shock and post-cardiac arrest and the multifaceted manifestations of mitochondrial injury in these disease processes. Since neonatal and pediatric-specific data for mitochondrial dysfunction remain sparse, conclusive age-dependent differences are not clear; instead, we highlight what evidence exists and identify gaps in knowledge to guide future research. Finally, since focal ischemic injury (with or without reperfusion) leading to myocardial infarction is predominantly an atherosclerotic disease of the elderly, this review focuses specifically on septic shock and global ischemia-reperfusion injury occurring after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
10
|
Li M, Yu H, Wang Y, Qin L, Sun W. Role of IRF4 in the Protection of Metformin-Mediated Sepsis Myocarditis. Dose Response 2019; 17:1559325819827436. [PMID: 30944551 PMCID: PMC6440069 DOI: 10.1177/1559325819827436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
AIMS Metformin has been shown to play a protective role in diabetes. However, we found that metformin could mediate myocardial protection. Given that protein kinase C eplison (PKCε) and interferon regulatory factor 4 (IRF4) are critical for cardioprotection signaling. And measurement of fluorescence resonance energy transfer (FRET) efficiency can be used to determine whether 2 fluorophores are within a certain distance of each other. So we sought to determine whether metformin promotes PKCε/IRF4 activation by FRET. METHODS AND RESULTS The study built a mouse septic myocarditis model by intraperitoneal injection of Escherichia coli; thus, it provides valuable experimental data for the diagnosis and treatment of septic myocarditis. And cellular model of cardiomyocyte damage from adult rat cardiacmyocytes or H9c2 cells was induced by lipopolysaccharide employed to examine PKCε by molecular, biochemical, and cellular imaging analysis. Life span of septic myocarditis mouse was significantly prolonged by metformin. Metformin also decreased transforming growth factor β level and increased interleukin-10 productions. The FRET analysis in H9c2 cells suggested that there is prominent FRET signal for PKCε along in mitochondrial by metformin. CONCLUSION We demonstrate that metformin promotes rapid association of PKCε with IRF4 at mitochondrial microdomain of cardiac myocytes and PKCε via direct molecular interaction with IRF4. This regulatory mechanism may play an important role in cardioprotection.
Collapse
Affiliation(s)
- Minghua Li
- Department of Cardiology in First Hospital, Jilin University, Changchun, China
| | - Hongmei Yu
- China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yonglin Wang
- Yangling Demonstration Zone Hospital, Xianyang, Shaanxi, China
| | - Ling Qin
- Department of Cardiology in First Hospital, Jilin University, Changchun, China
| | - Wei Sun
- Institute of Pediatrics in First Hospital, Jilin University, Changchun, China
| |
Collapse
|
11
|
The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:759-773. [PMID: 30342158 DOI: 10.1016/j.bbadis.2018.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.
Collapse
|
12
|
Pan P, Wang X, Liu D. The potential mechanism of mitochondrial dysfunction in septic cardiomyopathy. J Int Med Res 2018; 46:2157-2169. [PMID: 29637807 PMCID: PMC6023059 DOI: 10.1177/0300060518765896] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septic cardiomyopathy is one of the most serious complications of sepsis or septic shock. Basic and clinical research has studied the mechanism of cardiac dysfunction for more than five decades. It has become clear that myocardial depression is not related to hypoperfusion. As the heart is highly dependent on abundant adenosine triphosphate (ATP) levels to maintain its contraction and diastolic function, impaired mitochondrial function is lethally detrimental to the heart. Research has shown that mitochondria play an important role in organ damage during sepsis. The mitochondria-related mechanisms in septic cardiomyopathy have been discussed in terms of restoring mitochondrial function. Mitochondrial uncoupling proteins located in the mitochondrial inner membrane can promote proton leakage across the mitochondrial inner membrane. Recent studies have demonstrated that proton leakage is the essential regulator of mitochondrial membrane potential and the generation of reactive oxygen species (ROS) and ATP. Other mechanisms involved in septic cardiomyopathy include mitochondrial ROS production and oxidative stress, mitochondria Ca2+ handling, mitochondrial DNA in sepsis, mitochondrial fission and fusion, mitochondrial biogenesis, mitochondrial gene regulation and mitochondria autophagy. This review will provide an overview of recent insights into the factors contributing to septic cardiomyopathy.
Collapse
Affiliation(s)
- Pan Pan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhou D, Zhu Y, Ouyang MZ, Zhang M, Tang K, Niu CC, Li L. Knockout of Toll-like receptor 4 improves survival and cardiac function in a murine model of severe sepsis. Mol Med Rep 2018; 17:5368-5375. [PMID: 29393431 DOI: 10.3892/mmr.2018.8495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/19/2017] [Indexed: 11/06/2022] Open
Abstract
Toll-like receptor 4 (TLR4) is a transmembrane pattern‑recognition receptor expressed in immune cells and the heart. Activation of TLR4 signaling during sepsis results in the release of cardiac depression mediators that may impair heart function. The present study aimed to determine whether TLR4 contributes to development of severe sepsis‑induced myocardial dysfunction. A cecum ligation and puncture (CLP) procedure was employed to establish severe sepsis models. Wild type (WT) and TLR4 knock‑out (TLR4‑KO) mice were divided into four groups: WT‑sham, TLR4‑KO‑sham, WT‑CLP, and TLR4‑KO‑CLP. Cardiac function of these animals was evaluated at various time points following the surgical procedure. The expression levels of proinflammatory cytokines in the heart tissues were detected by reverse transcription‑semi quantitative polymerase chain reaction (RT‑PCR). Myocardial neutrophil and macrophage infiltration were investigated by histopathological examination, as well as a myeloperoxidase activity assay in heart tissue by RT‑PCR. Myocardium Fas cell surface death receptor/Fas ligand and caspase‑3 were also analyzed by RT‑PCR. Additionally, myeloid differentiation primary response 88 M, toll or interleukin‑1 receptor‑domain‑containing adapter‑inducing interferon‑β and nuclear factor‑κB expression levels were observed in the myocardium of all four groups. WT‑CLP mice exhibited increased mortality rates, more severe cardiac dysfunction and had increased levels of interleukin (IL)‑1β, IL‑6 and tumor necrosis factor‑α in heart tissues and increased neutrophil infiltration compared with TRL4‑KO‑CLP mice. The present study reported that TLR4 aggravates severe sepsis‑induced cardiac impairment by promoting the release of proinflammatory cytokines and neutrophil infiltration in hearts.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun Zhu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min-Zhi Ouyang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zhang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Kui Tang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Cheng-Cheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ling Li
- Medical Basic Teaching Experiment Center, College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
14
|
Liu J, Chen D, Liu X, Liu Z. Cyclosporine A attenuates cardiac dysfunction induced by sepsis via inhibiting calcineurin and activating AMPK signaling. Mol Med Rep 2017; 15:3739-3746. [PMID: 28393192 DOI: 10.3892/mmr.2017.6421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to investigate whether cyclosporine A (CSA) improved cardiac dysfunction at an early stage of sepsis. Male Wistar rats were randomly divided into the following three groups: the sham‑operated control group, the cecal ligation puncture (CLP) procedure‑induced sepsis group and the CSA intervention group. Cecal ligation was performed to generate a sepsis model. At different time points (2, 6, 12, 24 and 72 h) following sepsis induction, blood pressure, cardiac function, and non‑esterified free fatty acid (NEFA) levels in the plasma and myocardia were measured, and the expression levels of components associated with the AMP‑activated protein kinase (AMPK)‑acetyl CoA carboxylase (ACC)‑carnitine palmitoyl transferase 1 (CPT1) signaling pathway were compared among the three groups. Sepsis induced a decrease in blood pressure and cardiac function at 24 h following sepsis induction in the CLP group, and CSA treatment ameliorated these pathophysiological alterations. In addition, rats in the CLP group exhibited significant increases in calcineurin activity and NEFA accumulation in the heart when compared with those in the sham group. These effects were attenuated by CSA treatment. Mechanistically, the activity of the AMPK‑ACC‑CPT1 pathway was enhanced by CSA treatment. The present study revealed that CSA treatment increases cardiac function at an early stage of sepsis in rats. This treatment partially suppresses calcineurin activity while activating the AMPK‑TCC‑CPT1 pathway.
Collapse
Affiliation(s)
- Jingmiao Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Da Chen
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowei Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
15
|
Wang H, Bei Y, Huang P, Zhou Q, Shi J, Sun Q, Zhong J, Li X, Kong X, Xiao J. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e374. [PMID: 27727247 PMCID: PMC5095684 DOI: 10.1038/mtna.2016.80] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR)-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS). However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg) and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.
Collapse
Affiliation(s)
- Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Jiuchang Zhong
- State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol 2016; 81:307-314. [PMID: 27477311 DOI: 10.1016/j.biocel.2016.07.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Septic patients with myocardial dysfunction have a 3-fold increase in mortality compared with patients without cardiovascular impairment, and usually show myocarditis, disruption of the contractile apparatus, increased amounts of interstitial collagen, and damaged mitochondria. The presence of nitric oxide and cytokines in cardiac tissue constitute the molecular markers and the intracellular messengers of inflammatory conditions in the heart due to the onset of sepsis and endotoxemia, derived from the nuclear factor-κB pathway activation and proinflammatory gene transcription. Sepsis occurs with an exacerbated inflammatory response that damages tissue mitochondria and impaired bioenergetic processes. The heart consumes 20-30 times its own weight in adenosine triphosphate every day, and 90% of this molecule is derived from mitochondrial oxidative phosphorylation. Cardiac energy management is comprised in sepsis and endotoxemia; both a deficit in energy production and alterations in the source of energy substrates are believed to be involved in impaired cardiac function. Although several hypotheses try to explain the molecular mechanisms underlying the complex condition of sepsis and endotoxemia, the current view is that these syndromes are the result of an intricate balance between prevailing levels of mitochondrial stress, biogenesis/autophagy signaling and mitochondria quality control processes, rather on a single factor. The aim of this review is to discuss current hypothesis of cardiac dysfunction related to energy metabolism and mitochondrial function in experimental models of sepsis and endotoxemia, and to introduce the importance of lipids (mainly cardiolipin) in the mechanism of cardiac energy mismanagement in these inflammatory conditions.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Tamara Vico
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Virginia Vanasco
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
17
|
Mitochondrial Mechanisms in Septic Cardiomyopathy. Int J Mol Sci 2015; 16:17763-78. [PMID: 26247933 PMCID: PMC4581220 DOI: 10.3390/ijms160817763] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/01/2015] [Accepted: 07/23/2015] [Indexed: 12/31/2022] Open
Abstract
Sepsis is the manifestation of the immune and inflammatory response to infection that may ultimately result in multi organ failure. Despite the therapeutic strategies that have been used up to now, sepsis and septic shock remain a leading cause of death in critically ill patients. Myocardial dysfunction is a well-described complication of severe sepsis, also referred to as septic cardiomyopathy, which may progress to right and left ventricular pump failure. Many substances and mechanisms seem to be involved in myocardial dysfunction in sepsis, including toxins, cytokines, nitric oxide, complement activation, apoptosis and energy metabolic derangements. Nevertheless, the precise underlying molecular mechanisms as well as their significance in the pathogenesis of septic cardiomyopathy remain incompletely understood. A well-investigated abnormality in septic cardiomyopathy is mitochondrial dysfunction, which likely contributes to cardiac dysfunction by causing myocardial energy depletion. A number of mechanisms have been proposed to cause mitochondrial dysfunction in septic cardiomyopathy, although it remains controversially discussed whether some mechanisms impair mitochondrial function or serve to restore mitochondrial function. The purpose of this review is to discuss mitochondrial mechanisms that may causally contribute to mitochondrial dysfunction and/or may represent adaptive responses to mitochondrial dysfunction in septic cardiomyopathy.
Collapse
|
18
|
The cardioprotective effect of hypertonic saline is associated with inhibitory effect on macrophage migration inhibitory factor in sepsis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:201614. [PMID: 24371817 PMCID: PMC3858963 DOI: 10.1155/2013/201614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/08/2013] [Indexed: 01/24/2023]
Abstract
Sepsis can cause myocardial dysfunction, which contributes to the high mortality of sepsis. Hypertonic saline (HS) has been reported to increase myocardial contractility in sepsis. In the present study, mechanisms of action of HS resuscitation (4 mL of 7.5% NaCl per kilogram) on cardiac function have been evaluated in septic rats. HS was administered 1 h after LPS (10 mg/kg, i.v.) challenge. The mean arterial blood pressure significantly decreased 4 h after LPS challenge, and septic shock was observed at the end of experiment (6 h). Posttreatment with HS prevented hypotension caused by LPS and significantly improved cardiac function, evidenced by increases in left ventricular developed pressure, mean +dP/dt and -dP/dt. The amplitude of electrical-stimulated intracellular Ca(2+) transient in isolated single cardiomyocytes was significantly reduced after 6 h LPS insult, which was recovered by HS. In addition, LPS resulted in significant increases in neutrophil myeloperoxidase activity, macrophage migration inhibitory factor (MIF), and NF-κB phospho-p65 protein levels in myocardium at 6 h, which were significantly attenuated by HS. In conclusion, HS improved myocardial contractility and prevented circulatory failure induced by endotoxemia, which may attribute to improvement of intracellular calcium handling process and inhibitory effects on neutrophil infiltration and MIF production in hearts.
Collapse
|
19
|
Abstract
Cardiovascular dysfunction is common in severe sepsis or septic shock. Although functional alterations are often described, the elevated serum levels of cardiac proteins and autopsy findings of myocardial immune cell infiltration, edema, and damaged mitochondria suggest that structural changes to the heart during severe sepsis and septic shock may occur and may contribute to cardiac dysfunction. We explored the available literature on structural (versus functional) cardiac alterations during experimental and human endotoxemia and/or sepsis. Limited data suggest that the structural changes could be prevented, and myocardial function improved by (pre-)treatment with platelet-activating factor, cyclosporin A, glutamine, caffeine, simvastatin, or caspase inhibitors.
Collapse
|
20
|
Mitsui-Saitoh K, Furukawa T, Akutagawa T, Hasada K, Mizutani H, Sugimoto Y, Yamada J, Niwa M, Hotta Y, Takaya Y. Protective effects of cyclo(L-Leu-L-Tyr) against postischemic myocardial dysfunction in guinea-pig hearts. Biol Pharm Bull 2011; 34:335-42. [PMID: 21372381 DOI: 10.1248/bpb.34.335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protective effects of cyclic dipeptides in alcoholic beverages were investigated in the perfused guinea-pig hearts subjected to ischemia and reperfusion. Subsequently, in order to determine the importance of cyclic dipeptide structure, the effects of cyclo(L-Leu-L-Tyr) (cLY) were compared with those of the newly synthesized non-cyclic dipeptides, L-Leu-L-Tyr (LY) and L-Tyr-L-Leu (YL). After reperfusion, pressure recovery (%) in the left ventricle reached a peak of over 90% in the presence of cLY (10(-6) M and 10(-5) M) (control: 22.9%). The recovery by LY and YL was significantly lower than that by cLY, and ATP levels simultaneously monitored using (31)P-NMR were already lower during the ischemic end period than those observed with cLY treatment. In perfused mitochondrial preparations, cLY significantly inhibited mitochondrial Ca(2+) ([Ca(2+)](m)) elevation in a similar way to that of the mitochondrial permeability transition pore (MPTP) inhibitor cyclosporin A. In vitro electron paramagnetic resonance (EPR) revealed that the active oxygen radicals quenching activity of cLY was greater than those of non-cyclic dipeptides. cLY inhibited caspase-3-induced apoptosis. The cyclic dipeptide structure inhibits opening of the MPTP by preventing [Ca(2+)](m) overload-induced apoptosis related to mitochondrial active oxygen radical accumulation in ischemia-reperfusion hearts.
Collapse
|
21
|
Chiu PY, Wong SM, Leung HY, Leong PK, Chen N, Zhou L, Zuo Z, Lam PY, Ko KM. Acute treatment with Danshen-Gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive PKCɛ/mK(ATP) pathway in rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:916-925. [PMID: 21855786 DOI: 10.1016/j.phymed.2011.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/21/2011] [Indexed: 05/31/2023]
Abstract
Danshen-Gegen (DG) decoction, an herbal formulation comprising Radix Salvia Miltiorrhiza and Radix Puerariae Lobatae, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have demonstrated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of Danshen and Gegen. Short-term treatment with DG extract at a daily dose of 1 g/kg and 2 g/kg for 3 days protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane structural integrity, as well as a decrease in the sensitivity of mitochondria to Ca²⁺-stimulated permeability transition in vitro, particularly under I/R conditions. Short-term treatment with the DG extract also enhanced the translocation of PKCɛ from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Short-term DG treatment may precondition the myocardium via a redox-sensitive PKCɛ/mK(ATP) pathway, with resultant inhibition of the mitochondrial permeability transition through the opening of mitochondrial K(ATP) channels. Our results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted.
Collapse
Affiliation(s)
- Po Yee Chiu
- Section of Biochemistry and Cell Biology, Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Smeding L, van der Laarse WJ, van Veelen TA, Lamberts RR, Niessen HWM, Kneyber MCJ, Groeneveld ABJ, Plötz FB. Early myocardial dysfunction is not caused by mitochondrial abnormalities in a rat model of peritonitis. J Surg Res 2011; 176:178-84. [PMID: 21816428 DOI: 10.1016/j.jss.2011.05.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/09/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Patients with complicated intra-abdominal infections are prone to develop multiple organ failure, including myocardial dysfunction. We hypothesized that early dysfunction during sepsis is associated with inflammation, mitochondrial injury, impaired mitochondrial function, and activation of mitochondrial biogenesis. MATERIALS AND METHODS Rats received lipopolysaccharide (LPS, n = 11) intraperitoneally. Healthy rats (n = 6) served as controls. Myocardial function was measured ex vivo in an isolated Langendorff-perfused heart set-up. Myocardial vascular cell adhesion molecule-1 (VCAM-1) expression was determined by immunofluorescence microscopy. Cytochrome c release and cytochrome c oxidase (COX IV) activity were measured by immunohistochemistry and enzyme histochemistry, respectively. Protein expression of tumor necrosis factor-α (TNF-α), B-cell lymphoma (Bcl)-2, peroxisome proliferator activated receptor γ cofactor 1α (PGC-1α), and mitochondrial transcription factor A (TFAM) were analyzed by Western blot technique. Mitochondria were studied by electron microscopy. RESULTS Two hours after LPS injection, developed pressure had decreased and after 4 h myocardial contractility (+dP/dt) and relaxation (-dP/dt) also had decreased. TNF-α protein expression was increased after 2 h and returned to normal at 4 h, whereas after 4 h VCAM-1 expression was higher in LPS-treated animals. At 2 h a substrate-dependent increase in COXIV-activity was seen, but no mitochondrial damage occurred as cytochrome c release, COX IV activity and Bcl-2, PGC-1α or TFAM expression were not changed. Electron microscopy did not reveal differences in myocardial mitochondrial characteristics between LPS-treated and control rats. CONCLUSIONS Early myocardial dysfunction in sepsis is associated with myocardial inflammation but not with mitochondrial injury, impaired mitochondrial function, or activated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Lonneke Smeding
- Department of Pediatric Intensive Care, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chiu PY, Wong SM, Leung HY, Leong PK, Chen N, Zhou L, Zuo Z, Lam PY, Ko KM. Long-term treatment with danshen-gegen decoction protects the myocardium against ischemia/reperfusion injury via the redox-sensitive protein kinase C-ε/mK(ATP) pathway in rats. Rejuvenation Res 2011; 14:173-84. [PMID: 21204655 DOI: 10.1089/rej.2010.1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Danshen-Gegen (DG) decoction, an herbal formulation comprised of radix Salvia Miltiorrhiza and radix Puerariae Lobata, is prescribed for the treatment of coronary heart disease in Chinese medicine. Experimental and clinical studies have indicated that DG decoction can reduce the extent of atherosclerosis. In the present study, using an ex vivo rat model of myocardial ischemia/reperfusion (I/R) injury, we investigated the myocardial preconditioning effect of an aqueous DG extract prepared from an optimized weight-to-weight ratio of danshen and gegen. Long-term treatment with DG extract at increasing doses (including the equivalent of a human dose) protected against myocardial I/R injury in rats. The cardioprotection afforded by DG pretreatment was paralleled by enhancements in mitochondrial antioxidant status and membrane integrity, as well as a decrease in the sensitivity of mitochondria to Ca(2+)-stimulated permeability transition in vitro, particularly under I/R conditions. Long-term treatment with the DG extract enhanced the translocation of protein kinase C-epsilon (PKCε) from the cytosol to mitochondria in rat myocardium, and this translocation was inhibited by α-tocopherol co-treatment with DG extract in rats. Long-term DG treatment may precondition the myocardium via a redox-sensitive PKCε/mK(ATP) pathway, with resultant inhibition of the mitochondrial permeability transition. The results suggest that clinical studies examining the effectiveness of DG extract given prophylactically in affording protection against myocardial I/R injury would be warranted.
Collapse
Affiliation(s)
- Po Yee Chiu
- Section of Biochemistry and Cell Biology, Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
AbstractSepsis remains a serious clinical problems resulting in high morbidity and mortality. We aimed to investigate the inflammatory response in a septic rat model treated with immunomodulator agents. We used the cecal ligature and puncture model to establish septic peritonitis in rats. Male Wistar-Albino rats were randomized into groups of seven rats each and assigned different regimens: Tacrolimus 1 mg/kg/day, cyclosporin-A 5 mg/kg/day and methylprednisolone 15 mg/kg/day. These immunsuppressive agents were applied at the 6 and 48 hour intraperitoneally. The animals were euthanized after 6 and 48 hours and systemic parameters including, IL-2, IL-6, TNF-a, CRP, AST and creatinine were examined. Our study demonstrated that the experimental peritonitis model caused a meaningful rise in the values of systemic parameters. This was especially apparent for early-applied cyclosporin A; in addition, tacrolimus significantly decreased the levels both at the 6 and 48 hour. The excess immune response in complex sepsis treatment might be restrained using immunosuppressive agents administered early. Although additional supportive, comprehensive, experimental and clinical studies are still needed, this therapy model may prove to be an alternative for the future.
Collapse
|
25
|
Dare AJ, Phillips ARJ, Hickey AJR, Mittal A, Loveday B, Thompson N, Windsor JA. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med 2009; 47:1517-25. [PMID: 19715753 DOI: 10.1016/j.freeradbiomed.2009.08.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 08/16/2009] [Accepted: 08/20/2009] [Indexed: 01/11/2023]
Abstract
Sepsis and multiple organ dysfunction syndrome (MODS) are major causes of morbidity and mortality in the intensive care unit. Recently mitochondrial dysfunction has been proposed as a key early cellular event in critical illness. A growing body of experimental evidence suggests that mitochondrial therapies are effective in sepsis and MODS. The aim of this article is to undertake a systematic review of the current experimental evidence for the use of therapies for mitochondrial dysfunction during sepsis and MODS and to classify these mitochondrial therapies. A search of the MEDLINE and PubMed databases (1950 to July 2009) and a manual review of reference lists were conducted to find experimental studies containing data on the efficacy of mitochondrial therapies in sepsis and sepsis-related MODS. Fifty-one studies were included in this review. Five categories of mitochondrial therapies were defined-substrate provision, cofactor provision, mitochondrial antioxidants, mitochondrial reactive oxygen species scavengers, and membrane stabilizers. Administration of mitochondrial therapies during sepsis was associated with improvements in mitochondrial electron transport system function, oxidative phosphorylation, and ATP production and a reduction in cellular markers of oxidative stress. Amelioration of proinflammatory cytokines, caspase activation, and prevention of the membrane permeability transition were reported. Restoration of mitochondrial bioenergetics was associated with improvements in hemodynamic parameters, organ function, and overall survival. A substantial body of evidence from experimental studies at both the cellular and the organ level suggests a beneficial role for the administration of mitochondrial therapies in sepsis and MODS. We expect that mitochondrial therapies will have an increasingly important role in the management of sepsis and MODS. Clinical trials are now required.
Collapse
Affiliation(s)
- Anna J Dare
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
26
|
Li KK, Neuberger J. Recurrent nonviral liver disease following liver transplantation. Expert Rev Gastroenterol Hepatol 2009; 3:257-68. [PMID: 19485808 DOI: 10.1586/egh.09.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recurrent disease after liver transplantation is well recognized and remains a potential cause of premature graft loss. The rates of recurrence are difficult to establish because of the lack of consistency in diagnostic criteria and approaches to diagnosis. Owing to the fact that recurrent parenchymal disease may occur in the presence of normal liver tests, those centers that use protocol biopsies will report greater rates of recurrence. It is important to recognize that rates of recurrence vary according to indication and show little correlation with rates of graft loss from recurrent disease. Recurrance rates are greatest for primary sclerosing cholangitis and autoimmune hepatitis, and low reccurrance rates are reported for alcoholic liver disease and recurrent primary biliary cirrhosis. The impact of recurrent nonalcoholic fatty liver disease is not yet clear. Patients and clinicians need to be aware of the possibility of recurrent disease in the differential diagnosis of abnormal liver tests, and management stategies may require alteration to reduce the impact of disease recurrence on outcome. Finally, an understanding of which diseases do recur after transplantation and identification of the risk factors may lead to a better understanding of the pathogenetic mechanisms of these conditions.
Collapse
Affiliation(s)
- Ka-Kit Li
- Liver Unit, Queen Elizabeth Hospital, Birmingham, B15 2TH, UK
| | | |
Collapse
|
27
|
Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R14. [PMID: 19196490 PMCID: PMC2688131 DOI: 10.1186/cc7712] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 12/17/2008] [Accepted: 02/06/2009] [Indexed: 11/15/2022]
Abstract
Introduction Frequency-dependent acceleration of relaxation (FDAR) ensures appropriate ventricular filling at high heart rates and results from accelerated sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) activity independent of calcium removal from the cell. Because lipopolysaccharide (LPS) challenge may induce aberrations in calcium trafficking and protein phosphorylation, we tested whether LPS would abolish FDAR in rats. Methods Following LPS injection, changes in force-frequency relationship and FDAR were studied in cardiomyocytes, isolated hearts and in vivo by echocardiography. Calcium uptake and phosphatase activities were studied in sarcoplasmic reticulum (SR) vesicle preparations. Western blots of phospholamban and calcium/calmodulin-dependent protein kinase II, and serine/threonine phosphatase activity were studied in heart preparations. Results In cardiomyocytes and isolated heart preparations, reductions in time constant of relaxation (τ) and time to 50% relaxation at increasing rate of pacing were blunted in LPS-treated rats compared with controls. Early diastolic velocity of the mitral annulus (Ea), a relaxation parameter which correlates in vivo with τ, was reduced in LPS rats compared with control rats. LPS impaired SR calcium uptake, reduced phospholamban phosphorylation and increased serine/threonine protein phosphatase activity. In vivo inhibition of phosphatase activity partially restored FDAR, reduced phosphatase activity and prevented phospholamban dephosphorylation in LPS rat hearts. Conclusions LPS impaired phospholamban phosphorylation, cardiac force-frequency relationship and FDAR. Disruption of frequency-dependent acceleration of LV relaxation, which normally participates in optimal heart cavity filling, may be detrimental in sepsis, which is typically associated with elevated heart rates and preload dependency.
Collapse
|
28
|
Flierl MA, Rittirsch D, Huber-Lang MS, Sarma JV, Ward PA. Molecular events in the cardiomyopathy of sepsis. Mol Med 2008; 14:327-36. [PMID: 18256728 DOI: 10.2119/2007-00130.flierl] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/28/2008] [Indexed: 01/22/2023] Open
Abstract
Septic cardiomyopathy is a well-described complication of severe sepsis and septic shock. However, the interplay of its underlying mechanisms remains enigmatic. Consequently, we constantly add to our pathophysiological understanding of septic cardiomyopathy. Various cardiosuppressive mediators have been discovered, as have multiple molecular mechanisms (alterations of myocardial calcium homeostasis, mitochondrial dysfunction, and myocardial apoptosis) that may be involved in myocardial dysfunction during sepsis. Finally, the detrimental roles of nitric oxide and peroxynitrite have been unraveled. Here, we describe our present understanding of systemic, supracellular, and cellular molecular mechanisms involved in sepsis-induced myocardial suppression.
Collapse
Affiliation(s)
- Michael A Flierl
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0602, United States of America
| | | | | | | | | |
Collapse
|
29
|
Pétillot P, Lahorte C, Bonanno E, Signore A, Lancel S, Marchetti P, Vallet B, Slegers G, Neviere R. Annexin V detection of lipopolysaccharide-induced cardiac apoptosis. Shock 2007; 27:69-74. [PMID: 17172983 DOI: 10.1097/01.shk.0000235085.56100.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acute inflammatory response to lipopolysaccharide (LPS) exposure is typically associated with cardiac myocyte apoptosis, which is difficult to quantify because of heart tissue specificity. We report here that radioiodinated Annexin V (I-AnxV), a specific ligand of phosphatidylserine exposed by apoptotic cells, allows tissue detection of apoptosis in LPS-treated rat hearts. Heart I-AnxV uptake was significantly increased in all cardiac territories of LPS-treated rats. In contrast, I-human serum albumin myocardial uptake was only slightly increased in LPS-treated rat hearts, suggesting limited changes in vascular protein permeability. Autoradiography of endotoxin-treated rat heart sections with I-AnxV in association with deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling and caspase 3 staining allows identification of double positive cardiac myocytes. Inhibition of apoptosis by caspase inhibitors (i.e., ZVAD.fmk and DEVD.cmk) reduced I-AnxV myocardial uptake in LPS-treated rats. Eventually, endotoxin-treated rats displayed pathological uptake of Tc-annexin in the cardiac mediastinal region whereas zVAD.fmk reduced Tc-annexin mediastinal uptake. Our results show that radioactive I-AnxV signal emerging from LPS-treated rat hearts could be related to the activation of caspase-dependent apoptotic pathway in cardiac myocytes.
Collapse
Affiliation(s)
- Patrice Pétillot
- INSERM Unité 814, Faculty of Medicine, Place de Verdun, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
OBJECTIVES To review mechanisms underlying sepsis-induced cardiac dysfunction in general and intrinsic myocardial depression in particular. DATA SOURCE MEDLINE database. DATA SYNTHESIS Myocardial depression is a well-recognized manifestation of organ dysfunction in sepsis. Due to the lack of a generally accepted definition and the absence of large epidemiologic studies, its frequency is uncertain. Echocardiographic studies suggest that 40% to 50% of patients with prolonged septic shock develop myocardial depression, as defined by a reduced ejection fraction. Sepsis-related changes in circulating volume and vessel tone inevitably affect cardiac performance. Although the coronary circulation during sepsis is maintained or even increased, alterations in the microcirculation are likely. Mitochondrial dysfunction, another feature of sepsis-induced organ dysfunction, will also place the cardiomyocytes at risk of adenosine triphosphate depletion. However, clinical studies have demonstrated that myocardial cell death is rare and that cardiac function is fully reversible in survivors. Hence, functional rather than structural changes seem to be responsible for intrinsic myocardial depression during sepsis. The underlying mechanisms include down-regulation of beta-adrenergic receptors, depressed postreceptor signaling pathways, impaired calcium liberation from the sarcoplasmic reticulum, and impaired electromechanical coupling at the myofibrillar level. Most, if not all, of these changes are regulated by cytokines and nitric oxide. CONCLUSIONS Integrative studies are needed to distinguish the hierarchy of the various mechanisms underlying septic cardiac dysfunction. As many of these changes are related to severe inflammation and not to infection per se, a better understanding of septic myocardial dysfunction may be usefully extended to other systemic inflammatory conditions encountered in the critically ill. Myocardial depression may be arguably viewed as an adaptive event by reducing energy expenditure in a situation when energy generation is limited, thereby preventing activation of cell death pathways and allowing the potential for full functional recovery.
Collapse
Affiliation(s)
- Alain Rudiger
- Bloomsbury Institute of Intensive Care Medicine, Wolfson Institute for Biomedical Research and Department of Medicine, University College London, UK
| | | |
Collapse
|
31
|
Suzuki J, Bayna E, Li HL, Molle ED, Lew WYW. Lipopolysaccharide activates calcineurin in ventricular myocytes. J Am Coll Cardiol 2007; 49:491-9. [PMID: 17258096 DOI: 10.1016/j.jacc.2006.10.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVES We investigated whether lipopolysaccharide (LPS), a proximate cause of inflammation, activates calcineurin in cardiac myocytes and if calcineurin regulates apoptosis in this setting. BACKGROUND Calcineurin regulates myocardial growth and hypertrophy, but its role in inflammation is unknown. Calcineurin has proapoptotic or antiapoptotic effects depending on the stimuli. METHODS Calcineurin activity was measured in left ventricular myocytes from adult Sprague Dawley rats. Cardiac apoptosis was measured by terminal deoxy-nucleotidyl transferase-mediated dUTP nick end-labeling staining and caspase-3 activity after in vitro and in vivo exposure to LPS. RESULTS Lipopolysaccharide increased calcineurin activity in myocytes over 1 to 24 h (t 1/2 = 4.8 h) with an EC(50) of 0.80 ng/ml LPS (p < 0.05, n = 4). The LPS (10 ng/ml) effects were mimicked by angiotensin II (Ang II) (100 nmol/l); both increased calcineurin activity and induced apoptosis without additive effects (p < 0.05, n = 5 to 9). Lipopolysaccharide and/or Ang II effects were prevented by 1 h pre-treatment with an Ang II type 1 receptor blocker (losartan, 1 micromol/l), calcineurin inhibitor (cyclosporin A, 0.5 micromol/l), calcium chelator (1,2-Bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl) ester, 0.1 micromol/l), or by inhibiting sarcoplasmic reticulum (SR) calcium (Ca)-ATPase (thapsigargin, 1 micromol/l) or SR calcium release channel (ryanodine, 1 micromol/l). Left ventricular apoptosis increased from 4 to 24 h after LPS (1 mg/kg intravenously) in vivo, but not in rats pre-treated with cyclosporin A (20 mg/kg/day subcutaneously) for 3 days (p < 0.05, n = 5). CONCLUSIONS In cardiac myocytes, LPS activates calcineurin in association with apoptosis by Ang II and SR calcium-dependent mechanisms. This expands the paradigm for cardiac calcineurin to be activated by low levels of LPS in inflammation and chronic conditions (e.g., infections, smoking, and heart failure).
Collapse
Affiliation(s)
- Jun Suzuki
- Cardiology Section, Department of Medicine, V.A. San Diego Healthcare System, San Diego, California 92161, USA
| | | | | | | | | |
Collapse
|
32
|
Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C, Neviere R. Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. J Am Coll Cardiol 2006; 48:377-85. [PMID: 16843190 DOI: 10.1016/j.jacc.2006.02.069] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/17/2006] [Accepted: 02/28/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study was to test whether mitochondrial dysfunction is causative of sepsis sequelae, a mouse model of peritonitis sepsis induced by cecal ligation and perforation. Inhibition of mitochondrial permeability transition was achieved by means of pharmacological drugs and overexpression of the antiapoptotic protein B-cell leukemia (Bcl)-2. BACKGROUND Sepsis is the leading cause of death in critically ill patients and the predominant cause of multiple organ failure. Although precise mechanisms by which sepsis leads to multiple organ dysfunction are unknown, growing evidence suggests that perturbations of key mitochondrial functions, including adenosine triphosphate production, Ca2+ homeostasis, oxygen-derived free radical production, and permeability transition, might be involved in sepsis pathophysiology. METHODS Heart and lung functions were evaluated respectively by means of isolated heart preparation, bronchoalveolar lavage fluid protein concentration, lung wet/dry weight ratio, lung homogenate myeloperoxidase activity, and histopathologic grading. Respiratory fluxes, calcium uptake, and membrane potential were evaluated in isolated heart mitochondria. RESULTS Peritonitis sepsis induced multiple organ dysfunction, mitochondrial abnormalities, and increased mortality rate, which were reduced by pharmacological inhibition of mitochondrial transition by cyclosporine derivatives and mitochondrial Bcl-2 overexpression. CONCLUSIONS Our study provides strong evidence that mitochondrial permeability transition plays a critical role in septic organ dysfunction. These studies demonstrate that mitochondrial dysfunction in sepsis is causative rather than epiphenomenal and relevant in terms of vital organ function and outcome. Regarding the critical role of heart failure in the pathophysiology of septic shock, our study also indicates a potentially new therapeutic approach for treatment of sepsis syndrome.
Collapse
Affiliation(s)
- Jérome Larche
- EA 2689, Université de Lille 2, Faculté de Médecine 1, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rabuel C, Mebazaa A. Septic shock: a heart story since the 1960s. Intensive Care Med 2006; 32:799-807. [PMID: 16570145 DOI: 10.1007/s00134-006-0142-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 01/20/2023]
Affiliation(s)
- C Rabuel
- University Paris 7 Denis Diderot, AP-HP, Department of Anesthesiology and Critical Care Medicine, Lariboisiere Hospital, 2 Rue Ambroise Paré, 75010 Paris, France
| | | |
Collapse
|
34
|
Chagnon F, Bentourkia M, Lecomte R, Lessard M, Lesur O. Endotoxin-induced heart dysfunction in rats: assessment of myocardial perfusion and permeability and the role of fluid resuscitation. Crit Care Med 2006; 34:127-33. [PMID: 16374166 DOI: 10.1097/01.ccm.0000190622.02222.df] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The pathophysiology of sepsis-induced myocardial dysfunction is still controversial. Whether microcirculatory hypoperfusion together with capillary leakage can occur in the heart wall also remains a matter of debate. The objective was to evaluate the impact of fluid resuscitation on endotoxin-induced myocardial dysfunction. DESIGN Adult rats were given intraperitoneal injection of endotoxin (lipopolysaccharide, Escherichia coli, 10 mg/kg) or phosphate-buffered solution, followed up by echocardiography and acetate micro-positron emission tomography scan imaging, together with final hemodynamic, biochemical, and pathologic evaluations up to 48 hrs. SETTING University laboratory. SUBJECTS Pathogen-free male Wistar rats (350 g). INTERVENTIONS Influence of isovolumic fluid infusion type (saline vs. pentastarch) on these variables was assessed in 11 groups of six animals including an unchallenged control one. MEASUREMENTS AND MAIN RESULTS Endotoxin injection induced a) myocardial dysfunction (decrease of approximately 15-20% in left ventricular ejection fraction); b) ventricular enlargement (approximately 1.5- to 1.7-fold increase in left ventricular systolic volume); c) cardiac output increase (10-15%); d) myocardial hypoperfusion ( approximately 1.5- to 2-fold decrease in acetate k1 constant rate); e) increased oxygen consumption (k2); and f) interstitial wall increase. Endotoxin injection also enhanced levels of arterial lactates and troponin I. Colloid (pentastarch) over crystalloid (saline) fluid resuscitation significantly reversed echocardiographic changes, some positron emission tomography imaging alterations, and lactate and troponin I levels without further enhancing interstitial spaces. CONCLUSION Endotoxin can induce reversible myocardial alterations with evidence of coronary hypoperfusion and heart wall enlargement/damage, some of which can be prevented by fluid resuscitation. The use of crystalloids is less beneficial than pentastarch.
Collapse
Affiliation(s)
- Frederic Chagnon
- Groupe de Recherche en Physiopathologie Respiratoire, Université de Sherbrooke, PQ, Canada
| | | | | | | | | |
Collapse
|
35
|
Joshi MS, Julian MW, Huff JE, Bauer JA, Xia Y, Crouser ED. Calcineurin regulates myocardial function during acute endotoxemia. Am J Respir Crit Care Med 2006; 173:999-1007. [PMID: 16424445 PMCID: PMC2662919 DOI: 10.1164/rccm.200411-1507oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RATIONALE Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). OBJECTIVES We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. METHODS Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. MEASUREMENTS AND MAIN RESULTS LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. CONCLUSIONS Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia.
Collapse
Affiliation(s)
- Mandar S Joshi
- Center for Cardiovascular Medicine, Columbus Children's Research Institute, Ohio State University Medical Center, Columbus, OH 43210-1252, USA
| | | | | | | | | | | |
Collapse
|
36
|
Marchetti P. L'apoptose : bases fondamentales et applications médicales. ACTA ACUST UNITED AC 2005; 33:632-41. [PMID: 16129644 DOI: 10.1016/j.gyobfe.2005.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 06/13/2005] [Indexed: 02/01/2023]
Abstract
Apoptosis has become a most popular concept of cell death. What makes apoptosis particularly exciting for medicine is that its dysfunctions play a central role in the pathogenesis of several human diseases. This review summarizes the considerable knowledge about the cell death pathways. The purpose of this article is to provide a background of relevance to clinicians on apoptosis, and the rationale for future therapeutic interventions directed toward the apoptotic machinery.
Collapse
Affiliation(s)
- P Marchetti
- Inserm U459, 1, place Verdun, 59045 Lille cedex, France.
| |
Collapse
|
37
|
Lancel S, Joulin O, Favory R, Goossens JF, Kluza J, Chopin C, Formstecher P, Marchetti P, Neviere R. Ventricular Myocyte Caspases Are Directly Responsible for Endotoxin-Induced Cardiac Dysfunction. Circulation 2005; 111:2596-604. [PMID: 15897345 DOI: 10.1161/circulationaha.104.490979] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although most of the deleterious effects of sepsis-induced apoptosis have been attributed to increased lymphocyte cell death, caspase activation may directly alter cell function of different organ systems. We postulated that left ventricular (LV) cardiomyocyte caspase activation is directly involved in sepsis-induced heart contractile dysfunction.
Methods and Results—
LV cardiomyocytes isolated 4 hours after rat treatment with endotoxin injection (10 mg/kg) displayed major reductions in contractile reserve and myofilament response to Ca
2+
. Concomitantly, endotoxin also induced increases in LV cardiomyocyte caspase-3, -8, and -9-like activities, which were associated with sarcomeric structure destruction and cleavage of components of the cardiac myofilament. Interestingly, zVAD.fmk treatment of septic rat prevented LV cardiomyocyte contractile dysfunction, reductions in myofilament response to calcium, troponin T cleavage, and sarcomere destruction. Serum (10%) of endotoxin-treated rats induced contractile dysfunction, caspase-3–like activity increase, and troponin T cleavage of naive LV cardiomyocytes. The effects of septic serum were prevented in LV cardiomyocytes isolated from zVAD.fmk- or zDEVD.cmk-treated rats or LV cardiomyocytes preincubated with zVAD.fmk or zDEVD.cmk.
Conclusions—
The results show an important relationship between endotoxin-induced caspase activation and reduced contractile reserve and sarcomere disarray at the level of single LV cardiomyocytes.
Collapse
Affiliation(s)
- Steve Lancel
- EA 2689, CHRU, and Université de Lille 2, IFR 114 IMPRT, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nathan M, Friehs I, Choi YH, Cowan DB, Cao-Danh H, McGowan FX, del Nido PJ. Cyclosporin A But Not FK-506 Protects Against Dopamine-Induced Apoptosis in the Stunned Heart. Ann Thorac Surg 2005; 79:1620-6. [PMID: 15854943 DOI: 10.1016/j.athoracsur.2004.10.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 11/30/2022]
Abstract
BACKGROUND Dopamine given at moderate doses for inotropy to postischemic hearts has been shown to augment myocyte apoptosis in association with elevated cytosolic calcium. We hypothesize that dopamine-mediated apoptosis occurs through calcium-induced opening of the mitochondrial permeability transition (mPT) pore. We also hypothesize that cyclosporin A (CSA), a calcineurin inhibitor known to block mPT pore opening, would prevent dopamine-induced apoptosis primarily by inhibiting pore opening (cyclophilin D binding). METHODS Isolated perfused rabbit hearts (n = 6/group) were subjected to 30 minutes of 37 degrees C cardioplegic arrest followed by 120 minutes reperfusion (ischemic injury that produces < 3% infarct by triphenyl-tetrazolium chloride [TTC] staining). Four groups were studied: (1) control; (2) dopamine (10 micromol/L) postischemia (dopa); (3) dopamine+CSA (0.2 micromol/L) (CSA+D) group; (4) dopamine+FK-506 (0.2 micromol/L) (FK+D) group. Left ventricular developed pressure and oxygen consumption were measured preischemia and postischemia. Bax, caspase-3 and caspase-9, and poly-ADP-ribose polymerase (PARP) activation were measured by Western blotting. Apoptotic nuclei were quantified by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining. RESULTS Dopamine postischemia improved contractile function and heart rate and this was not affected by CSA or FK. However, TUNEL positive nuclei, Bax, caspase-3 and caspase-9 activation, and PARP cleavage were all increased in dopa and FK+D groups, but not in CSA+D. CONCLUSIONS Cyclosporin is effective in preventing dopamine-induced apoptosis in the postischemic heart. The mechanism is likely due to inhibition of mPT pore opening since FK-506, a potent calcineurin inhibitor that does not bind to cyclophilin, did not prevent this. Low dose cyclosporin may prove useful to prevent dopamine-induced apoptosis resulting in long-term preservation of cardiac function.
Collapse
Affiliation(s)
- Meena Nathan
- Department of Cardiac Surgery, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Baek M, Weiss M. Mechanism-based modeling of reduced inotropic responsiveness to digoxin in endotoxemic rat hearts. Eur J Pharmacol 2005; 514:43-51. [PMID: 15878323 DOI: 10.1016/j.ejphar.2005.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms by which endotoxemia affects myocardial contractility and responsiveness to inotropic drugs are not well understood. We examined the positive inotropic effect of digoxin in single-pass Langendorff-perfused hearts from rats after in vivo pretreatment with lipopolysaccharide (LPS, 4 mg/kg, i.p., 4 h before heart isolation). Using a mathematical modeling approach that allows differentiation between effects elicited at the receptor and postreceptor level, we studied uptake, receptor binding and effectuation kinetics after three consecutive digoxin doses (15, 30, and 45 microg) in the absence and presence of the reverse mode Na(+)/Ca(2+) exchange (NCX) inhibitor KB-R7943 (0.1 microM) in perfusate. LPS significantly depressed baseline contractility and the inotropic response to digoxin without affecting its uptake mechanism. Compared with the control group, the slope of the functional receptor occupancy (stimulus)-to-response relationship was reduced by 44% in the LPS group. Model analysis revealed a significant correlation between changes in digoxin action and LPS-induced febrile response: digoxin receptor affinity increased and the response/stimulus ratio decreased with rise in body temperature, respectively. In contrast, the diminished responsiveness to digoxin observed after NCX inhibition in the control group was not further attenuated in the LPS group. These results support the hypothesis that postreceptor events may be responsible for the diminished contractile response to digoxin during endotoxemia.
Collapse
Affiliation(s)
- Myoungki Baek
- Section of Pharmacokinetics, Department of Pharmacology, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | | |
Collapse
|
40
|
|
41
|
Chen YR, Chen CL, Liu X, Li H, Zweier JL, Mason RP. Involvement of protein radical, protein aggregation, and effects on NO metabolism in the hypochlorite-mediated oxidation of mitochondrial cytochrome c. Free Radic Biol Med 2004; 37:1591-603. [PMID: 15477010 DOI: 10.1016/j.freeradbiomed.2004.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 07/06/2004] [Accepted: 07/08/2004] [Indexed: 11/29/2022]
Abstract
Cytochrome c (cyt c)-derived protein radicals, radical adduct aggregates, and protein tyrosine nitration have been implicated in the pro-apoptotic event connecting inflammation to the development of diseases. During inflammation, one of the reactive oxygen species metabolized via neutrophil activation is hypochlorite (HOCl); destruction of the mitochondrial electron transport chain by hypochlorite is considered to be a damaging factor. Previous study has shown that HOCl induces the site-specific oxidation of cyt c at met-80. In this work, we have assessed the hypothesis that exposure of cyt c to physiologically relevant concentrations of HOCl leads to protein-derived radical and consequent protein aggregation, which subsequently affects cyt c's regulation of nitric oxide metabolism. Reaction intermediates, chemical pathways available for protein aggregation, and protein nitration were examined. A weak ESR signal for immobilized nitroxide derived from the protein was detected when a high concentration of cyt c was reacted with hypochlorite in the presence of the nitroso spin trap 2-methyl-2-nitrosopropane. When a low concentration of cyt c was exposed to the physiologically relevant levels of HOCl in the presence of 5,5-dimethyl-pyrroline N-oxide (DMPO), we detected DMPO nitrone adducts derived from both protein and protein aggregate radicals as assessed by Western blot using an antibody raised against the DMPO nitrone adduct. The cyt c-derived protein radicals formed by HOCl were located on lysine and tyrosine residues, with lysine predominating. Cyt c-derived protein aggregates induced by HOCl involved primarily lysine residues and hydrophobic interaction. In addition, HOCl-oxidized cyt c (HOCl-cyt c) exhibited a higher affinity for NO and enhancement of nonenzymatic NO synthesis from nitrite reduction. Furthermore, HOCl-mediated cyt c oxidation also resulted in a significant elevation of cyt c nitration derived from either NO trapping of the cyt c-derived tyrosyl radical or cyt c-catalyzed one-electron oxidation of nitrite.
Collapse
Affiliation(s)
- Yeong-Renn Chen
- 607 Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, College of Medicine, 473 West, 12th Avenue Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Davani EY, Dorscheid DR, Lee CH, van Breemen C, Walley KR. Novel regulatory mechanism of cardiomyocyte contractility involving ICAM-1 and the cytoskeleton. Am J Physiol Heart Circ Physiol 2004; 287:H1013-22. [PMID: 15087287 DOI: 10.1152/ajpheart.01177.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ICAM-1 mediates interaction of cardiomyocytes with the extracellular matrix and leukocytes and may play a role in altering contractility. To investigate this possibility, rat ventricular cardiomyocytes were activated using TNF-α, IL-1β, or LPS, washed, cultured with quiescent rat polymorphonuclear leukocytes (PMNs) for 4 h, and electrically stimulated to determine fractional shortening. PMNs cultured with activated cardiomyocytes reduced control fractional shortening of 20.5 ± 0.7% by −2.8 ± 0.3% per adherent PMN ( P < 0.001). Fixing PMNs with paraformaldehyde or glutaraldehyde did not prevent PMN-mediated decreases in cardiomyocyte fractional shortening. However, PMN adherence and decreased fractional shortening were prevented by anti-ICAM-1 and anti-CD18 antibodies. Reduced fractional shortening was reproduced in the absence of PMNs by ICAM-1 binding using cross-linking antibodies (reduced by 36 ± 3% from control, P < 0.01). Immunofluorescent staining demonstrated increased cortical cytoskeleton-associated focal adhesion kinase expression after ICAM-1 cross-linking, suggesting involvement of the actin cytoskeleton. Indeed, disruption of F-actin filament assembly using cytochalasin D or latrunculin A did not prevent PMN adherence but prevented decreased fractional shortening. Inhibition of the cytoskeleton-associated Rho-kinase pathway with HA-1077 prevented ICAM-1-mediated decreases in cardiomyocyte contractility, further suggesting a central role of the actin cytoskeleton. Importantly, ICAM-1 cross-linking did not alter the total intracellular Ca2+transient during cardiomyocyte contraction but greatly increased heterogeneity of intracellular Ca2+release. Thus we have identified a novel regulatory mechanism of cardiomyocyte contractility involving the actin cytoskeleton as a central regulator of the normally highly coordinated pattern of sarcoplasmic Ca2+release. Cardiomyocyte ICAM-1 binding, by PMNs or other ligands, induces decreased cardiomyocyte contractility via this pathway.
Collapse
Affiliation(s)
- Ehsan Y Davani
- Critical Care Research Laboratories, St. Paul's Hospital, University of British Columbia, Vancouver, Canada V6Z 1Y6
| | | | | | | | | |
Collapse
|
43
|
Neuberger J, Gunson B, Hubscher S, Nightingale P. Immunosuppression affects the rate of recurrent primary biliary cirrhosis after liver transplantation. Liver Transpl 2004; 10:488-91. [PMID: 15048790 DOI: 10.1002/lt.20123] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identifying the risk factors associated with recurrence of primary biliary cirrhosis after liver transplantation may affect immunosuppression and increase understanding of the pathogenesis. Four hundred eighty-five patients with PBC were followed for a median of 79 months after transplantation; histological evidence of recurrence was found in 23%. On multivariate analysis, the only risk factor identified with recurrence was the type of calcineurin inhibitor used. The odds ratio for recurrence on tacrolimus was 2.73 (95% confidence interval: 1.84-4.10) compared with cyclosporine. For those receiving cyclosporine, the median time to recurrence was 123 months and for those on tacrolimus 62 months (P <.001). Reasons for this difference between the 2 calcineurin inhibitors are not clear.
Collapse
|
44
|
Crouser ED, Julian MW, Huff JE, Joshi MS, Bauer JA, Gadd ME, Wewers MD, Pfeiffer DR. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia*. Crit Care Med 2004; 32:478-88. [PMID: 14758167 DOI: 10.1097/01.ccm.0000109449.99160.81] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. DESIGN A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. SETTING The Ohio State University Medical Center research laboratory. SUBJECTS Random source, adult, male conditioned cats. INTERVENTIONS Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. MEASUREMENTS AND MAIN RESULTS As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. CONCLUSIONS These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.
Collapse
Affiliation(s)
- Elliott D Crouser
- Division of Pulmonary and Critical Care Medicine, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Mattson MP, Kroemer G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 2003; 9:196-205. [PMID: 12763524 DOI: 10.1016/s1471-4914(03)00046-7] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Post-mitotic neurons and heart muscle cells undergo apoptotic cell death in a variety of acute and chronic degenerative diseases. The intrinsic pathway of apoptosis involves the permeabilization of mitochondrial membranes, which leads to the release of protease and nuclease activators, and to bioenergetic failure. Mitochondrial permeabilization is induced by a variety of pathologically relevant second messengers, including reactive oxygen species, calcium, stress kinases and pro-apoptotic members of the Bcl-2 family. Several pharmacological agents act on mitochondria to prevent the permeabilization of their membranes, thereby inhibiting apoptosis. Such agents include inhibitors of the permeability transition pore complex (in particular ligands of cyclophilin D), openers of mitochondrial ATP-sensitive or Ca(2+)-activated K(+) channels, and proteins from the Bcl-2 family engineered to cross the plasma membrane. In addition, manipulations that modulate the expression or activity of mitochondrial uncoupling proteins can prevent the death of post-mitotic cells. Such agents hold promise for use in clinical neuroprotection and cardioprotection.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
46
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, Illinois 60141, USA.
| |
Collapse
|