1
|
Golshan-Tafti M, Bahrami R, Dastgheib SA, Lookzadeh MH, Mirjalili SR, Yeganegi M, Marzbanrad Z, Aghasipour M, Shahbazi A, Masoudi A, Noorishadkam M, Neamatzadeh H. A Comprehensive Compilation of Data on the Relationship Between Surfactant Protein-B (SFTPB) Polymorphisms and Susceptibility to Neonatal Respiratory Distress Syndrome. Fetal Pediatr Pathol 2024; 43:399-418. [PMID: 39159013 DOI: 10.1080/15513815.2024.2390932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND This study aims to explore the association between variations in the Surfactant Protein-B (SFTPB) gene and the risk of neonatal respiratory distress syndrome (NRDS). METHODS A comprehensive literature search was conducted across PubMed, Scopus, EMBASE, and CNKI databases up to February 10, 2024, to identify pertinent studies. RESULTS A total of seventeen studies examining the +1580 C/T polymorphism (2,058 cases and 2,596 controls) and five studies investigating the -18 A/C polymorphism (680 cases and 739 controls) were included in the analysis. The pooled data indicated that the +1580 C/T polymorphism confers a protective effect against NRDS in various populations and ethnic groups. Conversely, the -18 A/C polymorphism did not demonstrate a significant association either globally or among Asian neonates. CONCLUSIONS The +1580 C/T variant appears to be protective against NRDS, whereas the -18 A/C polymorphism shows minimal impact on the disease's progression.
Collapse
Affiliation(s)
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Reza Mirjalili
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, OH, USA
| | - Amirhossein Shahbazi
- Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Masoudi
- General Practitioner, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
2
|
Cedzyński M, Świerzko AS. Collectins and ficolins in neonatal health and disease. Front Immunol 2023; 14:1328658. [PMID: 38193083 PMCID: PMC10773719 DOI: 10.3389/fimmu.2023.1328658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The immune system starts to develop early in embryogenesis. However, at birth it is still immature and associated with high susceptibility to infection. Adaptation to extrauterine conditions requires a balance between colonization with normal flora and protection from pathogens. Infections, oxidative stress and invasive therapeutic procedures may lead to transient organ dysfunction or permanent damage and perhaps even death. Newborns are primarily protected by innate immune mechanisms. Collectins (mannose-binding lectin, collectin-10, collectin-11, collectin-12, surfactant protein A, surfactant protein D) and ficolins (ficolin-1, ficolin-2, ficolin-3) are oligomeric, collagen-related defence lectins, involved in innate immune response. In this review, we discuss the structure, specificity, genetics and role of collectins and ficolins in neonatal health and disease. Their clinical associations (protective or pathogenic influence) depend on a variety of variables, including genetic polymorphisms, gestational age, method of delivery, and maternal/environmental microflora.
Collapse
Affiliation(s)
- Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | | |
Collapse
|
3
|
Ruan T, Lu W, Zeng S, Yue Y, Zhou R, Ying J, Tang Y, Qu Y, Mu D. Cumulative evidence of the genetic association between SP-B C1580T polymorphisms and risk of neonatal respiratory distress syndrome. J Matern Fetal Neonatal Med 2023; 36:2240469. [PMID: 37527966 DOI: 10.1080/14767058.2023.2240469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
Objective: Surfactant protein SP-B, an important protein in pulmonary surfactant, is required for the stabilization of surfactant films in the lung and maintenance of postnatal lung function. Although the association between SP-B polymorphisms and the risk of neonatal respiratory distress syndrome (RDS) has been evaluated, the results have been inconsistent. We investigated the association between SP-B polymorphisms and the risk of neonatal RDS.Methods: Relevant studies were systematically searched in PubMed, EMBASE, Web of Science, and Chinese National Knowledge Infrastructure (CNKI) electronic databases until June 2022. Data were collected independently by two reviewers and converted to odds ratios (ORs) with 95% confidence intervals (CIs). Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias assessment were performed using Stata 12.1 software and Review Manager 5.3.Results: Fourteen studies were included. SP-B C1580T polymorphism was significantly associated with neonatal RDS in five genetic models (T vs. C: OR = 0.70, 95% CI 0.57-0.86, I2 = 78%; TT vs. CC: OR = 0.63, 95% CI 0.53-0.86, I2 = 39%; CT vs. CC: OR = 0.65, 95% CI 0.50-0.84, I2 = 54%; TT + CT vs. CC: OR = 0.62, 95% CI 0.49-0.78, I2 = 59%; TT vs. CC + CT: OR = 0.78, 95% CI 0.67-0.91, I2 = 43%). The CT and TT genotypes may decrease the risk of RDS in neonates. Subgroup analyses revealed that the association of SP-B C1580T polymorphism with neonatal RDS was stable, independent of preterm birth and Hardy-Weinberg equilibrium. In addition, the Han Chinese were more likely to be affected by SP-B C1580T polymorphisms than Caucasians and Finnish.Conclusions: Our findings suggest that SP-B C1580T polymorphism may be a protective factor against neonatal RDS.
Collapse
Affiliation(s)
- Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Wenting Lu
- Department of General Practice, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Zeng
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Tang
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
- Ultrasonic Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Lavoie PM, Rayment JH. Genetics of bronchopulmonary dysplasia: An update. Semin Perinatol 2023; 47:151811. [PMID: 37775368 DOI: 10.1016/j.semperi.2023.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a multi-factorial disease that results from multiple clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, pulmonary congestion due to increasing cardiac blood shunting, nutritional and immunological factors. Twin studies have indicated that susceptibility to BPD can be strongly inherited in some settings. Studies have reported associations between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette, sub-family A, member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also result in severe form of neonatal-onset interstitial lung diseases and may also potentially affect the course of BPD. This chapter summarizes the current state of knowledge on the genetics of BPD.
Collapse
Affiliation(s)
- Pascal M Lavoie
- Division of Neonatology, Department of Pediatrics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada.
| | - Jonathan H Rayment
- BC Children's Hospital Research Institute, Vancouver, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada
| |
Collapse
|
5
|
Hallman M, Ronkainen E, Saarela TV, Marttila RH. Management Practices During Perinatal Respiratory Transition of Very Premature Infants. Front Pediatr 2022; 10:862038. [PMID: 35620146 PMCID: PMC9127974 DOI: 10.3389/fped.2022.862038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
The present review considers some controversial management practices during extremely premature perinatal transition. We focus on perinatal prevention and treatment of respiratory distress syndrome (RDS) in immature infants. New concerns regarding antenatal corticosteroid management have been raised. Many fetuses are only exposed to potential adverse effects of the drug. Hence, the formulation and the dosage may need to be modified. Another challenge is to increase the fraction of the high-risk fetuses that benefit from the drug and to minimize the harmful effects of the drug. On the other hand, boosting anti-inflammatory and anti-microbial properties of surfactant requires further attention. Techniques of prophylactic surfactant administration to extremely immature infants at birth may be further refined. Also, new findings suggest that prophylactic treatment of patent ductus arteriosus (PDA) of a high-risk population rather than later selective closure of PDA may be preferred. The TREOCAPA trial (Prophylactic treatment of the ductus arteriosus in preterm infants by acetaminophen) evaluates, whether early intravenous paracetamol decreases the serious cardiorespiratory consequences following extremely premature birth. Lastly, is inhaled nitric oxide (iNO) used in excess? According to current evidence, iNO treatment of uncomplicated RDS is not indicated. Considerably less than 10% of all very premature infants are affected by early persistence of pulmonary hypertension (PPHN). According to observational studies, effective ventilation combined with early iNO treatment are effective in management of this previously fatal disease. PPHN is associated with prolonged rupture of fetal membranes and birth asphyxia. The lipopolysaccharide (LPS)-induced immunotolerance and hypoxia-reperfusion-induced oxidant stress may inactivate NO-synthetases in pulmonary arterioles and terminal airways. Prospective trials on iNO in the management of PPHN are indicated. Other pulmonary vasodilators may be considered as comparison drugs or adjunctive drugs. The multidisciplinary challenge is to understand the regulation of pregnancy duration and the factors participating the onset of extremely premature preterm deliveries and respiratory adaptation. Basic research aims to identify deficiencies in maternal and fetal tissues that predispose to very preterm births and deteriorate the respiratory adaptation of immature infants. Better understanding on causes and prevention of extremely preterm births would eventually provide effective antenatal and neonatal management practices required for the intact survival.
Collapse
Affiliation(s)
- Mikko Hallman
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Eveliina Ronkainen
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Timo V. Saarela
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta H. Marttila
- PEDEGO Research Unit, MRC Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
Regulatory Roles of Human Surfactant Protein B Variants on Genetic Susceptibility to Pseudomonas Aeruginosa Pneumonia-Induced Sepsis. Shock 2021; 54:507-519. [PMID: 31851120 DOI: 10.1097/shk.0000000000001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Surfactant protein B (SP-B) is essential for life and plays critical roles in host defense and lowering alveolar surface tension. A single-nucleotide polymorphism (SNP rs1130866) of human SP-B (hSP-B) alters the N-linked glycosylation, thus presumably affecting SP-B function. This study has investigated the regulatory roles of hSP-B genetic variants on lung injury in pneumonia-induced sepsis. METHODS Wild-type (WT) FVB/NJ and humanized transgenic SP-B-T and SP-B-C mice (expressing either hSP-B C or T allele without mouse SP-B gene) were infected intratracheally with 50 μL (4 × 10 colony-forming units [CFUs]/mouse) Pseudomonas aeruginosa Xen5 or saline, and then killed 24 or 48 h after infection. Bacterial dynamic growths were monitored from 0 to 48 h postinfection by in vivo imaging. Histopathological, cellular, and molecular changes of lung tissues and bronchoalveolar lavage fluid (BALF) were analyzed. Surface tension of surfactants was determined with constrained drop surfactometry. RESULTS SP-B-C mice showed higher bioluminescence and CFUs, increased inflammation and mortality, the higher score of lung injury, and reduced numbers of lamellar bodies in type II cells compared with SP-B-T or WT (P < 0.05). Minimum surface tension increased dramatically in infected mice (P < 0.01) with the order of SP-B-C > SP-B-T > WT. Levels of multiple cytokines in the lung of infected SP-B-C were higher than those of SP-B-T and WT (P < 0.01). Furthermore, compared with SP-B-T or WT, SP-B-C exhibited lower SP-B, higher NF-κB and NLRP3 inflammasome activation, and higher activated caspase-3. CONCLUSIONS hSP-B variants differentially regulate susceptibility through modulating the surface activity of surfactant, cell death, and inflammatory signaling in sepsis.
Collapse
|
7
|
Pederson WP, Cyphert-Daly JM, Tighe RM, Que LG, Ledford JG. Genetic variation in surfactant protein-A2 alters responses to ozone. PLoS One 2021; 16:e0247504. [PMID: 33617569 PMCID: PMC7899376 DOI: 10.1371/journal.pone.0247504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Increased exposure to Ozone (O3) is associated with adverse health effects in individuals afflicted with respiratory diseases. Surfactant protein-A (SP-A), encoded by SP-A1 and SP-A2, is the largest protein component in pulmonary surfactant and is functionally impaired by O3-oxidation. OBJECTIVE We used humanized SP-A2 transgenic mice with allelic variation corresponding to a glutamine (Q) to lysine (K) amino acid substitution at position 223 in the lectin domain to determine the impact of this genetic variation in regards to O3 exposure. METHODS Mice were exposed to 2ppm O3 or Filtered Air (FA) for 3 hours and 24 hrs post-challenge pulmonary function tests and other parameters associated with inflammation were assessed in the bronchoalveolar lavage (BAL) fluid and lung tissue. Additionally, mouse tracheal epithelial cells were cultured and TEER measurements recorded for each genotype to determine baseline epithelial integrity. RESULTS Compared to FA, O3 exposure led to significantly increased sensitivity to methacholine challenge in all groups of mice. SP-A2 223Q variant mice were significantly protected from O3-induced AHR compared to SP-A-/- and SP-A2 223K mice. Neutrophilia was observed in all genotypes of mice post O3-exposure, however, SP-A2 223Q mice had a significantly lower percentage of neutrophils compared to SP-A-/- mice. Albumin levels in BAL were unchanged in O3-exposed SP-A2 223Q mice compared to their FA controls, while levels were significantly increased in all other genotypes of O3-exposed mice. SP-A 223Q MTECS has significant higher TEER values than all other genotypes, and WT MTECS has significantly higher TEER than the SP-A KO and SP-A 223K MTECS. SIGNIFICANCE Taken together, our study suggests that expression of a glutamine (Q) as position 223 in SP-A2, as opposed to expression of lysine (K), is more protective in acute exposures to ozone and results in attenuated O3-induced AHR, neutrophilia, and vascular permeability.
Collapse
Affiliation(s)
- William P. Pederson
- Department of Physiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jaime M. Cyphert-Daly
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Loretta G. Que
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Julie G. Ledford
- Asthma and Airways Disease Research Center, Tucson, Arizona, United States of America
- Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
8
|
Amatya S, Ye M, Yang L, Gandhi CK, Wu R, Nagourney B, Floros J. Single Nucleotide Polymorphisms Interactions of the Surfactant Protein Genes Associated With Respiratory Distress Syndrome Susceptibility in Preterm Infants. Front Pediatr 2021; 9:682160. [PMID: 34671583 PMCID: PMC8521105 DOI: 10.3389/fped.2021.682160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/06/2021] [Indexed: 11/14/2022] Open
Abstract
Background: Neonatal respiratory distress syndrome (RDS), due to surfactant deficiency in preterm infants, is the most common cause of respiratory morbidity. The surfactant proteins (SFTP) genetic variants have been well-studied in association with RDS; however, the impact of SNP-SNP (single nucleotide polymorphism) interactions on RDS has not been addressed. Therefore, this study utilizes a newer statistical model to determine the association of SFTP single SNP model and SNP-SNP interactions in a two and a three SNP interaction model with RDS susceptibility. Methods: This study used available genotype and clinical data in the Floros biobank at Penn State University. The patients consisted of 848 preterm infants, born <36 weeks of gestation, with 477 infants with RDS and 458 infants without RDS. Seventeen well-studied SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD SNPs were investigated. Wang's statistical model was employed to test and identify significant associations in a case-control study. Results: Only the rs17886395 (C allele) of the SFTPA2 was associated with protection for RDS in a single-SNP model (Odd's Ratio 0.16, 95% CI 0.06-0.43, adjusted p = 0.03). The highest number of interactions (n = 27) in the three SNP interactions were among SFTPA1 and SFTPA2. The three SNP models showed intergenic and intragenic interactions among all SFTP SNPs except SFTPC. Conclusion: The single SNP model and SNP interactions using the two and three SNP interactions models identified SFTP-SNP associations with RDS. However, the large number of significant associations containing SFTPA1 and/or SFTPA2 SNPs point to the importance of SFTPA1 and SFTPA2 in RDS susceptibility.
Collapse
Affiliation(s)
- Shaili Amatya
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lili Yang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chintan K Gandhi
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rongling Wu
- Public Health Science, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Beth Nagourney
- Albert Einstein College of Medicine, New York, NY, United States
| | - Joanna Floros
- Department of Pediatrics, Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Obstetrics and Gynecology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
9
|
Vieira F, Kung JW, Bhatti F. Structure, genetics and function of the pulmonary associated surfactant proteins A and D: The extra-pulmonary role of these C type lectins. Ann Anat 2017; 211:184-201. [PMID: 28351530 DOI: 10.1016/j.aanat.2017.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
The collectins family encompasses several collagenous Ca2+-dependent defense lectins that are described as pathogen recognition molecules. They play an important role in both adaptive and innate immunity. Surfactant proteins A and D are two of these proteins which were initially discovered in association with surfactant in the pulmonary system. The structure, immune and inflammatory functions, and genetic variations have been well described in relation to their roles, function and pathophysiology in the pulmonary system. Subsequently, these proteins have been discovered in a wide range of other organs and organ systems. The role of these proteins outside the pulmonary system is currently an active area of research. This review intends to provide a current overview of the genetics, structure and extra-pulmonary functions of the surfactant collectin proteins.
Collapse
Affiliation(s)
- Frederico Vieira
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Johannes W Kung
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| | - Faizah Bhatti
- Neonatal Perinatal Medicine, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.
| |
Collapse
|
10
|
Tsitoura MEI, Stavrou EF, Maraziotis IA, Sarafidis K, Athanassiadou A, Dimitriou G. Surfactant Protein A and B Gene Polymorphisms and Risk of Respiratory Distress Syndrome in Late-Preterm Neonates. PLoS One 2016; 11:e0166516. [PMID: 27835691 PMCID: PMC5106092 DOI: 10.1371/journal.pone.0166516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Background and Objectives Newborns delivered late-preterm (between 340/7 and 366/7 weeks of gestation) are at increased risk of respiratory distress syndrome (RDS). Polymorphisms within the surfactant protein (SP) A and B gene have been shown to predispose to RDS in preterm neonates. The aim of this study was to investigate whether specific SP-A and/or SP-B genetic variants are also associated with RDS in infants born late-preterm. Methods This prospective cross-sectional study included 56 late-preterm infants with and 60 without RDS. Specific SP-A1/SP-A2 haplotypes and SP-B Ile131Thr polymorphic alleles were determined in blood specimens using polymerase-chain-reaction and DNA sequencing. Results The SP-A1 6A4 and the SP-A2 1A5 haplotypes were significantly overrepresented in newborns with RDS compared to controls (OR 2.86, 95%CI 1.20–6.83 and OR 4.68, 95%CI 1.28–17.1, respectively). The distribution of the SP-B Ile131Thr genotypes was similar between the two late-preterm groups. Overall, the SP-A1 6A4 or/and SP-A2 1A5 haplotype was present in 20 newborns with RDS (35.7%), resulting in a 4.2-fold (1.60–11.0) higher probability of RDS in carriers. Multivariable regression analysis revealed that the effect of SP-A1 6A4 and SP-A2 1A5 haplotypes was preserved when adjusting for known risk or protective factors, such as male gender, smaller gestational age, smaller weight, complications of pregnancy, and administration of antenatal corticosteroids. Conclusions Specific SP-A genetic variants may influence the susceptibility to RDS in late-preterm infants, independently of the effect of other perinatal factors.
Collapse
Affiliation(s)
- Maria-Eleni I. Tsitoura
- Neonatal Intensive Care Unit, Department of Pediatrics, Faculty of Medicine, University of Patras, Rio, Patras, Greece
- Department of General Biology, Faculty of Medicine, University of Patras, Rio, Patras, Greece
| | - Eleana F. Stavrou
- Department of General Biology, Faculty of Medicine, University of Patras, Rio, Patras, Greece
| | - Ioannis A. Maraziotis
- Neonatal Intensive Care Unit, Department of Pediatrics, Faculty of Medicine, University of Patras, Rio, Patras, Greece
| | - Kosmas Sarafidis
- First Department of Neonatology, Aristotle University of Thessaloniki, Ippokration General Hospital, Thessaloniki, Greece
| | - Aglaia Athanassiadou
- Department of General Biology, Faculty of Medicine, University of Patras, Rio, Patras, Greece
| | - Gabriel Dimitriou
- Neonatal Intensive Care Unit, Department of Pediatrics, Faculty of Medicine, University of Patras, Rio, Patras, Greece
- * E-mail:
| |
Collapse
|
11
|
Ronkainen E, Kaukola T, Marttila R, Hallman M, Dunder T. School-age children enjoyed good respiratory health and fewer allergies despite having lung disease after preterm birth. Acta Paediatr 2016; 105:1298-1304. [PMID: 27411109 DOI: 10.1111/apa.13526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/18/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023]
Abstract
AIM This study explored the under-researched area of whether preterm birth or bronchopulmonary dysplasia (BPD) affected hospitalisation rates, allergies or health-related quality of life (HRQoL). METHODS We studied 88 schoolchildren born preterm at a mean gestational age of 28.8 weeks (range 24.1-31.9) and matched term-born controls at the mean age of 11 years (range 8-14). Hospitalisations after the first discharge were recorded, skin prick allergy tests were performed and HRQoL was assessed with a parental questionnaire. RESULTS Preterm children were hospitalised more than controls (64% versus 39%, p = 0.001), mostly before two years of age. The adjusted odds ratios (OR) for two-year-old preterm-born children being hospitalised for wheezing was 8.2 (95% CI 2.0-34.1). BPD affected 56% of the preterm children, but did not influence hospitalisations, and the positive skin prick rate was similar between the preterm and term-born children (35% versus 48%, p = 0.126). Preterm BPD children had fewer positive skin prick tests than those without BPD. HRQoL was lower in preterm than term children (81.25 ± 10.84 versus 86.80 ± 9.60, p = 0.001). CONCLUSION Most health problems experienced by preterm-born schoolchildren occurred before two years of age and were mainly wheezing disorders. BPD decreased atopy but had no influence on hospitalisation rates.
Collapse
Affiliation(s)
- Eveliina Ronkainen
- PEDEGO Research Unit; Medical Research Center Oulu and Department of Children and Adolescents; Oulu University Hospital and University of Oulu; Oulu Finland
| | - Tuula Kaukola
- Division of Neonatal Medicine; Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| | - Riitta Marttila
- Division of Neonatal Medicine; Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| | - Mikko Hallman
- PEDEGO Research Unit; Medical Research Center Oulu and Department of Children and Adolescents; Oulu University Hospital and University of Oulu; Oulu Finland
- Division of Neonatal Medicine; Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| | - Teija Dunder
- Division of Allergology and Pulmonology; Department of Children and Adolescents; Oulu University Hospital; Oulu Finland
| |
Collapse
|
12
|
Ronkainen E, Dunder T, Kaukola T, Marttila R, Hallman M. Intrauterine growth restriction predicts lower lung function at school age in children born very preterm. Arch Dis Child Fetal Neonatal Ed 2016; 101:F412-7. [PMID: 26802110 DOI: 10.1136/archdischild-2015-308922] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/27/2015] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Children born preterm have lower lung function compared with term-born children. Intrauterine growth restriction (IUGR) may predispose individuals to chronic obstructive pulmonary disease. The purpose of this observational study was to investigate the role of IUGR as predictor of lung function at school age in children born very preterm. We further studied the difference in lung function between term-born and preterm-born children with distinct morbidities. DESIGN Preterm-born children and age-matched and sex-matched term-born comparison groups (88 of each) were studied at the mean age of 11 years. Spirometry and diffusing capacity of the lung for carbon monoxide (DLCO) were recorded. All preterm-born subjects with IUGR (n=23), defined as birth weight less than -2 SD, were compared with preterm-born subjects without IUGR (n=65). RESULTS In the preterm-born children exposed to IUGR, the forced expiratory volume in 1 s (FEV1) was 5.7 (95% CI -10.2 to -1.3) and DLCO 9.2 percentage points lower (95% CI -15.7 to -2.7) than in the preterm-born children with appropriate in utero growth (expressed as percentage of predicted values). The effect of IUGR in decreasing FEV1 and DLCO remained significant after adjustment for bronchopulmonary dysplasia (BPD). Further study indicated that after adjustment with IUGR and BPD, prematurity explained reduction in FEV1 but not in DLCO. CONCLUSIONS In children born very preterm, IUGR is an independent risk factor for a lower lung function in school age. We propose that IUGR and BPD are the major early factors predisposing the children born very preterm to lower lung function.
Collapse
Affiliation(s)
- Eveliina Ronkainen
- PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu, Oulu, Finland Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Teija Dunder
- Division of Allergology and Pulmonology, Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Tuula Kaukola
- Division of Neonatal Medicine, Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Riitta Marttila
- Division of Neonatal Medicine, Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikko Hallman
- PEDEGO Research Center, and Medical Research Center Oulu, University of Oulu, Oulu, Finland Division of Neonatal Medicine, Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
13
|
Shen CL, Zhang Q, Meyer Hudson J, Cole FS, Wambach JA. Genetic Factors Contribute to Risk for Neonatal Respiratory Distress Syndrome among Moderately Preterm, Late Preterm, and Term Infants. J Pediatr 2016; 172:69-74.e2. [PMID: 26935785 PMCID: PMC4876036 DOI: 10.1016/j.jpeds.2016.01.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/14/2015] [Accepted: 01/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To determine the genetic contribution to risk for respiratory distress syndrome (RDS) among moderately preterm, late preterm, and term infants (estimated gestational age ≥32 weeks) of African- and European-descent. STUDY DESIGN We reviewed clinical records for 524 consecutive twin pairs ≥32 weeks gestation. We identified pairs in which at least 1 twin had RDS (n = 225) and compared the concordance of RDS between monozygotic and dizygotic twins. Using mixed-effects logistic regression, we identified covariates that increased disease risk. We performed additive genetic, common environmental, and residual effects modeling to estimate genetic variance and used the ratio of genetic variance to total variance to estimate genetic contribution to RDS disease risk. RESULTS Monozygotic twins were more concordant for RDS than dizygotic twins (P = .0040). Estimated gestational age, European-descent, male sex, delivery by cesarean, and 5-minute Apgar score each independently increased risk for RDS. After adjusting for these covariates, genetic effects accounted for 58% (P = .0002) of the RDS disease risk variance for all twin pairs. CONCLUSIONS In addition to environmental factors, genetic factors may contribute to RDS risk among moderately preterm, late preterm, and term infants. Discovery of risk alleles may be important for prediction and management of RDS risk.
Collapse
Affiliation(s)
- Carol L Shen
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Qunyuan Zhang
- Center for Genome Sciences and Systems Biology, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO
| | - Julia Meyer Hudson
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - F Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
14
|
Ronkainen E, Dunder T, Peltoniemi O, Kaukola T, Marttila R, Hallman M. New BPD predicts lung function at school age: Follow-up study and meta-analysis. Pediatr Pulmonol 2015; 50:1090-8. [PMID: 25589379 DOI: 10.1002/ppul.23153] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/21/2014] [Accepted: 11/30/2014] [Indexed: 11/07/2022]
Abstract
New treatment practices have improved survival of preterm infants and decreased airway pathology in bronchopulmonary dysplasia (BPD). Our aim was to investigate whether preterm birth, BPD, and the severity of BPD predict lung function in school children that are born in surfactant era. We studied pulmonary function of 88 school-aged children born very preterm (gestational age <32 weeks) and paired them with 88 age- and sex-matched controls born at term. Spirometry and diffusion capacity were recorded. We also performed a meta-analysis covering the era of antenatal corticosteroid and surfactant treatment. BPD was defined as oxygen dependence for ≥ 28 days and it was severity-graded by oxygen requirement at 36 weeks postmenstrual age (mild, none; moderate, FiO2 = 0.22-0.29; severe, FiO2 ≥ 0.30). Preterm children had lower forced expiratory volume in 1 sec (FEV1 ) 86.4 ± 11.8 versus 94.9 ± 10.1 (mean % predicted ± SD; P < 0.001), and lower diffusion capacity (DLCO) 87.6 ± 13.9 versus 93.7 ± 12.0 (P = 0.005) compared with term controls. BPD group differed in both FEV1 (P = 0.037) and DLCO (P = 0.018) from those without BPD. For meta-analysis, search identified 210 articles. Together with present results, six articles met the inclusion criteria. FEV1 of no BPD, all BPD, and moderate to severe BPD groups differed from that in term controls by -7.4, -10.5, and -17.8%, respectively. According to meta-analysis and follow-up study, the adverse effects of prematurity on pulmonary function are still detectable in school-age. BPD was associated with reductions in both diffusion capacity and spirometry. New interventions are required to document a further decrease in the life-long consequences of prematurity.
Collapse
Affiliation(s)
- Eveliina Ronkainen
- Department of Pediatrics and Adolescence, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Teija Dunder
- Oulu University Hospital, Division of Allergology and Pulmonology, Department of Pediatrics and Adolescence, Oulu, Finland
| | - Outi Peltoniemi
- Oulu University Hospital, Division of Pediatric Intensive Care, Department of Pediatrics and Adolescence, Oulu, Finland
| | - Tuula Kaukola
- Oulu University Hospital, Division of Neonatal Medicine, Department of Pediatrics and Adolescence, Oulu, Finland
| | - Riitta Marttila
- Oulu University Hospital, Division of Neonatal Medicine, Department of Pediatrics and Adolescence, Oulu, Finland
| | - Mikko Hallman
- Department of Pediatrics and Adolescence, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.,Oulu University Hospital, Division of Neonatal Medicine, Department of Pediatrics and Adolescence, Oulu, Finland
| |
Collapse
|
15
|
Human Surfactant Proteins A2 (SP-A2) and B (SP-B) Genes as Determinants of Respiratory Distress Syndrome. Indian Pediatr 2015; 52:391-4. [PMID: 26061924 DOI: 10.1007/s13312-015-0643-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To study the relationship between SP-A2 and SP-B gene polymorphisms and respiratory distress syndrome in preterm neonates. DESIGN Cross-sectional. SETTING Neonatal intensive care unit and the Molecular Biology unit of the Chemical Pathology Department, Kasr Alainy hospital, Cairo University. PARTICIPANTS Sixty-five preterm infants with respiratory distress syndrome and 50 controls. The genomic DNA was isolated using DNA extraction kits. SYBR Green-based real-time PCR was used to determine the variant genotypes of SP-A2 c.751 G>A and SP-B c.8714 G>C single nucleotide polymorphisms. RESULTS Homozygosity of SP-A (OR 46, 95% CI 14-151) and SP-B (OR 5.2, 95% CI 2.3-11.4) alleles increased the risk of respiratory distress syndrome. The logistic regression model showed that genotypes SP-A2 (OR 164) and SP-B (OR 18) were directly related to the occurrence of respiratory distress syndrome, whereas gestational age (OR 0.57) and 5-minute Apgar score (OR 0.19) were inversely related to its occurrence. CONCLUSIONS There is a possible involvement of SP-A2 and SP-B genes polymorphisms in the genetic predisposition to respiratory distress syndrome.
Collapse
|
16
|
Jo HS. Genetic risk factors associated with respiratory distress syndrome. KOREAN JOURNAL OF PEDIATRICS 2014; 57:157-63. [PMID: 24868212 PMCID: PMC4030116 DOI: 10.3345/kjp.2014.57.4.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 03/14/2014] [Indexed: 01/06/2023]
Abstract
Respiratory distress syndrome (RDS) among preterm infants is typically due to a quantitative deficiency of pulmonary surfactant. Aside from the degree of prematurity, diverse environmental and genetic factors can affect the development of RDS. The variance of the risk of RDS in various races/ethnicities or monozygotic/dizygotic twins has suggested genetic influences on this disorder. So far, several specific mutations in genes encoding surfactant-associated molecules have confirmed this. Specific genetic variants contributing to the regulation of pulmonary development, its structure and function, or the inflammatory response could be candidate risk factors for the development of RDS. This review summarizes the background that suggests the genetic predisposition of RDS, the identified mutations, and candidate genetic polymorphisms of pulmonary surfactant proteins associated with RDS.
Collapse
Affiliation(s)
- Heui Seung Jo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
17
|
Allele-specific N-glycosylation delays human surfactant protein B secretion in vitro and associates with decreased protein levels in vivo. Pediatr Res 2013; 74:646-51. [PMID: 24002332 DOI: 10.1038/pr.2013.151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/18/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Surfactant protein B (SP-B) is essential for normal lung function, and decreased concentrations of SP-B have a deleterious effect on pulmonary outcome. SP-B levels may correlate with variations in the encoding gene (SFTPB). SFTPB single-nucleotide polymorphism Ile131Thr affects proSP-B N-glycosylation in humans and the glycosylated Thr variant associates with pulmonary diseases. METHODS We analyzed SP-B levels in amniotic fluid samples for associations with SFTPB polymorphisms and generated cell lines expressing either proSP-B/131Ile or proSP-B/131Thr for examining the effect of glycosylation on proSP-B secretion kinetics. To determine any transcription preference between Ile131Thr allelic variants, we used heterozygous human lungs for allelic expression imbalance assays. RESULTS Protein levels correlated with Ile131Thr genotype and the lowest SP-B levels were observed in Thr/Thr homozygotes. Our results suggest that Ile131Thr variation-dependent N-glycosylation associates with decreased levels of SP-B, which is secreted from fetal lung to amniotic fluid. Glycosylated proSP-B/131Thr was secreted from transfected cells at a lower rate than nonglycosylated proSP-B/131Ile. Expression levels of the mRNA variants were equal. Secretion of the glycosylated variant was thus delayed in vitro by a posttranscriptional mechanism. CONCLUSION These data support the hypothesis that proSP-B glycosylation due to Ile131Thr variation may have a causal role in genetic susceptibility to acute respiratory distress.
Collapse
|
18
|
Jo HS. Association between Respiratory Disorders and Candidate Genes in Korean Newborn Infants. NEONATAL MEDICINE 2013. [DOI: 10.5385/nm.2013.20.3.311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Affiliation(s)
- Heui Seung Jo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| |
Collapse
|
19
|
Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs. PLoS One 2012; 7:e32436. [PMID: 22384248 PMCID: PMC3285686 DOI: 10.1371/journal.pone.0032436] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage.
Collapse
|
20
|
Pulmonary Collectins in Diagnosis and Prevention of Lung Diseases. ANIMAL LECTINS: FORM, FUNCTION AND CLINICAL APPLICATIONS 2012. [PMCID: PMC7121960 DOI: 10.1007/978-3-7091-1065-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary surfactant is a complex mixture of lipids and proteins, and is synthesized and secreted by alveolar type II epithelial cells and bronchiolar Clara cells. It acts to keep alveoli from collapsing during the expiratory phase of the respiratory cycle. After its secretion, lung surfactant forms a lattice structure on the alveolar surface, known as tubular myelin. Surfactant proteins (SP)-A, B, C and D make up to 10% of the total surfactant. SP-B and SPC are relatively small hydrophobic proteins, and are involved in the reduction of surface-tension at the air-liquid interface. SP-A and SP-D, on the other hand, are large oligomeric, hydrophilic proteins that belong to the collagenous Ca2+-dependent C-type lectin family (known as “Collectins”), and play an important role in host defense and in the recycling and transport of lung surfactant (Awasthi 2010) (Fig. 43.1). In particular, there is increasing evidence that surfactant-associated proteins A and -D (SP-A and SP-D, respectively) contribute to the host defense against inhaled microorganisms (see 10.1007/978-3-7091-1065_24 and 10.1007/978-3-7091-1065_25). Based on their ability to recognize pathogens and to regulate the host defense, SP-A and SP-D have been recently categorized as “Secretory Pathogen Recognition Receptors”. While SP-A and SP-D were first identified in the lung; the expression of these proteins has also been observed at other mucosal surfaces, such as lacrimal glands, gastrointestinal mucosa, genitourinary epithelium and periodontal surfaces. SP-A is the most prominent among four proteins in the pulmonary surfactant-system. The expression of SP-A is complexly regulated on the transcriptional and the chromosomal level. SP-A is a major player in the pulmonary cytokine-network and moreover has been described to act in the pulmonary host defense. This chapter gives an overview on the understanding of role of SP-A and SP-D in for human pulmonary disorders and points out the importance for pathology-orientated research to further elucidate the role of these molecules in adult lung diseases. As an outlook, it will become an issue of pulmonary pathology which might provide promising perspectives for applications in research, diagnosis and therapy (Awasthi 2010).
Collapse
|
21
|
Silveyra P, Floros J. Genetic variant associations of human SP-A and SP-D with acute and chronic lung injury. Front Biosci (Landmark Ed) 2012; 17:407-29. [PMID: 22201752 DOI: 10.2741/3935] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pulmonary surfactant, a lipoprotein complex, maintains alveolar integrity and plays an important role in lung host defense, and control of inflammation. Altered inflammatory processes and surfactant dysfunction are well described events that occur in patients with acute or chronic lung disease that can develop secondary to a variety of insults. Genetic variants of surfactant proteins, including single nucleotide polymorphisms, haplotypes, and other genetic variations have been associated with acute and chronic lung disease throughout life in several populations and study groups. The hydrophilic surfactant proteins SP-A and SP-D, also known as collectins, in addition to their surfactant-related functions, are important innate immunity molecules as these, among others, exhibit the ability to bind and enhance clearance of a wide range of pathogens and allergens. This review focuses on published association studies of human surfactant proteins A and D genetic polymorphisms with respiratory, and non-respiratory diseases in adults, children, and newborns. The potential role of genetic variations in pulmonary disease or pathogenesis is discussed following an evaluation, and comparison of the available literature.
Collapse
Affiliation(s)
- Patricia Silveyra
- Center for Host Defense, Inflammation, and Lung Disease Research, Department of Pediatrics, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | | |
Collapse
|
22
|
The influence of genetic variation in surfactant protein B on severe lung injury in African American children. Crit Care Med 2011; 39:1138-44. [PMID: 21283003 DOI: 10.1097/ccm.0b013e31820a9416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether genetic variations in the gene coding for surfactant protein B are associated with lung injury in African American children with community-acquired pneumonia. DESIGN A prospective cohort genetic association study of lung injury in children with community-acquired pneumonia. SETTING Two major tertiary care children's hospitals. SUBJECTS African American children with community-acquired pneumonia (n = 395) either evaluated in the emergency department or admitted to the hospital. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Three hundred ninety-five African American children (14 days to 18 yrs of age) with community-acquired pneumonia were enrolled. Thirty-seven patients required mechanical ventilation and 26 of these were diagnosed with acute lung injury or acute respiratory distress syndrome. Genotyping was performed on seven linkage disequilibrium-tag single nucleotide polymorphisms in the surfactant protein B gene. Univariate analysis demonstrated two linkage disequilibrium-tag single nucleotide polymorphisms, rs1130866 (also known as SP-B + 1580 C/T) and rs3024793, were associated with the need for mechanical ventilation in African American children (p = .016 and p = .030, respectively). Multivariable analysis indicated that both of these single nucleotide polymorphisms are independently associated with need for mechanical ventilation (p = .040 and p = .012, respectively) as was rs7316 when its interaction with age was considered (p = .015). Multivariable analysis examining acute lung injury demonstrated a significant association of rs7316 with acute lung injury (p = .031). Haplotype analysis was also performed. Two haplotypes, GTGCGCG and ATATAAG, were associated with need for mechanical ventilation using either univariate (p = .041 and p = .043, respectively) or multivariable analysis (odds ratios of 2.62, p = .048, and 3.12, p = .033, respectively). CONCLUSIONS Genetic variations in the gene coding for surfactant protein B are associated with more severe lung injury as indicated by the association of specific single nucleotide polymorphism genotypes and haplotypes with the need for mechanical ventilation in African American children with community-acquired pneumonia.
Collapse
|
23
|
Yimenicioglu S, Oztuzcu S, Sivasli E, Igci M, Igci YZ, Demiryürek S, Ozkara E, Gogebakan B, Arslan A, Coskun MY. ACE gene polymorphism in premature neonates with respiratory distress syndrome. Genet Test Mol Biomarkers 2011; 15:867-70. [PMID: 21749216 DOI: 10.1089/gtmb.2011.0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the relationship between angiotensin-converting enzyme gene insertion/deletion (I/D) polymorphism and respiratory distress syndrome (RDS) in premature neonates. The patient group consisted of 101 premature neonates born before 37 weeks of gestation and diagnosed as RDS. The control group consisted of 100 premature neonates born before 37 weeks of gestation, but was not diagnosed as RDS. Genomic DNA from patients and controls was analyzed by polymerase chain reaction. D/D genotype was significantly higher in patient group (60.4% patients vs. 37.0% controls, p<0.05), whereas in the controls I/D genotype was markedly higher (33.7% patients vs. 61.0% controls, p<0.05). However, no marked change was observed with I/I genotype (5.9% patients vs. 2.0% controls). A significant increase of D alleles was observed in patients, whereas I allele was higher in controls (p<0.05). These results demonstrated the existence of higher frequency of the D/D genotype and D allele in premature neonates with RDS. These data may suggest that carriers of the D/D genotype and D allele are at increased risk of RDS development in premature neonates.
Collapse
|
24
|
Neptune ER. Chronic Obstructive Pulmonary Disease and Bronchopulmonary Dysplasia: Common Mechanisms But Distinct Manifestations? PEDIATRIC ALLERGY IMMUNOLOGY AND PULMONOLOGY 2011; 24:119-125. [DOI: 10.1089/ped.2011.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Enid R. Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Relationship between surfactant protein A polymorphisms and allergic rhinitis in a Chinese Han population. Mol Biol Rep 2010; 38:1475-82. [DOI: 10.1007/s11033-010-0254-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 09/02/2010] [Indexed: 12/29/2022]
|
26
|
Levit O, Jiang Y, Bizzarro MJ, Hussain N, Buhimschi CS, Gruen JR, Zhang H, Bhandari V. The genetic susceptibility to respiratory distress syndrome. Pediatr Res 2009; 66:693-7. [PMID: 19687775 PMCID: PMC2796284 DOI: 10.1203/pdr.0b013e3181bbce86] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies to identify a genetic component to RDS have shown conflicting results. Our objectives were to evaluate and quantify the genetic contribution to RDS using data that comprehensively includes known environmental factors in a large sample of premature twins. Data from a retrospective chart review of twins born at < or =32 wk GA were obtained from two neonatal units. Mixed effects logistic regression (MELR) analysis was used to assess the influence of several independent covariates on RDS. A zygosity analysis, including the effects of additive genetic, common environmental and residual effects (ACE) factors, was performed to estimate the genetic contribution. Results reveal that the 332 twin pairs had a mean GA of 29.5 wk and birth weight (BW) of 1372 g. An MELR identified significant nongenetic covariates as male gender (p = 0.04), BW (p < 0.001), 5-min Apgar score (p < 0.001), and treating institution (p = 0.001) as significant predictors for RDS. The ACE model was used to estimate the genetic susceptibility to RDS by adjusting for the above factors. We found 49.7% (p = 0.04) of the variance in liability to RDS was the result of genetic factors alone. We conclude that there is a significant genetic susceptibility to RDS in preterm infants.
Collapse
Affiliation(s)
- Orly Levit
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Although a minor constituent by weight, surfactant protein B (SP-B) plays a major role in surfactant function. It is the unique structure of SP-B that promotes permeabilization, cross-linking, mixing, and fusion of phospholipids, facilitating the proper structure and function of pulmonary surfactant as well as contributing to the formation of lamellar bodies. SP-B production is a complex process within alveolar type 2 cells and is under hormonal and developmental control. Understanding the posttranslational events in the maturation of SP-B may provide new insight into the process of lamellar body formation and into the pathophysiology of pulmonary disorders associated with surfactant abnormalities.
Collapse
|
28
|
Pathologies respiratoires associées à des anomalies héréditaires du métabolisme du surfactant. Arch Pediatr 2008; 15:1560-7. [DOI: 10.1016/j.arcped.2008.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 03/02/2008] [Accepted: 07/01/2008] [Indexed: 12/14/2022]
|
29
|
Cogo PE, Simonato M, Mariatoffolo G, Stefanutti G, Chierici M, Cobelli C, Ori C, Carnielli VP. Dexamethasone therapy in preterm infants developing bronchopulmonary dysplasia: effect on pulmonary surfactant disaturated-phosphatidylcholine kinetics. Pediatr Res 2008; 63:433-7. [PMID: 18356753 DOI: 10.1203/pdr.0b013e3181659759] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The role of corticosteroid in severe bronchopulmonary dyplasia (BPD) is still debated. Scanty data are available on the corticosteroids effect on surfactant metabolism. Our objective was to compare surfactant kinetics in preterm infants with developing BPD, before and after dexamethasone (DEXA) treatment. Twenty-eight studies were performed in 14 preterm infants (birth weight 786 +/- 192 g, gestational age 26 +/- 1 wk) on high ventilatory setting, before (age 22 +/- 11 d) and after (age 33 +/- 11 d) DEXA. C-labeled dipalmitoyl-phosphatidylcholine (DPPC) was administered endotrachelly to trace pulmonary surfactant. Surfactant disaturated-phosphatidylcholine (DSPC) kinetics and pools were calculated from DSPC C-enrichment curves of serial tracheal aspirates and bi-compartmental analysis. Total protein and myeloperoxidase (MPO) activity in tracheal aspirates were also measured and expressed per ml of Epithelial Lining Fluid (ELF). After DEXA, DSPC alveolar pool increased significantly from 8.2 +/- 7.6 to 10.6 +/- 11.3 mg/kg (p = 0.039), total proteins and MPO were reduced from 8.8 +/- 8.6 to 3.1 +/- 2.1 mg/ml ELF (p = 0.046) and from 1822 +/- 1224 to 1261 +/- 987 mU/mlELF (p = 0.028) respectively. In conclusion, DEXA treatment in mechanically ventilated preterm infants with severe respiratory failure and at high risk of developing BPD, significantly reduced inflammatory markers and increased alveolar surfactant DSPC pool.
Collapse
Affiliation(s)
- Paola E Cogo
- Departments of Pediatrics, University of Padova, 35128 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The main aim of identifying gene-environment interactions is to provide insight into mechanisms of disease development and to identify patients with an inherent vulnerability to certain conditions. This in turn may allow patients to be targeted with individualised treatment based on the knowledge of their inborn susceptibility to specific conditions. This review describes the possible effects of common genetic variation on outcome in various conditions affecting the neonate. It focuses predominantly on studies of positive association rather than non-association to illustrate this potential influence and to highlight the potential for further study and intervention. The shortcomings of published association studies and the place of such studies in future research are also discussed.
Collapse
MESH Headings
- Chronic Disease
- DNA/genetics
- Developmental Disabilities/genetics
- Enterocolitis, Necrotizing/genetics
- Gene Expression/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/immunology
- Infant, Premature/physiology
- Infant, Small for Gestational Age/physiology
- Lung Diseases/genetics
- Polymorphism, Genetic/genetics
- Renal Insufficiency/genetics
- Research Design
- Respiratory Distress Syndrome, Newborn/genetics
- Sepsis/genetics
Collapse
Affiliation(s)
- David Harding
- University of Bristol, D Level, St Michael's Hospital, Bristol BS2 8EG, UK.
| |
Collapse
|
31
|
Raleigh SM, Davies BM, Cleal D, Ribbans WJ. No association between coding polymorphism within Exon 4 of the human surfactant protein B gene and pulmonary function in healthy men. J Physiol Sci 2007; 57:199-202. [PMID: 17540055 DOI: 10.2170/physiolsci.sc002607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/29/2007] [Indexed: 11/05/2022]
Abstract
The coding polymorphism (rs1130866) within the surfactant protein B gene is known to associate with certain respiratory abnormalities. We investigated, using spirometry and fluorescence-based PCR, whether this variant influenced pulmonary function in healthy, nonsmoking men. We found no association of pulmonary function with genotype at the rs1130866 locus.
Collapse
Affiliation(s)
- Stuart M Raleigh
- The Biomedical Research Group, Division of Health and Life Sciences, The University of Northampton, UK.
| | | | | | | |
Collapse
|
32
|
Pettigrew MM, Gent JF, Zhu Y, Triche EW, Belanger KD, Holford TR, Bracken MB, Leaderer BP. Respiratory symptoms among infants at risk for asthma: association with surfactant protein A haplotypes. BMC MEDICAL GENETICS 2007; 8:15. [PMID: 17407567 PMCID: PMC1852548 DOI: 10.1186/1471-2350-8-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 04/02/2007] [Indexed: 12/03/2022]
Abstract
Background We examined the association between single nucleotide polymorphisms (SNPs) in loci encoding surfactant protein A (SFTPA) and risk of wheeze and persistent cough during the first year of life among a cohort of infants at risk for developing asthma. Methods Between September 1996 and December 1998, mothers of newborn infants were invited to participate if they had an older child with clinician-diagnosed asthma. Each mother was given a standardized questionnaire within 4 months of her infant's birth. Infant respiratory symptoms were collected during quarterly telephone interviews at 6, 9 and 12 months of age. Due to the association of SFTPA polymorphisms and race/ethnicity, analyses were restricted to 221 white infants for whom whole blood and respiratory data were available. Ordered logistic regression models were used to examine the association between respiratory symptom frequency and SFTPA haplotypes. Results The 6A allele haplotype of SFTPA1, with an estimated frequency of 6% among our study infants, was associated with an increased risk of persistent cough (OR 3.69, 95% CI 1.71, 7.98) and wheeze (OR 4.72, 95% CI 2.20, 10.11). The 6A/1A haplotype of SFTPA, found among approximately 5% of the infants, was associated with an increased risk of persistent cough (OR 3.20, 95% CI 1.39, 7.36) and wheeze (OR 3.25, 95% CI 1.43, 7.37). Conclusion Polymorphisms within SFTPA loci may be associated with wheeze and persistent cough in white infants at risk for asthma. These associations require replication and exploration in other ethnic/racial groups.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Janneane F Gent
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Yong Zhu
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth W Triche
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen D Belanger
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Theodore R Holford
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Michael B Bracken
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| | - Brian P Leaderer
- Yale Center for Perinatal, Pediatric and Environmental Epidemiology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Lyra PPR, Diniz EMDA. The importance of surfactant on the development of neonatal pulmonary diseases. Clinics (Sao Paulo) 2007; 62:181-90. [PMID: 17505704 DOI: 10.1590/s1807-59322007000200014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2006] [Accepted: 11/28/2006] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant is a substance composed of a lipoprotein complex that is essential to pulmonary function. Pulmonary surfactant proteins play an important role in the structure, function, and metabolism of surfactant; 4 specific surfactant proteins have been identified: surfactant proteins-A, surfactant proteins-B, surfactant proteins-C, and surfactant proteins-D. Clinical, epidemiological, and biochemical evidence suggests that the etiology of respiratory distress syndrome is multifactorial with a significant genetic component. There are reports about polymorphisms and mutations on the surfactant protein genes, especially surfactant proteins-B, that may be associated with respiratory distress syndrome, acute respiratory distress syndrome, and congenital alveolar proteinosis. Individual differences regarding respiratory distress syndrome and acute respiratory distress syndrome as well as patient response to therapy might reflect phenotypic diversity due to genetic variation, in part. The study of the differences between the allelic variants of the surfactant protein genes can contribute to the understanding of individual susceptibility to the development of several pulmonary diseases. The identification of the polymorphisms and mutations that are indeed important for the pathogenesis of the diseases related to surfactant protein dysfunction, leading to the possibility of genotyping individuals at increased risk, constitutes a new research field. In the future, findings in these endeavors may enable more effective genetic counseling as well as the development of prophylactic and therapeutic strategies that would provide a real impact on the management of newborns with respiratory distress syndrome and other pulmonary diseases.
Collapse
|
34
|
Sorensen GL, Husby S, Holmskov U. Surfactant protein A and surfactant protein D variation in pulmonary disease. Immunobiology 2007; 212:381-416. [PMID: 17544823 DOI: 10.1016/j.imbio.2007.01.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 01/02/2007] [Indexed: 12/17/2022]
Abstract
Surfactant proteins A (SP-A) and D (SP-D) have been implicated in pulmonary innate immunity. The proteins are host defense lectins, belonging to the collectin family which also includes mannan-binding lectin (MBL). SP-A and SP-D are pattern-recognition molecules with the lectin domains binding preferentially to sugars on a broad spectrum of pathogen surfaces and thereby facilitating immune functions including viral neutralization, clearance of bacteria, fungi and apoptotic and necrotic cells, modulation of allergic reactions, and resolution of inflammation. SP-A and SP-D can interact with receptor molecules present on immune cells leading to enhanced microbial clearance and modulation of inflammation. SP-A and SP-D also modulate the functions of cells of the adaptive immune system including dendritic cells and T cells. Studies on SP-A and SP-D polymorphisms and protein levels in bronchoalveolar lavage and blood have indicated associations with a multitude of pulmonary inflammatory diseases. In addition, accumulating evidence in mouse models of infection and inflammation indicates that recombinant forms of the surfactant proteins are biologically active in vivo and may have therapeutic potential in controlling pulmonary inflammatory disease. The presence of the surfactant collectins, especially SP-D, in non-pulmonary tissues, such as the gastrointestinal tract and genital organs, suggest additional actions located to other mucosal surfaces. The aim of this review is to summarize studies on genetic polymorphisms, structural variants, and serum levels of human SP-A and SP-D and their associations with human pulmonary disease.
Collapse
|
35
|
Hallman M, Marttila R, Pertile R, Ojaniemi M, Haataja R. Genes and environment in common neonatal lung disease. Neonatology 2007; 91:298-302. [PMID: 17575473 DOI: 10.1159/000101345] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD) are common, serious lung diseases in preterm infants. Polymorphism of the genes involved in basic lung function and alveolar stability, lung differentiation and pulmonary host defense may influence the risk. Natural selection has refined the genes responsible for cardiopulmonary adaptation and resistance against pneumonia in term and near-term infants. Before the era of antibiotics, however, virtually all very preterm infants died of asphyxia, respiratory failure or infections. Today, the degree of prematurity plays a dominant role in susceptibility to serious lung disease. In addition, genetic polymorphism and constitution modulate the risk of RDS and BPD that have different, partly overlapping predisposition. According to twin studies, the genetic impact on the risk of RDS and BPD among preterm and very preterm infants is 35-65%. Individual disease genes generally have low penetrance. Large-scale genetic studies are required as part of neonatal and perinatal research in order to learn about the risk factors and to investigate pharmacogenetics. The aim in the future is to individualize therapies.
Collapse
Affiliation(s)
- Mikko Hallman
- Department of Pediatrics, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | | | | | | | |
Collapse
|
36
|
Abstract
Here, we describe the approach of defining the genetic contribution to disease and discuss the polymorphisms of some genes that are associated with respiratory disease. The common allelic variants of SP-A1, SP-A2, SP-B, SP-C, and SP-D genes are associated with respiratory distress syndrome (RDS), bronchopulmonary dysplasia (BPD), or respiratory syncytial virus (RSV) bronchiolitis. The main SP-A haplotype, interactively with SP-B Ile131Thr polymorphism and with constitutional and environmental factors, influences the risk of RDS. The polymorphisms of SP-A2 and SP-D are associated with the risk of severe RSV. The polymorphism may turn out to be important in susceptibility to influenza virus. The SP-B intron 4 deletion variant is the risk factor of BPD. Understanding the molecular mechanisms behind the hereditary risk may lead to new focused treatment strategies.
Collapse
Affiliation(s)
- Mikko Hallman
- Department of Pediatrics and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
37
|
Abstract
Over the last 15 years, neonatal morbidity and mortality has changed little for very low birth weight babies despite significant technological and therapeutic advances. Bronchopulmonary dysplasia (BPD) continues to be a major problem despite antenatal steroid use, surfactant replacement therapy, gentle noninvasive ventilation techniques, permissive hypercarbia, and judicious use of oxygen. Current evidence supports multiple contributing factors. Prematurity is the cardinal factor; others include pulmonary baro/volutrauma, hyperoxia, and inflammation. BPD is an end product of pulmonary inflammatory response and lung repair with impaired alveolarization and vascularization in response to lung injury. These sequences involve multiple morphoregulatory molecules, which have a range of activities largely determined by genetic variability. A clearer understanding of genetic susceptibility for BPD has recently emerged. Twin studies have shown that the BPD status of one twin, even after correcting for contributing factors, is a highly significant predictor of BPD in the second twin. After controlling for covariates, genetic factors account for 53% (P = 0.004, 95% CI = 16%-89%) of the variance in liability for BPD. Incremental improvements will likely depend on identification of these genetic components for targeting specific therapies.
Collapse
Affiliation(s)
- Vineet Bhandari
- Division of Perinatal Medicine and Yale Child Health Research Center, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
38
|
Cotten CM, Ginsburg GS, Goldberg RN, Speer MC. Genomic analyses: a neonatology perspective. J Pediatr 2006; 148:720-6. [PMID: 16769375 DOI: 10.1016/j.jpeds.2006.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 12/01/2005] [Accepted: 01/04/2006] [Indexed: 02/07/2023]
Affiliation(s)
- C Michael Cotten
- From the Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
39
|
Krueger M, Puthothu B, Gropp E, Heinze J, Braun S, Heinzmann A. Amino acid variants in Surfactant protein D are not associated with bronchial asthma. Pediatr Allergy Immunol 2006; 17:77-81. [PMID: 16426259 DOI: 10.1111/j.1399-3038.2005.00353.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Surfactant protein D (SFTPD) belongs to the family of collectins and is part of the innate immune system. Thereby it plays an important role in the defense of various pathogens. Besides it is involved in the development of acute and chronic inflammation of the lung. Levels of SFTPD are elevated in serum and alveolar lavage of asthmatic patients. As SFTPD binds and neutralizes common allergens like house dust mites it is especially important in allergic asthma. Three common amino acid variants have been identified in SFTPD and association of the first variant has been described to severe infection with respiratory syncytial virus. Furthermore the functional impact of all three amino acid variants has been demonstrated. Due to its function SFTPD represents an ideal candidate gene for bronchial asthma and we were interested whether the polymorphisms were in association with asthma in children. The three polymorphisms leading to amino acid exchanges (Met11Thr, Ala160Thr, and Ser270 Thr) were typed by restriction fragment length polymorphisms in 322 asthmatic children and 270 controls. Association analyses were performed by Armitage's trend test. In addition haplotypes were calculated by FASTEHPLUS and FAMHAP. None of the polymorphisms was in association with bronchial asthma. Haplotype analyses revealed four major haplotypes all of which were evenly distributed between the populations. We conclude from our data that functional amino acid variants in SFTPD do not play a major role in the genetic pre-disposition to bronchial asthma in children.
Collapse
Affiliation(s)
- Marcus Krueger
- University Children's Hospital, University of Freiburg, Mathildenstrasse 1, D-79106 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Clark H, Clark LS. The genetics of neonatal respiratory disease. Semin Fetal Neonatal Med 2005; 10:271-82. [PMID: 15927881 DOI: 10.1016/j.siny.2005.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2005] [Indexed: 11/23/2022]
Abstract
This chapter reviews some of the genetic predispositions that may govern the presence or severity of neonatal respiratory disorders. Respiratory disease is common in the neonatal period, and genetic factors have been implicated in some rare and common respiratory diseases. Among the most common respiratory diseases are respiratory distress syndrome of the newborn and transient tachypnoea of the newborn, whereas less common ones are cystic fibrosis, congenital alveolar proteinosis and primary ciliary dyskinesias. A common complication of neonatal respiratory distress syndrome is bronchopulmonary dysplasia or neonatal chronic lung disease. This review examines the evidence linking known genetic contributions to these diseases. The value and success of neonatal screening for cystic fibrosis is reviewed, and the recently characterised contribution of polymorphisms and mutations in the surfactant protein genes to neonatal respiratory disease is evaluated. The evidence that known variability in the expression of surfactant protein genes may contribute to the risk of development of neonatal chronic lung disease or bronchopulmonary dysplasia is examined.
Collapse
Affiliation(s)
- Howard Clark
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Headington, Oxford OX1 3QU, UK.
| | | |
Collapse
|
41
|
Hartl D, Griese M. Interstitial lung disease in children -- genetic background and associated phenotypes. Respir Res 2005; 6:32. [PMID: 15819986 PMCID: PMC1090616 DOI: 10.1186/1465-9921-6-32] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2005] [Accepted: 04/08/2005] [Indexed: 11/10/2022] Open
Abstract
Interstitial lung disease in children represents a group of rare chronic respiratory disorders. There is growing evidence that mutations in the surfactant protein C gene play a role in the pathogenesis of certain forms of pediatric interstitial lung disease. Recently, mutations in the ABCA3 transporter were found as an underlying cause of fatal respiratory failure in neonates without surfactant protein B deficiency. Especially in familiar cases or in children of consanguineous parents, genetic diagnosis provides an useful tool to identify the underlying etiology of interstitial lung disease. The aim of this review is to summarize and to describe in detail the clinical features of hereditary interstitial lung disease in children. The knowledge of gene variants and associated phenotypes is crucial to identify relevant patients in clinical practice.
Collapse
Affiliation(s)
- Dominik Hartl
- Pediatric Pneumology, Childrens' hospital of the Ludwig-Maximilians-University, Munich, Germany
| | - Matthias Griese
- Pediatric Pneumology, Childrens' hospital of the Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
42
|
Cameron HS, Somaschini M, Carrera P, Hamvas A, Whitsett JA, Wert SE, Deutsch G, Nogee LM. A common mutation in the surfactant protein C gene associated with lung disease. J Pediatr 2005; 146:370-5. [PMID: 15756222 DOI: 10.1016/j.jpeds.2004.10.028] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To determine the contribution of the surfactant protein C (SP-C) I73T mutation to lung disease. STUDY DESIGN Genomic DNA was obtained from 116 children with interstitial lung disease (ILD) or chronic lung disease of unclear cause and from 166 control subjects and was screened for the I73T mutation using an allele-specific polymerase chain reaction assay. RESULTS The I73T mutation was found on 7 of 232 SP-C alleles from 7 unrelated children with ILD but was not found on 332 control SP-C alleles ( P < .01, Fisher exact test). The I73T mutation segregated with lung disease in one kindred with familial ILD. The I73T mutation was found in an asymptomatic parent from two different families with affected children consistent with variable penetrance, but it was not found in either asymptomatic parent of two other unrelated affected children consistent with a de novo mutation. Analysis of single nucleotide polymorphisms indicated diverse genetic backgrounds of the I73T alleles. Immunohistochemical analysis of lung tissue from an infant with the I73T mutation demonstrated normal staining patterns for proSP-B, SP-B, and proSP-C. CONCLUSIONS These findings support the hypothesis that the I73T mutation predisposes to or causes lung disease.
Collapse
Affiliation(s)
- H Scott Cameron
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Loyola University of Chicago Stritch School of Medicine and Hines Veterans Affairs Hospital, Hines, IL 60141, USA.
| |
Collapse
|