1
|
Russo RC, Ryffel B. The Chemokine System as a Key Regulator of Pulmonary Fibrosis: Converging Pathways in Human Idiopathic Pulmonary Fibrosis (IPF) and the Bleomycin-Induced Lung Fibrosis Model in Mice. Cells 2024; 13:2058. [PMID: 39768150 PMCID: PMC11674266 DOI: 10.3390/cells13242058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and lethal interstitial lung disease (ILD) of unknown origin, characterized by limited treatment efficacy and a fibroproliferative nature. It is marked by excessive extracellular matrix deposition in the pulmonary parenchyma, leading to progressive lung volume decline and impaired gas exchange. The chemokine system, a network of proteins involved in cellular communication with diverse biological functions, plays a crucial role in various respiratory diseases. Chemokine receptors trigger the activation, proliferation, and migration of lung-resident cells, including pneumocytes, endothelial cells, alveolar macrophages, and fibroblasts. Around 50 chemokines can potentially interact with 20 receptors, expressed by both leukocytes and non-leukocytes such as tissue parenchyma cells, contributing to processes such as leukocyte mobilization from the bone marrow, recirculation through lymphoid organs, and tissue influx during inflammation or immune response. This narrative review explores the complexity of the chemokine system in the context of IPF and the bleomycin-induced lung fibrosis mouse model. The goal is to identify specific chemokines and receptors as potential therapeutic targets. Recent progress in understanding the role of the chemokine system during IPF, using experimental models and molecular diagnosis, underscores the complex nature of this system in the context of the disease. Despite advances in experimental models and molecular diagnostics, discovering an effective therapy for IPF remains a significant challenge in both medicine and pharmacology. This work delves into microarray results from lung samples of IPF patients and murine samples at different stages of bleomycin-induced pulmonary fibrosis. By discussing common pathways identified in both IPF and the experimental model, we aim to shed light on potential targets for therapeutic intervention. Dysregulation caused by abnormal chemokine levels observed in IPF lungs may activate multiple targets, suggesting that chemokine signaling plays a central role in maintaining or perpetuating lung fibrogenesis. The highlighted chemokine axes (CCL8-CCR2, CCL19/CCL21-CCR7, CXCL9-CXCR3, CCL3/CCL4/CCL5-CCR5, and CCL20-CCR6) present promising opportunities for advancing IPF treatment research and uncovering new pharmacological targets within the chemokine system.
Collapse
Affiliation(s)
- Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355 Centre National de la Recherche Scientifique (CNRS), University of Orleans, 45071 Orleans, France
| |
Collapse
|
2
|
Cheng T, Mao M, Liu Y, Xie L, Shi F, Liu H, Li X. The potential therapeutic effect of human umbilical cord mesenchymal stem cell-derived exosomes in bronchopulmonary dysplasia. Life Sci 2024; 357:123047. [PMID: 39260518 DOI: 10.1016/j.lfs.2024.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease of preterm infants, with its incidence rising due to improved survival rates of these infants. BPD results from a combination of prenatal and postnatal factors, such as mechanical ventilation, oxygen toxicity, and infections, all of which significantly impact the prognosis and growth of affected infants. Current treatment options for BPD are largely supportive and do not address the underlying pathology. Exosomes are cell-derived bilayer-enclosed membrane structures enclosing proteins, lipids, RNAs, growth factors, cytokines and metabolites. They have become recognized as crucial regulators of intercellular communication in various physiological and pathological processes. Previous studies have revealed the therapeutic potential of human umbilical cord mesenchymal stem cells-derived exosomes (HUCMSCs-Exos) in promoting tissue repair and regeneration. Therefore, HUCMSCs-Exos maybe a promising and effective therapeutic modality for BPD. In this review, we firstly provide a comprehensive overview of BPD, including its etiology and the mechanisms of lung injury. Then we detail the isolation, characterization, and contents of HUCMSCs-Exos, and discuss their potential mechanisms of HUCMSCs-Exos in BPD treatment. Additionally, we summarize current clinical trials and discuss the challenges in translating these findings from bench to bedside. This review aims to lay the groundwork for future clinical applications of HUCMSCs-Exos in treating BPD.
Collapse
Affiliation(s)
- Tianyu Cheng
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yang Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang Xie
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Lopes GAO, Lima BHF, Freitas CS, Peixoto AC, Soriani FM, Cassali GD, Ryffel B, Teixeira MM, Machado FS, Russo RC. Opposite effects of systemic and local conditional CD11c+ myeloid cell depletion during bleomycin-induced inflammation and fibrosis in mice. Immun Inflamm Dis 2024; 12:e70042. [PMID: 39582275 PMCID: PMC11586507 DOI: 10.1002/iid3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 11/26/2024] Open
Abstract
RATIONALE Elevated levels of CD11c+ myeloid cells are observed in various pulmonary disorders, including Idiopathic Pulmonary Fibrosis (IPF). Dendritic cells (DCs) and macrophages (MΦ) are critical antigen-presenting cells (APCs) that direct adaptive immunity. However, the role of CD11c+ myeloid cells in lung extracellular matrix (ECM) accumulation and pulmonary fibrosis is poorly understood. OBJECTIVE We aimed to investigate the impact of depleting CD11c+ myeloid cells, including DCs and macrophages, during bleomycin-induced pulmonary fibrosis in mice. METHODS We used a diphtheria toxin (DTx) receptor (DTR) transgenic mouse model (CD11c-DTR-Tg) to deplete CD11c+ myeloid cells through two methods: Systemic Depletion (SD) via intraperitoneal injection (i.p.) and local depletion (LD) via intranasal instillation (i.n.). We then assessed the effects of CD11c+ cell depletion during bleomycin-induced lung inflammation and fibrosis. RESULTS Fourteen days after bleomycin instillation, there was a progressive accumulation of myeloid cells, specifically F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ, preceding mortality and pulmonary fibrosis. Systemic depletion of CD11c+ DCs and MΦ via i.p. DTx administration in CD11c-DTR-Tg mice protected against bleomycin-induced mortality and pulmonary fibrosis compared to wild-type (WT) mice. Systemic depletion reduced myeloid cells, airway inflammation (total leukocytes, neutrophils, and CD4+ lymphocytes in bronchoalveolar lavage (BAL), inflammatory and fibrogenic mediators, and fibrosis-related mRNAs (Collagen-1α1 and α-SMA). Increased anti-inflammatory cytokine IL-10 and CXCL9 levels were observed, resulting in lower lung hydroxyproline content and Ashcroft fibrosis score. Conversely, local depletion of CD11c+ cells increased mortality by acute leukocyte influx (predominantly neutrophils, DCs, and MΦ in BAL) correlated to IL-1β, with lung hyper-inflammation and early fibrosis development. CONCLUSION Systemic depletion of CD11c+ cells confers protection against inflammation and fibrosis induced by Bleomycin, underscoring the significance of myeloid cells expressing F4/80-MHCII+CD11c+ DCs and F4/80 + MHCII+CD11c+ MΦ orchestrating the inflammatory milieu within the lungs, potentially as a source of cytokines sustaining pulmonary chronic inflammation leading to progressive fibrosis and mortality.
Collapse
Affiliation(s)
- Gabriel Augusto Oliveira Lopes
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Braulio Henrique Freire Lima
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Andiara Cardoso Peixoto
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Frederico Marianetti Soriani
- Department of Genetics, Ecology, and Evolution, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and NeurogeneticsUniversity of Orleans, CNRS UMR7355OrleansFrance
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Fabiana Simão Machado
- Laboratory of Immunoregulation of Infectious Diseases, Department of Biochemistry and Immunology, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological SciencesUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
| |
Collapse
|
4
|
Carter H, Costa RM, Adams TS, Gilchrist T, Emch CE, Bame M, Oldham JM, Linderholm AL, Noth I, Kaminski N, Moore BB, Gurczynski SJ. Dendritic Cell - Fibroblast Crosstalk via TLR9 and AHR Signaling Drives Lung Fibrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584457. [PMID: 38559175 PMCID: PMC10980010 DOI: 10.1101/2024.03.15.584457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.
Collapse
|
5
|
Tiwari P, Verma S, Washimkar KR, Nilakanth Mugale M. Immune cells crosstalk Pathways, and metabolic alterations in Idiopathic pulmonary fibrosis. Int Immunopharmacol 2024; 135:112269. [PMID: 38781610 DOI: 10.1016/j.intimp.2024.112269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) presents a challenging progression characterized by lung tissue scarring and abnormal extracellular matrix deposition. This review examines the influence of immune responses, emphasizing their complex role in initiating and perpetuating fibrosis. It highlights how metabolic pathways modulate immune cell function during IPF. Immune cell modulation holds promise in managing pulmonary fibrosis (PF). Inhibiting neutrophil recruitment and monitoring mast cell levels offer insights into PF progression. Low-dose IL-2 therapy and regulation of fibroblast recruitment present potential therapeutic avenues, while the role of innate lymphoid cells (ILC2s) in allergic lung inflammation sheds light on disease mechanisms. The review focuses on metabolic reprogramming's role in shaping immune cell function during IPF progression. While some immune cells use glycolysis for pro-inflammatory responses, others favor fatty acid oxidation for regulatory functions. Targeting specialized pro-resolving lipid mediators (SPMs) presents significant potential for managing fibrotic disorders. Additionally, it highlights the pivotal role of amino acid metabolism in synthesizing serine and glycine as crucial regulators of collagen production and exploring the interconnectedness of lipid metabolism, mitochondrial dysfunction, and adipokines in driving fibrotic processes. Moreover, the review discusses the impact of metabolic disorders such as obesity and diabetes on lung fibrosis. Advocating for a holistic approach, it emphasizes the importance of considering this interplay between immune cell function and metabolic pathways in developing effective and personalized treatments for IPF.
Collapse
Affiliation(s)
- Purnima Tiwari
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India
| | - Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR- Central Drug Research Institute (CSIR-CDRI), Lucknow-226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
6
|
Jin H, Liu Y, Lei Y, Li G, Huang L, Zhang Z. Hsa_circ_0004214 involved in the epithelial-mesenchymal transition induced by beryllium sulfate through modulating JAK-STAT signaling pathway. Toxicol Res (Camb) 2024; 13:tfae067. [PMID: 38711927 PMCID: PMC11069455 DOI: 10.1093/toxres/tfae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/04/2024] [Accepted: 04/20/2024] [Indexed: 05/08/2024] Open
Abstract
Background Chronic beryllium disease is characterized by granulomas and pulmonary fibrosis. Recent studies have shown that microRNAs (miRNAs) and circular RNAs (circRNAs) play critical roles in the pathogenesis and development of many diseases. However, the role of miRNAs and circRNAs in pulmonary fibrosis induced by beryllium sulfate (BeSO4) has not been elucidated. Methods Previous studies demonstrated hsa-miR-663b was down-regulated in the 150 μmol/L BeSO4-treated 16HBE cells, while hsa_circ_ 0004214 was up-regulated. Here we found epithelial-mesenchymal transition (EMT) involved in pulmonary fibrosis induced by BeSO4 (4, 8, and 12 mg/kg·BW) in SD rats. Results Elevated expression of hsa-miR-663b blocked the EMT progression of 16HBE cells induced by 150 μmol/L BeSO4. Notably, the overexpression of hsa-miR-663b decreased the expression of leukemia inhibitory factor (LIF), which was predicted as a target gene of hsa-miR-663b by bioinformatics tools. Furthermore, elevated miR-663b inhibited the activation of the downstream Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway induced by BeSO4 in 16HBE cells. Previous study suggested that hsa_circ_0004214 had binding sites for hsa-miR-663b. The results indicated hsa_circ_0004214 alleviated the BeSO4-induced EMT via JAK-STAT pathway in 16HBE cells. Conclusions Collectively, the overexpression of hsa-miR-663b and knockdown of hsa_circ_0004214 attenuated the EMT induced by BeSO4 through the inhibition of JAK-STAT signaling pathway. The aberrant expressed hsa-miR-663b and hsa_circ_0004214 stimulated by BeSO4 may exert an important function in the toxic mechanism of beryllium exposure to 16HBE cells, providing the potential therapeutic targets in chronic beryllium disease.
Collapse
Affiliation(s)
- Huiyun Jin
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yanping Liu
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Yuandi Lei
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Guilan Li
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Lian Huang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| | - Zhaohui Zhang
- Department of Preventive Medicine, School of public health, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, HN 421001, China
| |
Collapse
|
7
|
Russo RC, Quesniaux VFJ, Ryffel B. Homeostatic chemokines as putative therapeutic targets in idiopathic pulmonary fibrosis. Trends Immunol 2023; 44:1014-1030. [PMID: 37951789 DOI: 10.1016/j.it.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal chronic interstitial lung disease (ILD) that affects lung mechanical functions and gas exchange. IPF is caused by increased fibroblast activity and collagen deposition that compromise the alveolar-capillary barrier. Identifying an effective therapy for IPF remains a clinical challenge. Chemokines are key proteins in cell communication that have functions in immunity as well as in tissue homeostasis, damage, and repair. Chemokine receptor signaling induces the activation and proliferation of lung-resident cells, including alveolar macrophages (AMs) and fibroblasts. AMs are an important source of chemokines and cytokines during IPF. We highlight the complexity of this system and, based on insights from genetic and transcriptomic studies, propose a new role for homeostatic chemokine imbalance in IPF, with implications for putative therapeutic targets.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| | - Valerie F J Quesniaux
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| | - Bernhard Ryffel
- Experimental and Molecular Immunology and Neurogenetics (INEM), Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7355, University of Orleans, Orleans 45071, France.
| |
Collapse
|
8
|
Xu Y, Lan P, Wang T. The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1984. [PMID: 38004032 PMCID: PMC10672798 DOI: 10.3390/medicina59111984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology with limited treatment options. The role of the immune system in IPF has received increasing attention. Uncontrolled immune responses drive the onset and progression of IPF. This article provides an overview of the role of innate immune cells (including macrophages, neutrophils, mast cells, eosinophils, dendritic cells, nature killer cells, nature kill cells and γδ T cells) and adaptive immune cells (including Th1 cells, Th2 cells, Th9 cells, Th17 cells, Th22 cells, cytotoxic T cells, B lymphocytes and Treg cells) in IPF. In addition, we review the current status of pharmacological treatments for IPF and new developments in immunotherapy. A deeper comprehension of the immune system's function in IPF may contribute to the development of targeted immunomodulatory therapies that can alter the course of the disease.
Collapse
Affiliation(s)
- Yahan Xu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peixiang Lan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China
| | - Tao Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
- The Center for Biomedical Research, National Health Committee (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
9
|
Ujike-Hikichi M, Gon Y, Ooki T, Morisawa T, Mizumura K, Kozu Y, Hiranuma H, Nakagawa Y, Shimizu T, Maruoka S. Anti-UBE2T antibody: A novel biomarker of progressive-fibrosing interstitial lung disease. Respir Investig 2023; 61:579-587. [PMID: 37429071 DOI: 10.1016/j.resinv.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Anti-fibrotic therapy has demonstrated efficacy against progressive-fibrosing interstitial lung disease (PF-ILD); therefore, identifying disease behavior before progression has become a priority. As autoimmunity is implicated in the pathogenesis of various ILDs, this study explored circulating biomarkers that could predict the chronic progressive behavior of ILDs. METHODS A single-center retrospective cohort study was conducted. Circulating autoantibodies in patients with ILD were screened using microarray analysis to identify candidate biomarkers. An enzyme-linked immunosorbent assay was performed with a larger sample set for the quantification of antibodies. After 2 years of follow-up, ILDs were reclassified as PF or non-PF. The relationship between the participants' autoantibody levels measured at enrolment and final diagnosis of PF-ILD was determined. RESULTS In total, 61 healthy participants and 66 patients with ILDs were enrolled. Anti-ubiquitin-conjugating enzyme E2T (UBE2T) antibody was detected as a candidate biomarker. Anti-UBE2T antibody levels were elevated in patients with idiopathic pulmonary fibrosis (IPF). After following up on the study participants for 2 years, anti-UBE2T levels measured at enrolment significantly correlated with the new PF-ILD diagnosis. Immunohistochemical staining of normal lung tissues revealed sparsely located UBE2T in the bronchiole epithelium and macrophages, whereas IPF lung tissues showed robust expression in the epithelial lining of honeycomb structures. CONCLUSION To our knowledge, this is the first report to describe an anti-UBE2T antibody, a new biomarker that is significantly elevated in patients with ILD who present future disease progression.
Collapse
Affiliation(s)
- Mari Ujike-Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Ooki
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoko Morisawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisato Hiranuma
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Zhao T, Wu X, Zhao X, Yao K, Li X, Ni J. Identification and validation of chemokine system-related genes in idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1159856. [PMID: 37122736 PMCID: PMC10140527 DOI: 10.3389/fimmu.2023.1159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with limited therapeutic options. Recent studies have demonstrated that chemokines play a vital role in IPF pathogenesis. In the present study, we explored whether the gene signature associated with chemokines could be used as a reliable biological marker for patients with IPF. Methods Chemokine-related differentially expressed genes (CR-DEGs) in IPF and control lung tissue samples were identified using data from the Gene Expression Omnibus database. A chemokine-related signature of the diagnostic model was established using the LASSO-Cox regression. In addition, unsupervised cluster analysis was conducted using consensus-clustering algorithms. The CIBERSORT algorithm was used to calculate immune cell infiltration across patient subgroups. Finally, we established a mouse model of bleomycin-induced pulmonary fibrosis and a model of fibroblasts treated with TGFβ1. Expression levels of chemokine-related signature genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Results We established a chemokine-related eleven-gene signature of a diagnostic model consisting of CXCL2, CCRL2, ARRB1, XCL1, GRK5, PPBP, CCL19, CCL13, CCL11, CXCL6, and CXCL13, which could easily distinguish between IPF patients and controls. Additionally, we identified two subtypes of IPF samples based on chemokine-related gene expression. Pulmonary function parameters and stromal scores were significantly higher in subtype 1 than in subtype 2. Several immune cell types, especially plasma cells and macrophages, differ significantly between the two subtypes. RT-qPCR results showed that the expression levels of Cxcl2 and Ccl2 increased considerably in bleomycin-induced mice. Meanwhile, Arrb1, Ccrl2, Grk5, and Ppbp expression was significantly reduced. Furthermore, multiple chemokine-related genes were altered in TGFβ1 or TNFα-induced fibroblast cells. Conclusions A novel chemokine-related eleven-signature of diagnostic model was developed. These genes are potential biomarkers of IPF and may play essential roles in its pathogenesis.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xuelei Zhao
- Department of Gastroenterology, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Kecheng Yao
- Department of Geriatrics, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xiaojuan Li
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Jixiang Ni
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
- *Correspondence: Jixiang Ni,
| |
Collapse
|
11
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
12
|
Kletukhina S, Mutallapova G, Titova A, Gomzikova M. Role of Mesenchymal Stem Cells and Extracellular Vesicles in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms231911212. [PMID: 36232511 PMCID: PMC9569825 DOI: 10.3390/ijms231911212] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial fibrotic disease that leads to disability and death within 5 years of diagnosis. Pulmonary fibrosis is a disease with a multifactorial etiology. The concept of aberrant regeneration of the pulmonary epithelium reveals the pathogenesis of IPF, according to which repeated damage and death of alveolar epithelial cells is the main mechanism leading to the development of progressive IPF. Cell death provokes the migration, proliferation and activation of fibroblasts, which overproduce extracellular matrix, resulting in fibrotic deformity of the lung tissue. Mesenchymal stem cells (MSCs) and extracellular vesicles (EVs) are promising therapies for pulmonary fibrosis. MSCs, and EVs derived from MSCs, modulate the activity of immune cells, inhibit the expression of profibrotic genes, reduce collagen deposition and promote the repair of damaged lung tissue. This review considers the molecular mechanisms of the development of IPF and the multifaceted role of MSCs in the therapy of IPF. Currently, EVs-MSCs are regarded as a promising cell-free therapy tool, so in this review we discuss the results available to date of the use of EVs-MSCs for lung tissue repair.
Collapse
Affiliation(s)
- Sevindzh Kletukhina
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Guzel Mutallapova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
| | - Angelina Titova
- Morphology and General Pathology Department, Kazan Federal University, 420008 Kazan, Russia
| | - Marina Gomzikova
- Laboratory of Intercellular Communication, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: ; Tel.: +7-917-8572269
| |
Collapse
|
13
|
Xuan S, Li Y, Wu Y, Adcock IM, Zeng X, Yao X. Langerin-expressing dendritic cells in pulmonary immune-related diseases. Front Med (Lausanne) 2022; 9:909057. [PMID: 36160158 PMCID: PMC9490018 DOI: 10.3389/fmed.2022.909057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Dendritic cells (DCs) are “frontline” immune cells dedicated to antigen presentation. They serve as an important bridge connecting innate and adaptive immunity, and express various receptors for antigen capture. DCs are divided into various subclasses according to their differential expression of cell surface receptors and different subclasses of DCs exhibit specific immunological characteristics. Exploring the common features of each sub-category has became the focus of many studies. There are certain amounts of DCs expressing langerin in airways and peripheral lungs while the precise mechanism by which langerin+ DCs drive pulmonary disease is unclear. Langerin-expressing DCs can be further subdivided into numerous subtypes based on the co-expressed receptors, but here, we identify commonalities across these subtypes that point to the major role of langerin. Better understanding is required to clarify key disease pathways and determine potential new therapeutic approaches.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuebei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunhui Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xiaoning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Yao
| |
Collapse
|
14
|
Yin X, Bu W, Fang F, Ren K, Zhou B. Keloid Biomarkers and Their Correlation With Immune Infiltration. Front Genet 2022; 13:784073. [PMID: 35719372 PMCID: PMC9201286 DOI: 10.3389/fgene.2022.784073] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/18/2022] [Indexed: 12/05/2022] Open
Abstract
Objective: This work aimed to verify the candidate biomarkers for keloid disorder (KD), and analyze the role of immune cell infiltration (ICI) in the pathology of keloid disorder. Methods: The keloid-related datasets (GSE44270 and GSE145725) were retrieved from the Gene Expression Omnibus (GEO). Then, differential expressed genes (DEGs) were identified by using the “limma” R package. Support vector machine-recursive feature elimination (SVM-RFE) and LASSO logistic regression were utilized for screening candidate biomarkers of KD. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic power of candidate biomarkers. The candidate biomarkers were further verified through qRT-PCR of keloid lesions and the matched healthy skin tissue collected from eight cases. In addition, ICI in keloid lesions was estimated through single-sample gene-set enrichment analysis (ssGSEA). Finally, the potential drugs to the treatment of KD were predicted in the Connectivity Map Database (CMAP). Results: A total of 406 DEGs were identified between keloid lesion and healthy skin samples. Among them, STC2 (AUC = 0.919), SDC4 (AUC = 0.970), DAAM1 (AUC = 0.966), and NOX4 (AUC = 0.949) were identified as potential biomarkers through the SVM-RFE, LASSO analysis and ROC analysis. The differential expressions of SDC4, DAAM1, and NOX4 were further verified in collected eight samples by qRT-PCR experiment. ICI analysis result showed a positive correlation of DAAM1 expression with monocytes and mast cells, SDC4 with effector memory CD4+ T cells, STC2 with T follicular helper cells, and NOX4 with central memory CD8+ T cells. Finally, a total of 13 candidate small molecule drugs were predicted for keloids treatment in CMAP drug database. Conclusion: We identified four genes that may serve as potential biomarkers for KD development and revealed that ICI might play a critical role in the pathogenesis of KD.
Collapse
Affiliation(s)
- Xufeng Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbo Bu
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China
| | - Fang Fang
- Department of Dermatologic Surgery, Dermatology Hospital of Chinese Academy of Medical Sciences, Nanjing, China
| | - Kehui Ren
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bingrong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Bingrong Zhou,
| |
Collapse
|
15
|
Moog MT, Hinze C, Bormann T, Aschenbrenner F, Knudsen L, DeLuca DS, Jonigk D, Neubert L, Welte T, Gauldie J, Kolb M, Maus UA. B Cells Are Not Involved in the Regulation of Adenoviral TGF-β1- or Bleomycin-Induced Lung Fibrosis in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1259-1271. [PMID: 35149532 DOI: 10.4049/jimmunol.2100767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible, age-related diffuse parenchymal lung disease of poorly defined etiology. Many patients with IPF demonstrate distinctive lymphocytic interstitial infiltrations within remodeled lung tissue with uncertain pathogenetic relevance. Histopathological examination of explant lung tissue of patients with IPF revealed accentuated lymphoplasmacellular accumulations in close vicinity to, or even infiltrating, remodeled lung tissue. Similarly, we found significant accumulations of B cells interfused with T cells within remodeled lung tissue in two murine models of adenoviral TGF-β1 or bleomycin (BLM)-induced lung fibrosis. Such B cell accumulations coincided with significantly increased lung collagen deposition, lung histopathology, and worsened lung function in wild-type (WT) mice. Surprisingly, B cell-deficient µMT knockout mice exhibited similar lung tissue remodeling and worsened lung function upon either AdTGF-β1 or BLM as for WT mice. Comparative transcriptomic profiling of sorted B cells collected from lungs of AdTGF-β1- and BLM-exposed WT mice identified a large set of commonly regulated genes, but with significant enrichment observed for Gene Ontology terms apparently not related to lung fibrogenesis. Collectively, although we observed B cell accumulations in lungs of IPF patients as well as two experimental models of lung fibrosis, comparative profiling of characteristic features of lung fibrosis between WT and B cell-deficient mice did not support a major involvement of B cells in lung fibrogenesis in mice.
Collapse
Affiliation(s)
- Marie T Moog
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Christopher Hinze
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Tina Bormann
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | | | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - David S DeLuca
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Lavinia Neubert
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
- Clinic for Pneumology, Hannover Medical School, Hannover, Germany; and
| | - Jack Gauldie
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, Pathology, and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Division of Experimental Pneumology, Hannover Medical School, Hannover, Germany;
- German Center for Lung Research, partner site Biomedical Research in Endstage and Obstructive Lung Disease Hanover, Hannover, Germany
| |
Collapse
|
16
|
Zhu F, Zuo L, Hu R, Wang J, Yang Z, Qi X, Feng L. Effect of Immune Cell Infiltration on Occurrence of Pulmonary Hypertension in Pulmonary Fibrosis Patients Based on Gene Expression Profiles. Front Med (Lausanne) 2021; 8:671617. [PMID: 34307406 PMCID: PMC8292720 DOI: 10.3389/fmed.2021.671617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Pulmonary hypertension (PH) is a frequent complication in patients with pulmonary fibrosis (PF), whereas the mechanism was not well-understood. This study aimed to explore the influence of immune cell infiltration on PH status based on the genomic expression profiles. Microarray data of GSE24988 were downloaded from the GEO database, including 116 lung tissue samples derived from PF patients with various PH status. Proportion of infiltrated immune cells was evaluated using CIBERSORT, a gene expression-based de-convolution algorithm. A random forest classifier was constructed and out of bag (OOB) cross-validation was carried out for PH prediction. The proportions of immune infiltration cells varied differently in PH samples except T regulatory cells (p-value = 0). Compared with non-PH samples, increased number of naive B cells and plasma cells were identified in PH samples, whereas activated dendritic cells and M2 macrophages were relatively lower (p < 0.05). In the random forest model, these four types of immune cells obtained a higher variable importance score than other cells, including mean decreased accuracy and mean decreased gini evaluation. We ran the OOB cross-validation in each sample of datasets (training set and testing set) and obtained 79 and 69% accuracy, respectively. Abnormal proportions of four types of immune cells were identified in PH samples compared with non-PH samples, suggesting their involvement in PH development. In summary, the immune cell infiltration in PF patients is associated with the PH status of patients, which deserves further investigation in the future.
Collapse
Affiliation(s)
- Feng Zhu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou, China.,Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Lili Zuo
- Department of Neonatal, ZiBo Maternal and Child Health Hospital, Zibo, China
| | - Rui Hu
- Center for Drug Monitoring and Evaluation Department, Center for Drug Monitoring and Evaluation in Zhangjiakou, Zhangjiakou, China
| | - Jin Wang
- Department of Cardiovascular Disease, ZiBo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Zhihua Yang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
| | - Limin Feng
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Doni A, Mantovani A, Bottazzi B, Russo RC. PTX3 Regulation of Inflammation, Hemostatic Response, Tissue Repair, and Resolution of Fibrosis Favors a Role in Limiting Idiopathic Pulmonary Fibrosis. Front Immunol 2021; 12:676702. [PMID: 34276664 PMCID: PMC8284251 DOI: 10.3389/fimmu.2021.676702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
PTX3 is a soluble pattern recognition molecule (PRM) belonging to the humoral innate immune system, rapidly produced at inflammatory sites by phagocytes and stromal cells in response to infection or tissue injury. PTX3 interacts with microbial moieties and selected pathogens, with molecules of the complement and hemostatic systems, and with extracellular matrix (ECM) components. In wound sites, PTX3 interacts with fibrin and plasminogen and favors a timely removal of fibrin-rich ECM for an efficient tissue repair. Idiopathic Pulmonary Fibrosis (IPF) is a chronic and progressive interstitial lung disease of unknown origin, associated with excessive ECM deposition affecting tissue architecture, with irreversible loss of lung function and impact on the patient's life quality. Maccarinelli et al. recently demonstrated a protective role of PTX3 using the bleomycin (BLM)-induced experimental model of lung fibrosis, in line with the reported role of PTX3 in tissue repair. However, the mechanisms and therapeutic potential of PTX3 in IPF remained to be investigated. Herein, we provide new insights on the possible role of PTX3 in the development of IPF and BLM-induced lung fibrosis. In mice, PTX3-deficiency was associated with worsening of the disease and with impaired fibrin removal and subsequently increased collagen deposition. In IPF patients, microarray data indicated a down-regulation of PTX3 expression, thus suggesting a potential rational underlying the development of disease. Therefore, we provide new insights for considering PTX3 as a possible target molecule underlying therapeutic intervention in IPF.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Alberto Mantovani
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University of Milan, Milan, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Unit of Advanced Optical Microscopy, Department of Immunology and Inflammation, Humanitas Clinical and Research Center IRCCS, Milan, Italy
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
18
|
Parimon T, Hohmann MS, Yao C. Cellular Senescence: Pathogenic Mechanisms in Lung Fibrosis. Int J Mol Sci 2021; 22:6214. [PMID: 34207528 PMCID: PMC8227105 DOI: 10.3390/ijms22126214] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis is a chronic and fatal lung disease that significantly impacts the aging population globally. To date, anti-fibrotic, immunosuppressive, and other adjunct therapy demonstrate limited efficacies. Advancing our understanding of the pathogenic mechanisms of lung fibrosis will provide a future path for the cure. Cellular senescence has gained substantial interest in recent decades due to the increased incidence of fibroproliferative lung diseases in the older age group. Furthermore, the pathologic state of cellular senescence that includes maladaptive tissue repair, decreased regeneration, and chronic inflammation resembles key features of progressive lung fibrosis. This review describes regulatory pathways of cellular senescence and discusses the current knowledge on the senescence of critical cellular players of lung fibrosis, including epithelial cells (alveolar type 2 cells, basal cells, etc.), fibroblasts, and immune cells, their phenotypic changes, and the cellular and molecular mechanisms by which these cells contribute to the pathogenesis of pulmonary fibrosis. A few challenges in the field include establishing appropriate in vivo experimental models and identifying senescence-targeted signaling molecules and specific therapies to target senescent cells, known collectively as "senolytic" or "senotherapeutic" agents.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
- Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Department of Medicine, Los Angeles, CA 90048, USA
| | - Miriam S. Hohmann
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
| | - Changfu Yao
- Cedars-Sinai Medical Center, Department of Medicine, Women’s Guild Lung Institute, Los Angeles, CA 90048, USA
| |
Collapse
|
19
|
Planté-Bordeneuve T, Pilette C, Froidure A. The Epithelial-Immune Crosstalk in Pulmonary Fibrosis. Front Immunol 2021; 12:631235. [PMID: 34093523 PMCID: PMC8170303 DOI: 10.3389/fimmu.2021.631235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Interactions between the lung epithelium and the immune system involve a tight regulation to prevent inappropriate reactions and have been connected to several pulmonary diseases. Although the distal lung epithelium and local immunity have been implicated in the pathogenesis and disease course of idiopathic pulmonary fibrosis (IPF), consequences of their abnormal interplay remain less well known. Recent data suggests a two-way process, as illustrated by the influence of epithelial-derived periplakin on the immune landscape or the effect of macrophage-derived IL-17B on epithelial cells. Additionally, damage associated molecular patterns (DAMPs), released by damaged or dying (epithelial) cells, are augmented in IPF. Next to “sterile inflammation”, pathogen-associated molecular patterns (PAMPs) are increased in IPF and have been linked with lung fibrosis, while outer membrane vesicles from bacteria are able to influence epithelial-macrophage crosstalk. Finally, the advent of high-throughput technologies such as microbiome-sequencing has allowed for the identification of a disease-specific microbial environment. In this review, we propose to discuss how the interplays between the altered distal airway and alveolar epithelium, the lung microbiome and immune cells may shape a pro-fibrotic environment. More specifically, it will highlight DAMPs-PAMPs pathways and the specificities of the IPF lung microbiome while discussing recent elements suggesting abnormal mucosal immunity in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thomas Planté-Bordeneuve
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium
| | - Charles Pilette
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| | - Antoine Froidure
- Pôle de pneumologie, O.R.L. et dermatologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Bruxelles, Belgium.,Service de pneumologie, Cliniques universitaires Saint-Luc, Bruxelles, Belgium
| |
Collapse
|
20
|
Bocchino M, Zanotta S, Capitelli L, Galati D. Dendritic Cells Are the Intriguing Players in the Puzzle of Idiopathic Pulmonary Fibrosis Pathogenesis. Front Immunol 2021; 12:664109. [PMID: 33995394 PMCID: PMC8121252 DOI: 10.3389/fimmu.2021.664109] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most devastating progressive interstitial lung disease that remains refractory to treatment. Pathogenesis of IPF relies on the aberrant cross-talk between injured alveolar cells and myofibroblasts, which ultimately leads to an aberrant fibrous reaction. The contribution of the immune system to IPF remains not fully explored. Recent evidence suggests that both innate and adaptive immune responses may participate in the fibrotic process. Dendritic cells (DCs) are the most potent professional antigen-presenting cells that bridge innate and adaptive immunity. Also, they exert a crucial role in the immune surveillance of the lung, where they are strategically placed in the airway epithelium and interstitium. Immature DCs accumulate in the IPF lung close to areas of epithelial hyperplasia and fibrosis. Conversely, mature DCs are concentrated in well-organized lymphoid follicles along with T and B cells and bronchoalveolar lavage of IPF patients. We have recently shown that all sub-types of peripheral blood DCs (including conventional and plasmacytoid DCs) are severely depleted in therapy naïve IPF patients. Also, the low frequency of conventional CD1c+ DCs is predictive of a worse prognosis. The purpose of this mini-review is to focus on the main evidence on DC involvement in IPF pathogenesis. Unanswered questions and opportunities for future research ranging from a better understanding of their contribution to diagnosis and prognosis to personalized DC-based therapies will be explored.
Collapse
Affiliation(s)
- Marialuisa Bocchino
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Ludovica Capitelli
- Respiratory Medicine Division, Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
21
|
van Geffen C, Deißler A, Quante M, Renz H, Hartl D, Kolahian S. Regulatory Immune Cells in Idiopathic Pulmonary Fibrosis: Friends or Foes? Front Immunol 2021; 12:663203. [PMID: 33995390 PMCID: PMC8120991 DOI: 10.3389/fimmu.2021.663203] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
The immune system is receiving increasing attention for interstitial lung diseases, as knowledge on its role in fibrosis development and response to therapies is expanding. Uncontrolled immune responses and unbalanced injury-inflammation-repair processes drive the initiation and progression of idiopathic pulmonary fibrosis. The regulatory immune system plays important roles in controlling pathogenic immune responses, regulating inflammation and modulating the transition of inflammation to fibrosis. This review aims to summarize and critically discuss the current knowledge on the potential role of regulatory immune cells, including mesenchymal stromal/stem cells, regulatory T cells, regulatory B cells, macrophages, dendritic cells and myeloid-derived suppressor cells in idiopathic pulmonary fibrosis. Furthermore, we review the emerging role of regulatory immune cells in anti-fibrotic therapy and lung transplantation. A comprehensive understanding of immune regulation could pave the way towards new therapeutic or preventive approaches in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Chiel van Geffen
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany
| | - Astrid Deißler
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Markus Quante
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Hartl
- Department of Pediatrics I, Eberhard Karls University of Tübingen, Tübingen, Germany.,Dominik Hartl, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Saeed Kolahian
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, University Hospital Tübingen, Tübingen, Germany.,Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University of Marburg, Marburg, Germany.,Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
22
|
Tabeling C, Wienhold SM, Birnhuber A, Brack MC, Nouailles G, Kershaw O, Firsching TC, Gruber AD, Lienau J, Marsh LM, Olschewski A, Kwapiszewska G, Witzenrath M. Pulmonary fibrosis in Fra-2 transgenic mice is associated with decreased numbers of alveolar macrophages and increased susceptibility to pneumococcal pneumonia. Am J Physiol Lung Cell Mol Physiol 2021; 320:L916-L925. [PMID: 33655757 DOI: 10.1152/ajplung.00505.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly condition characterized by progressive respiratory dysfunction. Exacerbations due to airway infections are believed to promote disease progression, and presence of Streptococcus in the lung microbiome has been associated with the progression of IPF and mortality. The aim of this study was to analyze the effect of lung fibrosis on susceptibility to pneumococcal pneumonia and bacteremia. The effects of subclinical (low dose) infection with Streptococcus pneumoniae were studied in a well characterized fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of spontaneous, progressive pulmonary fibrosis. Forty-eight hours after transnasal infection with S. pneumoniae, bacterial load was assessed in lung tissue, bronchoalveolar lavage (BAL), blood, and spleen. Leukocyte subsets and cytokine levels were analyzed in BAL and blood. Lung compliance and arterial blood gases were assessed. In contrast to wildtype mice, low dose lung infection with S. pneumoniae in Fra-2 TG mice resulted in substantial pneumonia including weight loss, increased lung bacterial load, and bacteremia. BAL alveolar macrophages were reduced in Fra-2 TG mice compared to the corresponding WT mice. Proinflammatory cytokines and chemokines (IL-1β, IL-6, TNF-α, and CXCL1) were elevated upon infection in BAL supernatant and plasma of Fra-2 TG mice. Lung compliance was decreased in Fra-2 TG mice following low dose infection with S. pneumoniae. Pulmonary fibrosis increases susceptibility to pneumococcal pneumonia and bacteremia possibly via impaired alveolar bacterial clearance.
Collapse
Affiliation(s)
- Christoph Tabeling
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra-Maria Wienhold
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Markus C Brack
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Geraldine Nouailles
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olivia Kershaw
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Theresa C Firsching
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Jasmin Lienau
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Martin Witzenrath
- Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Lung Research (DZL), Partner Site Charité, Berlin, Germany
| |
Collapse
|
23
|
Sun J, Wang J, Lu W, Xie L, Lv J, Li H, Yang S. MiR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in diabetic nephropathy. Clin Exp Pharmacol Physiol 2020; 47:1850-1860. [PMID: 32603491 DOI: 10.1111/1440-1681.13371] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN), a common cardiovascular disease, has been a global health threat. MicroRNAs (miRNAs) have been proposed to frequently participate in the occurrence and development of DN, however, the role of miR-325-3p in DN remains uncharacterized. Our research aimed to explore the function and mechanism of miR-325-3p in DN. Bioinformatics analysis (Targetscan, http://www.targetscan.org) and a wide range of experiments including RT-qPCR, CCK-8 assay, western blot, luciferase reporter assay, RNA immunoprecipitation (RIP) assays, urine protein and blood glucose assays, histology analysis and morphometric analysis were used to explore the function and mechanism of miR-325-3p and C-C motif chemokine ligand 19 (CCL19). CCL19 could facilitate the progression of DN by inhibiting cell viability and promoting inflammation and fibrosis in HK-2 and HMC cells. In addition, CCL19 was confirmed to be targeted and negatively regulated by miR-325-3p. Rescue assays validated that the impacts of miR-325-3p mimics on the viability, inflammation and fibrosis of HK-2 and HMC cells were recovered by CCL19 overexpression. To sum up, miR-325-3p inhibits renal inflammation and fibrosis by targeting CCL19 in a DN cell model and mice model, implying miR-325-3p as a possible therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Jiping Sun
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Wang
- Department of Nephrology, Baoji People's Hospital, Baoji, China
| | - Wanhong Lu
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liyi Xie
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Lv
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huixian Li
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shifeng Yang
- Department of Nephrology, Kidney Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
24
|
Overed-Sayer C, Miranda E, Dunmore R, Liarte Marin E, Beloki L, Rassl D, Parfrey H, Carruthers A, Chahboub A, Koch S, Güler-Gane G, Kuziora M, Lewis A, Murray L, May R, Clarke D. Inhibition of mast cells: a novel mechanism by which nintedanib may elicit anti-fibrotic effects. Thorax 2020; 75:754-763. [PMID: 32709610 PMCID: PMC7476277 DOI: 10.1136/thoraxjnl-2019-214000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease which presents a grave prognosis for diagnosed patients. Nintedanib (a triple tyrosine kinase inhibitor) and pirfenidone (unclear mechanism of action) are the only approved therapies for IPF, but have limited efficacy. The pathogenic mechanisms of this disease are not fully elucidated; however, a role for mast cells (MCs) has been postulated. Objectives The aim of this work was to investigate a role for MCs in IPF and to understand whether nintedanib or pirfenidone could impact MC function. Methods and results MCs were significantly elevated in human IPF lung and negatively correlated with baseline lung function (FVC). Importantly, MCs were positively associated with the number of fibroblast foci, which has been linked to increased mortality. Furthermore, MCs were increased in the region immediately surrounding the fibroblast foci, and co-culture studies confirmed a role for MC–fibroblast crosstalk in fibrosis. Nintedanib but not pirfenidone inhibited recombinant stem cell factor (SCF)–induced MC survival. Further evaluation of nintedanib determined that it also inhibited human fibroblast-mediated MC survival. This was likely via a direct effect on ckit (SCF receptor) since nintedanib blocked SCF-stimulated ckit phosphorylation, as well as downstream effects on MC proliferation and cytokine release. In addition, nintedanib ablated the increase in lung MCs and impacted high tissue density frequency (HDFm) in a rat bleomycin model of lung fibrosis. Conclusion Nintedanib inhibits MC survival and activation and thus provides a novel additional mechanism by which this drug may exert anti-fibrotic effects in patients with IPF.
Collapse
Affiliation(s)
- Catherine Overed-Sayer
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Miranda
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Rebecca Dunmore
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Elena Liarte Marin
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lorea Beloki
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Doris Rassl
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Helen Parfrey
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Alan Carruthers
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amina Chahboub
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Sofia Koch
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Gülin Güler-Gane
- Antibody Discovery and Protein Engineering, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Kuziora
- Translational Science, Early Oncology, Oncology Bioinformatics, AstraZeneca, Gaithersburg, Maryland, USA
| | - Arthur Lewis
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Lynne Murray
- Regeneration, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Richard May
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Deborah Clarke
- Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
25
|
Galati D, Zanotta S, Polistina GE, Coppola A, Capitelli L, Bocchino M. Circulating dendritic cells are severely decreased in idiopathic pulmonary fibrosis with a potential value for prognosis prediction. Clin Immunol 2020; 215:108454. [DOI: 10.1016/j.clim.2020.108454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 01/13/2023]
|
26
|
Zhang Q, Gan C, Liu H, Wang L, Li Y, Tan Z, You J, Yao Y, Xie Y, Yin W, Ye T. Cryptotanshinone reverses the epithelial-mesenchymal transformation process and attenuates bleomycin-induced pulmonary fibrosis. Phytother Res 2020; 34:2685-2696. [PMID: 32281701 DOI: 10.1002/ptr.6699] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrotic interstitial pneumonia that causes pulmonary tissue damage and functional impairment. To investigate the effects of cryptotanshinone on pulmonary fibrosis, the expression of NIH/3T3, HPF, and rat primary pulmonary fibroblasts was measured and found to be inhibited by CPT in a time- and concentration-dependent manner, and the upregulation of α-SMA expression in NIH/3T3 and HPF cells, which had been stimulated by TGFβ-1, was decreased after CPT administration. We observed that CPT could reverse the increase in α-SMA expression and vimentin and the decrease in E-cad expression in A549 cells, which had been induced by 5 ng/mL TGFβ-1, indicating that CPT has inhibitory effects in the EMT process. A BLM-induced pulmonary fibrosis model was established in C57BL/6 mice. The lung coefficient and hydroxyproline content increased significantly in the BLM-induced group and were decreased in the CPT-treated group. The expression levels of collagen-I and α-SMA and the phosphorylation level of Stat3 were significantly increased, and CPT treatment decreased these levels. Furthermore, the results from the flow cytometry analysis indicated that, in lung tissues, the frequencies of MDSCs, macrophages, DCs and T cells were considerably increased in the BLM-induced group, while CPT treatment reduced these immunocyte populations.
Collapse
Affiliation(s)
- Qianyu Zhang
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China.,West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Cailing Gan
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Hongyao Liu
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Liqun Wang
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yali Li
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zui Tan
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Jia You
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yuqin Yao
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yongmei Xie
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Wenya Yin
- West China School of Public Health and Heathy Food Evaluation Research Center and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tinghong Ye
- Department of Liver Surgery & Liver Transplantation, State Key of Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
27
|
Exosomal miRNA Let-7 from Menstrual Blood-Derived Endometrial Stem Cells Alleviates Pulmonary Fibrosis through Regulating Mitochondrial DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4506303. [PMID: 31949877 PMCID: PMC6948326 DOI: 10.1155/2019/4506303] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prototype of chronic, progressive, and fibrotic lung disease with high morbidity and high mortality. Menstrual blood-derived stem cells (MenSCs) have proven to be an attractive tool for the treatment of acute lung injury and fibrosis-related diseases through immunosuppression and antifibrosis. However, whether MenSC-derived exosomes have the similar function on pulmonary fibrosis remains unclear. In the present study, exosomes secreted from MenSCs (MenSCs-Exo) were verified by transmission electron microscope (TEM), nanoparticle tracking analyzer (NTA), and western blotting. And MenSC-Exo addition significantly improved BLM-induced lung fibrosis and alveolar epithelial cell damage in mice, mainly reflected in BLM-mediated enhancement of the fibrosis score, blue collagen deposition, dry/wet gravity ratio, hydroxyproline and malondialdehyde levels, and downregulation of glutathione peroxidase, which were all robustly reversed by MenSC-Exo management. Additionally, BLM- and TGF-β1-evoked cellular reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, and cell apoptosis were rescued by MenSCs-Exo in vivo and in vitro. Further study indicated that the MenSCs-Exo could transport miRNA Let-7 into recipient alveolar epithelial cells. Let-7 inhibitor administration significantly blocked the exosome-mediated improvement role on lung fibrosis in mice. Mechanistically, Let-7 was able to regulate the expression of lectin-like oxidized low-density lipoprotein receptor-1 (LOX1) through binding to its 3′-UTR region. Forced expression of LOX1 promoted the expression of apoptosis-related protein and mtDNA damage markers via regulating NLRP3 which was also confirmed in BLM model mice under the combination therapy of the exosome and Let-7 inhibitor. Collectively, this study demonstrates that exosomal Let-7 from MenSCs remits pulmonary fibrosis through regulating ROS, mtDNA damage, and NLRP3 inflammasome activation. This provides a new approach of exocytosis on the treatment of fibrotic lung disease.
Collapse
|
28
|
Affiliation(s)
- Jeoung-Sook Shin
- Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Ni K, Liu M, Zheng J, Wen L, Chen Q, Xiang Z, Lam KT, Liu Y, Chan GCF, Lau YL, Tu W. PD-1/PD-L1 Pathway Mediates the Alleviation of Pulmonary Fibrosis by Human Mesenchymal Stem Cells in Humanized Mice. Am J Respir Cell Mol Biol 2019; 58:684-695. [PMID: 29220578 DOI: 10.1165/rcmb.2017-0326oc] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease with few treatments. Human mesenchymal stem cells (MSCs) have been shown to be beneficial in pulmonary fibrosis because they have immunomodulatory capacity. However, there is no reliable model to test the therapeutic effect of human MSCs in vivo. To mimic pulmonary fibrosis in humans, we established a novel bleomycin-induced pulmonary fibrosis model in humanized mice. With this model, the benefit of human MSCs in pulmonary fibrosis and the underlying mechanisms were investigated. In addition, the relevant parameters in patients with pulmonary fibrosis were examined. We demonstrate that human CD8+ T cells were critical for the induction of pulmonary fibrosis in humanized mice. Human MSCs could alleviate pulmonary fibrosis and improve lung function by suppressing bleomycin-induced human T-cell infiltration and proinflammatory cytokine production in the lungs of humanized mice. Importantly, alleviation of pulmonary fibrosis by human MSCs was mediated by the PD-1/programmed death-ligand 1 pathway. Moreover, abnormal PD-1 expression was found in circulating T cells and lung tissues of patients with pulmonary fibrosis. Our study supports the potential benefit of targeting the PD-1/programmed death-ligand 1 pathway in the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ke Ni
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Ming Liu
- 2 State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jian Zheng
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Liyan Wen
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Qingyun Chen
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Zheng Xiang
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Kowk-Tai Lam
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Yinping Liu
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Godfrey Chi-Fung Chan
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Yu-Lung Lau
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| | - Wenwei Tu
- 1 Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China; and
| |
Collapse
|
30
|
Tort Tarrés M, Aschenbrenner F, Maus R, Stolper J, Schuette L, Knudsen L, Lopez Rodriguez E, Jonigk D, Kühnel MP, DeLuca D, Prasse A, Welte T, Gauldie J, Kolb MR, Maus UA. The FMS-like tyrosine kinase-3 ligand/lung dendritic cell axis contributes to regulation of pulmonary fibrosis. Thorax 2019; 74:947-957. [PMID: 31076499 DOI: 10.1136/thoraxjnl-2018-212603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/16/2019] [Accepted: 04/21/2019] [Indexed: 11/04/2022]
Abstract
RATIONALE Dendritic cells (DC) accumulate in the lungs of patients with idiopathic lung fibrosis, but their pathogenetic relevance is poorly defined. OBJECTIVES To assess the role of the FMS-like tyrosine kinase-3 ligand (Flt3L)-lung dendritic cell axis in lung fibrosis. MEASUREMENTS AND MAIN RESULTS We demonstrate in a model of adenoviral gene transfer of active TGF-β1 that established lung fibrosis was accompanied by elevated serum Flt3L levels and subsequent accumulation of CD11bpos DC in the lungs of mice. Patients with idiopathic pulmonary fibrosis also demonstrated increased levels of Flt3L protein in serum and lung tissue and accumulation of lung DC in explant subpleural lung tissue specimen. Mice lacking Flt3L showed significantly reduced lung DC along with worsened lung fibrosis and reduced lung function relative to wild-type (WT) mice, which could be inhibited by administration of recombinant Flt3L. Moreover, therapeutic Flt3L increased numbers of CD11bpos DC and improved lung fibrosis in WT mice exposed to AdTGF-β1. In this line, RNA-sequencing analysis of CD11bpos DC revealed significantly enriched differentially expressed genes within extracellular matrix degrading enzyme and matrix metalloprotease gene clusters. In contrast, the CD103pos DC subset did not appear to be involved in pulmonary fibrogenesis. CONCLUSIONS We show that Flt3L protein and numbers of lung DC are upregulated in mice and humans during pulmonary fibrogenesis, and increased mobilisation of lung CD11bpos DC limits the severity of lung fibrosis in mice. The current study helps to inform the development of DC-based immunotherapy as a novel intervention against lung fibrosis in humans.
Collapse
Affiliation(s)
| | | | - Regina Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Jennifer Stolper
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lisanne Schuette
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Elena Lopez Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Danny Jonigk
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | | | - David DeLuca
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| | - Antje Prasse
- Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany.,Clinic of Pneumology, Hannover Medical School, Hannover, Germany
| | - Jack Gauldie
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | - Martin Rj Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ulrich A Maus
- Department of Experimental Pneumology, Hannover Medical School, Hannover, Germany .,German Center for Lung Research, Partner site BREATH (Biomedical research in endstage and obstructive lung disease Hannover), Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Wang L, Huang W, Zhang L, Chen Q, Zhao H. Molecular pathogenesis involved in human idiopathic pulmonary fibrosis based on an integrated microRNA‑mRNA interaction network. Mol Med Rep 2018; 18:4365-4373. [PMID: 30221703 PMCID: PMC6172385 DOI: 10.3892/mmr.2018.9456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/06/2018] [Indexed: 01/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is considered to be an ailment of the lungs that cannot be cured, wherein the lung tissues are characterized by increased thickness and stiffness, and/or scars. Despite the fact that extensive success has been achieved regarding the molecular diagnostics and pathobiology, the basic pathogenesis associated with IPF has not yet been fully elucidated and requires further clarification. In the current research, the changes in microRNA (miRNA) and mRNA expression in IPF were investigated through an integrative network technique. The authentic miRNA and mRNA expression profiling datasets were downloaded from Gene Expression Omnibus, followed by identification of differentially expressed miRNAs and mRNAs with use of the Significance Analysis of Microarrays algorithm. Expansion of the molecular targets associated with miRNAs was performed with the use of CyTargetLinker in Cytoscape, which was succeeded by validation with the use of mRNA array expression profiling. The incorporated miRNA‑mRNA network covered 27 genes, in addition to 22 miRNAs that were associated with IPF development. As revealed by the functional enrichment analysis, the cytokine‑cytokine receptor interaction and glycine, serine and threonine metabolism signalling pathways were extensively associated with IPF development. Overall, the present incorporated network illustrated the key link between miRNA and genes in IPF; in particular, it was elucidated that miR‑409‑5p and has‑miR‑376c, together with their target genes (C‑C motif chemokine ligand 20 and oncostatin M), are likely candidates involved in the promotion of IPF initiation and progression.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei Huang
- Division of Cellular Therapy, Duke University, Durham, NC 27710, USA
| | - Lemeng Zhang
- Department of Thoracic Oncology, Hunan Cancer Hospital, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of Gerontology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
32
|
Bao L, Hao C, Liu S, Zhang L, Wang J, Wang D, Li Y, Yao W. Dendritic cells trigger imbalance of Th1/Th2 cells in silica dust exposure rat model via MHC-II, CD80, CD86 and IL-12. RSC Adv 2018; 8:26108-26115. [PMID: 35541981 PMCID: PMC9083086 DOI: 10.1039/c8ra03970d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/07/2018] [Indexed: 12/24/2022] Open
Abstract
Silicosis is one of the most common occupational respiratory diseases caused by inhaling silica dust over a prolonged period of time, and the progression of silicosis is accompanied with chronic inflammation and progressive pulmonary fibrosis, in which dendritic cells (DCs), the most powerful antigen presentation cell (APC) in the immune response, play a crucial role. To investigate the role of DCs in the development of silicosis, we established an experimental silicosis rat model and examined the number of DCs and alveolar macrophages (AMs) in lung tissues using immunofluorescence over 84 days. Additionally, to obtain an overview of the immunological changes in rat lung tissues, a series of indicators including Th1/Th2 cells, IFN-γ, IL-4, MHC-II, CD80/86 and IL-12 were detected using flow cytometry and an enzyme-linked immunosorbent assay (ELISA) as well as a real-time polymerase chain reaction (PCR) assay. We observed that the number of DCs slightly increased at the inflammatory stage, and it increased significantly at the final stage of fibrosis. Polarization of Th1 cells and IFN-γ expressions were dominant during the inflammatory stage, whereas polarization of Th2 cells and IL-4 expressions were dominant during the fibrotic stage. The subsequent mechanistic study found that the expressions of MHC-II, CD80/86 and IL-12, which are the key molecules that connect DCs and Th cells, changed dynamically in the experimental silicosis rat model. The data obtained in this study indicated that the increase in DCs may contribute to polarization of Th1/Th2 cells via MHC-II, CD80/86, and IL-12 in silica dust-exposed rats.
Collapse
Affiliation(s)
- Lei Bao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Changfu Hao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Suna Liu
- The Third Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450001 China
| | - Lin Zhang
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Juan Wang
- Hebei General Hospital Shijiazhuang Hebei 050000 China
| | - Di Wang
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Yiping Li
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| | - Wu Yao
- School of Public Health, Zhengzhou University No. 100 Science Avenue Zhengzhou Henan 450001 China +86-371-67781922 +86-371-67781922
| |
Collapse
|
33
|
Sécher T, Guilleminault L, Reckamp K, Amanam I, Plantier L, Heuzé-Vourc'h N. Therapeutic antibodies: A new era in the treatment of respiratory diseases? Pharmacol Ther 2018; 189:149-172. [PMID: 29730443 DOI: 10.1016/j.pharmthera.2018.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Respiratory diseases affect millions of people worldwide, and account for significant levels of disability and mortality. The treatment of lung cancer and asthma with therapeutic antibodies (Abs) is a breakthrough that opens up new paradigms for the management of respiratory diseases. Antibodies are becoming increasingly important in respiratory medicine; dozens of Abs have received marketing approval, and many more are currently in clinical development. Most of these Abs target asthma, lung cancer and respiratory infections, while very few target chronic obstructive pulmonary disease - one of the most common non-communicable causes of death - and idiopathic pulmonary fibrosis. Here, we review Abs approved for or in clinical development for the treatment of respiratory diseases. We notably highlight their molecular mechanisms, strengths, and likely future trends.
Collapse
Affiliation(s)
- T Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France
| | - L Guilleminault
- Pôle des Voies respiratoires, Hôpital Larrey, CHU de Toulouse, F-31059 Toulouse, France; STROMALab, Université de Toulouse, CNRS ERL 5311, EFS, INP-ENVT, Inserm, UPS, F-31013 Toulouse, France
| | - K Reckamp
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - I Amanam
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - L Plantier
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France; CHRU de Tours, Service de Pneumologie, F-37000 Tours, France
| | - N Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université François Rabelais de Tours, F-37032 Tours, France.
| |
Collapse
|
34
|
Kafaja S, Valera I, Divekar AA, Saggar R, Abtin F, Furst DE, Khanna D, Singh RR. pDCs in lung and skin fibrosis in a bleomycin-induced model and patients with systemic sclerosis. JCI Insight 2018; 3:98380. [PMID: 29720568 PMCID: PMC6012518 DOI: 10.1172/jci.insight.98380] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/04/2018] [Indexed: 01/01/2023] Open
Abstract
Fibrosis is the end result of most inflammatory conditions, but its pathogenesis remains unclear. We demonstrate that, in animals and humans with systemic fibrosis, plasmacytoid DCs (pDCs) are unaffected or are reduced systemically (spleen/peripheral blood), but they increase in the affected organs (lungs/skin/bronchoalveolar lavage). A pivotal role of pDCs was shown by depleting them in vivo, which ameliorated skin and/or lung fibrosis, reduced immune cell infiltration in the affected organs but not in spleen, and reduced the expression of genes and proteins implicated in chemotaxis, inflammation, and fibrosis in the affected organs of animals with bleomycin-induced fibrosis. As with animal findings, the frequency of pDCs in the lungs of patients with systemic sclerosis correlated with the severity of lung disease and with the frequency of CD4+ and IL-4+ T cells in the lung. Finally, treatment with imatinib that has been reported to reduce and/or prevent deterioration of skin and lung fibrosis profoundly reduced pDCs in lungs but not in peripheral blood of patients with systemic sclerosis. These observations suggest a role for pDCs in the pathogenesis of systemic fibrosis and identify the increased trafficking of pDCs to the affected organs as a potential therapeutic target in fibrotic diseases.
Collapse
Affiliation(s)
- Suzanne Kafaja
- Autoimmunity and Tolerance Laboratory
- Division of Rheumatology
| | - Isela Valera
- Autoimmunity and Tolerance Laboratory
- Division of Rheumatology
| | | | - Rajan Saggar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | | | | | - Ram Raj Singh
- Autoimmunity and Tolerance Laboratory
- Division of Rheumatology
- Molecular Toxicology Interdepartmental Program
- Jonsson Comprehensive Cancer Center, and
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
35
|
Florez-Sampedro L, Song S, Melgert BN. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung. ACTA ACUST UNITED AC 2018; 5:3-25. [PMID: 29721324 PMCID: PMC5911451 DOI: 10.1002/reg2.97] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/23/2017] [Accepted: 12/22/2017] [Indexed: 12/12/2022]
Abstract
In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents, and even ageing can dysregulate immune responses after injury. This dysregulation can lead to a chronic repair mechanism known as fibrosis. Alterations in wound healing can occur in many organs, but our focus lies with the lung as it requires highly regulated immune and repair responses with its continuous exposure to airborne threats. Dysregulated repair responses can lead to pulmonary fibrosis but the exact reason for its development is often not known. Here, we review the diversity of innate immune cells of myeloid origin that are involved in tissue repair and we illustrate how these cell types can contribute to the development of pulmonary fibrosis. Moreover, we briefly discuss the effect of age on innate immune responses and therefore on wound healing and we conclude with the implications of current knowledge on the avenues for future research.
Collapse
Affiliation(s)
- Laura Florez-Sampedro
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Shanshan Song
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,Department of Chemical and Pharmaceutical Biology Groningen Research Institute for Pharmacy University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands
| | - Barbro N Melgert
- Department of Pharmacokinetics, Toxicology and Targeting Groningen Research Institute for Pharmacy, University of Groningen Antonius Deusinglaan 1 9713 AV Groningen The Netherlands.,University Medical Center Groningen, Groningen Research Institute for Asthma and COPD University of Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| |
Collapse
|
36
|
Sternlicht MD, Wirkner U, Bickelhaupt S, Lopez Perez R, Tietz A, Lipson KE, Seeley TW, Huber PE. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab. Respir Res 2018; 19:14. [PMID: 29347981 PMCID: PMC5774112 DOI: 10.1186/s12931-018-0720-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. METHODS To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. RESULTS At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CONCLUSIONS CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.
Collapse
Affiliation(s)
| | - Ute Wirkner
- Department of Translational Radiooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Ramon Lopez Perez
- Department of Molecular and Radiation Oncology, DKFZ, Heidelberg, Germany
| | - Alexandra Tietz
- Department of Molecular and Radiation Oncology, DKFZ, Heidelberg, Germany
| | | | | | - Peter E Huber
- Department of Molecular and Radiation Oncology, DKFZ, Heidelberg, Germany.,Department of Radiation Oncology, University Hospital Center, Heidelberg, Germany
| |
Collapse
|
37
|
Transcriptomic evidence of immune activation in macroscopically normal-appearing and scarred lung tissues in idiopathic pulmonary fibrosis. Cell Immunol 2018; 325:1-13. [PMID: 29329637 DOI: 10.1016/j.cellimm.2018.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease manifested by overtly scarred peripheral and basilar regions and more normal-appearing central lung areas. Lung tissues from macroscopically normal-appearing (IPFn) and scarred (IPFs) areas of explanted IPF lungs were analyzed by RNASeq and compared with healthy control (HC) lung tissues. There were profound transcriptomic changes in IPFn compared with HC tissues, which included elevated expression of numerous immune-, inflammation-, and extracellular matrix-related mRNAs, and these changes were similar to those observed with IPFs compared to HC. Comparing IPFn directly to IPFs, elevated expression of epithelial mucociliary mRNAs was observed in the IPFs tissues. Thus, despite the known geographic tissue heterogeneity in IPF, the entire lung is actively involved in the disease process, and demonstrates pronounced elevated expression of numerous immune-related genes. Differences between normal-appearing and scarred tissues may thus be driven by deranged epithelial homeostasis or possibly non-transcriptomic factors.
Collapse
|
38
|
Beltramo G, Thabut G, Peron N, Nicaise P, Cazes A, Debray MP, Joannes A, Castier Y, Mailleux AA, Frija J, Pradère P, Justet A, Borie R, Dombret MC, Taille C, Aubier M, Crestani B. Anti-parietal cell autoimmunity is associated with an accelerated decline of lung function in IPF patients. Respir Med 2018; 135:15-21. [PMID: 29414448 DOI: 10.1016/j.rmed.2017.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/26/2017] [Accepted: 12/26/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autoantibodies against lung epithelial antigens are often detected in patients with Idiopathic Pulmonary Fibrosis (IPF). Anti-Parietal Cell Antibodies (APCA) target the H+/K+ATPase (proton pump). APCA prevalence and lung H+/K+ATPase expression was never studied in IPF patients. METHODS We retrospectively collected clinical, lung function and imaging data from APCA positive patients (APCA+IPF) and compared them with APCA negative IPF patients matched on the date of diagnostic assessment. H+/K+ATPase expression was assessed with immunohistochemistry and PCR. RESULTS Among 138 IPF patients diagnosed between 2007 and 2014 and tested for APCA, 19 (13.7%) APCA+ patients were identified. APCA+IPF patients were 16 men and 3 women, mean age 71 years. The median titer of APCA was 1:160. A pernicious anemia was present in 5 patients and preceded the fibrosis in 3 cases. With a mean follow up of 31 months, 2 patients had an exacerbation and 7 patients died. As compared with 19 APCA- IPF patients, APCA+IPF patients had a less severe disease with better DLCO (57% vs 43% predicted), preserved PaO2 (85 ± 8 mmHg vs 74 ± 11 mmHg), a lower rate of honeycombing on HRCT (58% vs 89%), but they experienced an accelerated decline of FVC (difference 61.4 ml/year; p = .0002). The H+/K+ATPase was strongly expressed by hyperplastic alveolar epithelial cells in the fibrotic lung. CONCLUSION Anti-parietal cell autoimmunity is detected in some IPF patients and is associated with an accelerated decline of lung function. Anti-parietal cell autoimmunity may promote lung fibrosis progression.
Collapse
Affiliation(s)
- Guillaume Beltramo
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Gabriel Thabut
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie et Transplantation, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Nicolas Peron
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Pascale Nicaise
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Hématologie et Immunologie UF Autoimmunité et Hypersensibilités, 75018 Paris, France
| | - Aurélie Cazes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Département d'Anatomie Pathologique, 75018 Paris, France
| | - Marie-Pierre Debray
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Radiologie, Paris, France
| | - Audrey Joannes
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Yves Castier
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Chirurgie Vasculaire et Thoracique 75018 Paris, France
| | - Arnaud A Mailleux
- INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Justine Frija
- Université Paris Diderot, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service d'Explorations Fonctionnelles Multidisciplinaires, 75018 Paris, France
| | - Pauline Pradère
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France
| | - Aurélien Justet
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Raphaël Borie
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Marie-Christine Dombret
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Camille Taille
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Michel Aubier
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France
| | - Bruno Crestani
- Assistance Publique-Hôpitaux de Paris, DHU FIRE (Fibrosis, Inflammation and Remodeling), Hôpital Bichat, Service de Pneumologie A, 75018 Paris, France; INSERM UMR 1152, Labex Inflamex, Paris, France; Université Paris Diderot, Paris, France.
| |
Collapse
|
39
|
Allen RJ, Porte J, Braybrooke R, Flores C, Fingerlin TE, Oldham JM, Guillen-Guio B, Ma SF, Okamoto T, John AE, Obeidat M, Yang IV, Henry A, Hubbard RB, Navaratnam V, Saini G, Thompson N, Booth HL, Hart SP, Hill MR, Hirani N, Maher TM, McAnulty RJ, Millar AB, Molyneaux PL, Parfrey H, Rassl DM, Whyte MKB, Fahy WA, Marshall RP, Oballa E, Bossé Y, Nickle DC, Sin DD, Timens W, Shrine N, Sayers I, Hall IP, Noth I, Schwartz DA, Tobin MD, Wain LV, Jenkins RG. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry: a genome-wide association study. THE LANCET. RESPIRATORY MEDICINE 2017; 5:869-880. [PMID: 29066090 PMCID: PMC5666208 DOI: 10.1016/s2213-2600(17)30387-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote IPF remain unclear. We aimed to identify genetic variants associated with IPF susceptibility and provide mechanistic insight using gene and protein expression analyses. METHODS We used a two-stage approach: a genome-wide association study in patients with IPF of European ancestry recruited from nine different centres in the UK and controls selected from UK Biobank (stage 1) matched for age, sex, and smoking status; and a follow-up of associated genetic variants in independent datasets of patients with IPF and controls from two independent US samples from the Chicago consortium and the Colorado consortium (stage 2). We investigated the effect of novel signals on gene expression in large transcriptomic and genomic data resources, and examined expression using lung tissue samples from patients with IPF and controls. FINDINGS 602 patients with IPF and 3366 controls were selected for stage 1. For stage 2, 2158 patients with IPF and 5195 controls were selected. We identified a novel genome-wide significant signal of association with IPF susceptibility near A-kinase anchoring protein 13 (AKAP13; rs62025270, odds ratio [OR] 1·27 [95% CI 1·18-1·37], p=1·32 × 10-9) and confirmed previously reported signals, including in mucin 5B (MUC5B; rs35705950, OR 2·89 [2·56-3·26], p=1·12 × 10-66) and desmoplakin (DSP; rs2076295, OR 1·44 [1·35-1·54], p=7·81 × 10-28). For rs62025270, the allele A associated with increased susceptibility to IPF was also associated with increased expression of AKAP13 mRNA in lung tissue from patients who had lung resection procedures (n=1111). We showed that AKAP13 is expressed in the alveolar epithelium and lymphoid follicles from patients with IPF, and AKAP13 mRNA expression was 1·42-times higher in lung tissue from patients with IPF (n=46) than that in lung tissue from controls (n=51). INTERPRETATION AKAP13 is a Rho guanine nucleotide exchange factor regulating activation of RhoA, which is known to be involved in profibrotic signalling pathways. The identification of AKAP13 as a susceptibility gene for IPF increases the prospect of successfully targeting RhoA pathway inhibitors in patients with IPF. FUNDING UK Medical Research Council, National Heart, Lung, and Blood Institute of the US National Institutes of Health, Agencia Canaria de Investigación, Innovación y Sociedad de la Información, Spain, UK National Institute for Health Research, and the British Lung Foundation.
Collapse
Affiliation(s)
- Richard J Allen
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Joanne Porte
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| | - Rebecca Braybrooke
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Carlos Flores
- Research Unit, Hospital Universitario NS de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain; Instituto Tecnológico y de Energías Renovables (ITER, S.A.), Santa Cruz de Tenerife, Spain
| | - Tasha E Fingerlin
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Biostatistics and Informatics, University of Colorado, Denver, CO, USA
| | - Justin M Oldham
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Beatriz Guillen-Guio
- Research Unit, Hospital Universitario NS de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Shwu-Fan Ma
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Tsukasa Okamoto
- Department of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Alison E John
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Ivana V Yang
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Amanda Henry
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Richard B Hubbard
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Vidya Navaratnam
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
| | - Gauri Saini
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Norma Thompson
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Helen L Booth
- Department of Thoracic Medicine, University College London Hospitals, London, UK
| | - Simon P Hart
- Respiratory Research Group, Centre for Cardiovascular and Metabolic Research, The Hull York Medical School, Hull, UK
| | - Mike R Hill
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Nik Hirani
- MRC Centre for Inflammation Research at the University of Edinburgh, Edinburgh, UK
| | - Toby M Maher
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Ann B Millar
- Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Philip L Molyneaux
- NIHR Respiratory Biomedical Research Unit, Royal Brompton Hospital, London, UK; Fibrosis Research Group, Inflammation, Repair and Development Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Helen Parfrey
- Respiratory Medicine, Papworth Hospital, Cambridge, UK
| | - Doris M Rassl
- Department of Pathology, Papworth Hospital, Cambridge, UK
| | - Moira K B Whyte
- MRC Centre for Inflammation Research at the University of Edinburgh, Edinburgh, UK
| | - William A Fahy
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | | | - Eunice Oballa
- Fibrosis Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - David C Nickle
- Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, MA, USA
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada; Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Ian P Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - David A Schwartz
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado Denver, Denver, CO, USA; Department of Immunology, University of Colorado Denver, Denver, CO, USA
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK; National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK.
| | - R Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham, Nottingham, UK; National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals, Nottingham, UK; Nottingham Molecular Pathology Node, University of Nottingham, Nottingham, UK
| |
Collapse
|
40
|
Liu H, Jakubzick C, Osterburg AR, Nelson RL, Gupta N, McCormack FX, Borchers MT. Dendritic Cell Trafficking and Function in Rare Lung Diseases. Am J Respir Cell Mol Biol 2017; 57:393-402. [PMID: 28586276 PMCID: PMC5650088 DOI: 10.1165/rcmb.2017-0051ps] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/06/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized immune cells that capture antigens and then migrate to lymphoid tissue and present antigen to T cells. This critical function of DCs is well defined, and recent studies further demonstrate that DCs are also key regulators of several innate immune responses. Studies focused on the roles of DCs in the pathogenesis of common lung diseases, such as asthma, infection, and cancer, have traditionally driven our mechanistic understanding of pulmonary DC biology. The emerging development of novel DC reagents, techniques, and genetically modified animal models has provided abundant data revealing distinct populations of DCs in the lung, and allow us to examine mechanisms of DC development, migration, and function in pulmonary disease with unprecedented detail. This enhanced understanding of DCs permits the examination of the potential role of DCs in diseases with known or suspected immunological underpinnings. Recent advances in the study of rare lung diseases, including pulmonary Langerhans cell histiocytosis, sarcoidosis, hypersensitivity pneumonitis, and pulmonary fibrosis, reveal expanding potential pathogenic roles for DCs. Here, we provide a review of DC development, trafficking, and effector functions in the lung, and discuss how alterations in these DC pathways contribute to the pathogenesis of rare lung diseases.
Collapse
Affiliation(s)
- Huan Liu
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Claudia Jakubzick
- Department of Immunology and Microbiology, National Jewish Health and University of Colorado, Denver, Colorado; and
| | - Andrew R. Osterburg
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebecca L. Nelson
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Nishant Gupta
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| | - Francis X. McCormack
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| | - Michael T. Borchers
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Veteran’s Affairs Medical Center, Cincinnati, Ohio
| |
Collapse
|
41
|
Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of CD11c+ lung dendritic cells in respect to TGF-β in experimental pulmonary fibrosis. Cell Biol Int 2017; 41:991-1000. [PMID: 28557137 DOI: 10.1002/cbin.10800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/25/2017] [Indexed: 12/30/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a deadly, progressive lung disease with very few treatment options till now. Bleomycin-induced pulmonary fibrosis (BIPF) is a commonly used mice model in IPF research. TGF-β1 has been shown to play a key role in pulmonary fibrosis (PF). Dendritic cell (DC) acts as a bridge between innate and adaptive immune systems. The coexistence of chronic inflammation sustained by mature DCs with fibrosis suggests that inflammatory phenomenon has key importance in the pathogenesis of pulmonary fibrosis. Here, we investigated the modulation of DCs phenotypic maturation, accumulation in lung tissue, and expression of other lung DC subsets in respect to TGF-β in PF. First, we established BIPF model in mice and blocked TGF-β expression by the use of inhibitor SB431542. Accumulation of lung CD11c+ DCs is significantly higher in both inflammatory and fibrotic phases of the disease but that percentages got reduced in the absence of TGF-β. TGF-β initiates up-regulation of costimulatory molecules CD86 and CD80 in the inflammatory phases of the disease but not so at fibrotic stage. Expression of lung DC subset CD11c+CD103+ is significantly increased in inflammatory phase and also in fibrotic phase of BIPF. Blocking of TGF-β causes decreased expression of CD11c+CD103+ DCs. Another important lung DC subset CD11c+CD11b+ expression is suppressed by the absence of TGF-β after bleomycin administration. CD11c+CD103+ DCs might have anti-inflammatory as well as anti-fibrotic nature in PF. All these data demonstrate differential modulation of CD11c+ lung DCs by TGF-β in experimental PF.
Collapse
Affiliation(s)
- Kaustav Chakraborty
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Soumya Chatterjee
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| |
Collapse
|
42
|
Baharom F, Rankin G, Blomberg A, Smed-Sörensen A. Human Lung Mononuclear Phagocytes in Health and Disease. Front Immunol 2017; 8:499. [PMID: 28507549 PMCID: PMC5410584 DOI: 10.3389/fimmu.2017.00499] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
The lungs are vulnerable to attack by respiratory insults such as toxins, allergens, and pathogens, given their continuous exposure to the air we breathe. Our immune system has evolved to provide protection against an array of potential threats without causing collateral damage to the lung tissue. In order to swiftly detect invading pathogens, monocytes, macrophages, and dendritic cells (DCs)-together termed mononuclear phagocytes (MNPs)-line the respiratory tract with the key task of surveying the lung microenvironment in order to discriminate between harmless and harmful antigens and initiate immune responses when necessary. Each cell type excels at specific tasks: monocytes produce large amounts of cytokines, macrophages are highly phagocytic, whereas DCs excel at activating naïve T cells. Extensive studies in murine models have established a division of labor between the different populations of MNPs at steady state and during infection or inflammation. However, a translation of important findings in mice is only beginning to be explored in humans, given the challenge of working with rare cells in inaccessible human tissues. Important progress has been made in recent years on the phenotype and function of human lung MNPs. In addition to a substantial population of alveolar macrophages, three subsets of DCs have been identified in the human airways at steady state. More recently, monocyte-derived cells have also been described in healthy human lungs. Depending on the source of samples, such as lung tissue resections or bronchoalveolar lavage, the specific subsets of MNPs recovered may differ. This review provides an update on existing studies investigating human respiratory MNP populations during health and disease. Often, inflammatory MNPs are found to accumulate in the lungs of patients with pulmonary conditions. In respiratory infections or inflammatory diseases, this may contribute to disease severity, but in cancer patients this may improve clinical outcomes. By expanding on this knowledge, specific lung MNPs may be targeted or modulated in order to attain favorable responses that can improve preventive or treatment strategies against respiratory infections, lung cancer, or lung inflammatory diseases.
Collapse
Affiliation(s)
- Faezzah Baharom
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Anna Smed-Sörensen
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
43
|
Clarke DL, Murray LA, Crestani B, Sleeman MA. Is personalised medicine the key to heterogeneity in idiopathic pulmonary fibrosis? Pharmacol Ther 2017; 169:35-46. [DOI: 10.1016/j.pharmthera.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Li B, Siuta M, Bright V, Koktysh D, Matlock BK, Dumas ME, Zhu M, Holt A, Stec D, Deng S, Savage PB, Joyce S, Pham W. Improved proliferation of antigen-specific cytolytic T lymphocytes using a multimodal nanovaccine. Int J Nanomedicine 2016; 11:6103-6121. [PMID: 27895483 PMCID: PMC5117944 DOI: 10.2147/ijn.s112432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The present study investigated the immunoenhancing property of our newly designed nanovaccine, that is, its ability to induce antigen-specific immunity. This study also evaluated the synergistic effect of a novel compound PBS-44, an α-galactosylceramide analog, in boosting the immune response induced by our nanovaccine. The nanovaccine was prepared by encapsulating ovalbumin (ova) and an adjuvant within the poly(lactic-co-glycolic acid) nanoparticles. Quantitative analysis of our study data showed that the encapsulated vaccine was physically and biologically stable; the core content of our nanovaccine was found to be released steadily and slowly, and nearly 90% of the core content was slowly released over the course of 25 days. The in vivo immunization studies exhibited that the nanovaccine induced stronger and longer immune responses compared to its soluble counterpart. Similarly, intranasal inhalation of the nanovaccine induced more robust antigen-specific CD8+ T cell response than intraperitoneal injection of nanovaccine.
Collapse
Affiliation(s)
- Bo Li
- Institute of Imaging Science, Vanderbilt University School of Medicine; Department of Radiology and Radiological Sciences
| | - Michael Siuta
- Institute of Imaging Science, Vanderbilt University School of Medicine
| | - Vanessa Bright
- Institute of Imaging Science, Vanderbilt University School of Medicine; Department of Radiology and Radiological Sciences
| | - Dmitry Koktysh
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Nanoscale Science and Engineering
| | | | - Megan E Dumas
- Institute of Imaging Science, Vanderbilt University School of Medicine
| | - Meiying Zhu
- Institute of Imaging Science, Vanderbilt University School of Medicine
| | - Alex Holt
- Institute of Imaging Science, Vanderbilt University School of Medicine
| | - Donald Stec
- Department of Chemistry, Vanderbilt University; Vanderbilt Institute of Chemical Biology
| | - Shenglou Deng
- Department of Chemistry and Biochemistry, Brigham Young University
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University; Veterans Administration Tennessee Valley Healthcare System
| | - Wellington Pham
- Institute of Imaging Science, Vanderbilt University School of Medicine; Department of Radiology and Radiological Sciences; Vanderbilt Institute of Chemical Biology; Department of Biomedical Engineering; Vanderbilt Ingram Cancer Center; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Here, we explore an emerging theme in the literature, which is the role of dendritic cells in the causation of fibrosis. To fully appreciate this pathway to disease, we also review the most recent literature regarding dendritic cell biology as it pertains to ocular surface tissues. On the basis of this information, we propose a unifying hypothesis for how dendritic cells may cause conjunctival fibrosis in the allergy setting. RECENT FINDINGS Work in models of airway remodeling and liver fibrosis has pointed to a potentially central role for dendritic cells in the pathobiology of fibrosis. Indeed, these cells are recognized as the most potent antigen-presenting cells, and as such activate T lymphocytes that are profibrotic under certain conditions. However, recent findings suggest a more direct role for dendritic cells, which opens up the possibility that a similar pathway may be relevant in the causation of conjunctival fibrosis, particularly in allergic eye disease. SUMMARY Conjunctival fibrosis is a serious clinical concern and is associated with chronic inflammation of the ocular surface tissue, such as in allergic eye disease. Dendritic cells are required in mediating allergic disease by activating pathologic T lymphocytes. Recent findings pointing to a central role for dendritic cell in fibrosis may, however, mean that these cells could also be contributing directly to conjunctival fibrosis. If so, furthering our understanding of dendritic cells could lead to the identification of novel and more effective therapeutic strategies to treat this disease.
Collapse
|
47
|
Froidure A, Joannes A, Mailleux AA, Crestani B. New targets in idiopathic pulmonary fibrosis: from inflammation and immunity to remodeling and repair. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1171140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Freynet O, Marchal-Sommé J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res 2016; 17:36. [PMID: 27044262 PMCID: PMC4820963 DOI: 10.1186/s12931-016-0345-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/09/2016] [Indexed: 01/14/2023] Open
Abstract
In human lung fibrotic lesions, fibroblasts were shown to be closely associated with immature dendritic cell (DC) accumulation. The aim of the present pilot study was to characterize the role of pulmonary fibroblasts on DC phenotype and function, using co-culture of lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and from control patients, with a DC cell line MUTZ-3. We observed that co-culture of lung control and IPF fibroblasts with DCs reduced the expression of specific DC markers and down-regulated their T-cell stimulatory activity. This suggests that pulmonary fibroblasts might sustain chronic inflammation in the fibrotic lung by maintaining in situ a pool of immature DCs.
Collapse
Affiliation(s)
- Olivia Freynet
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France
| | - Joëlle Marchal-Sommé
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Francette Jean-Louis
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France
| | - Arnaud Mailleux
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Bruno Crestani
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France. .,Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,DHU FIRE, Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, Paris, France. .,Service de Pneumologie, Hôpital Bichat, 46, rue Henri Huchard, Paris cedex 18, 75018, France.
| | - Paul Soler
- Inserm U 1152, 46, rue Henri Huchard, Paris, 75018, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,DHU FIRE, Paris, France
| | - Laurence Michel
- Inserm UMR-S 976, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Saint Louis, Paris, France. .,Inserm UMR-S 976, Hôpital Saint-Louis, 1 avenue Claude Vellefaux, 75475, Paris, 75010, France.
| |
Collapse
|
49
|
Yamashita M. Lymphangiogenesis and Lesion Heterogeneity in Interstitial Lung Diseases. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2016; 9:111-21. [PMID: 26823655 PMCID: PMC4725607 DOI: 10.4137/ccrpm.s33856] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 01/26/2023]
Abstract
The lymphatic system has several physiological roles, including fluid homeostasis and the activation of adaptive immunity by fluid drainage and cell transport. Lymphangiogenesis occurs in adult tissues during various pathologic conditions. In addition, lymphangiogenesis is closely linked to capillary angiogenesis, and the balanced interrelationship between capillary angiogenesis and lymphangiogenesis is essential for maintaining homeostasis in tissues. Recently, an increasing body of information regarding the biology of lymphatic endothelial cells has allowed us to immunohistochemically characterize lymphangiogenesis in several lung diseases. Particular interest has been given to the interstitial lung diseases. Idiopathic interstitial pneumonias (IIPs) are characterized by heterogeneity in pathologic changes and lesions, as typified by idiopathic pulmonary fibrosis/usual interstitial pneumonia. In IIPs, lymphangiogenesis is likely to have different types of localized functions within each disorder, corresponding to the heterogeneity of lesions in terms of inflammation and fibrosis. These functions include inhibitory absorption of interstitial fluid and small molecules and maturation of fibrosis by excessive interstitial fluid drainage, caused by an unbalanced relationship between capillary angiogenesis and lymphangiogenesis and trafficking of antigen-presenting cells and induction of fibrogenesis via CCL21 and CCR7 signals. Better understanding for regional functions of lymphangiogenesis might provide new treatment strategies tailored to lesion heterogeneity in these complicated diseases.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
50
|
Yamashita M, Mouri T, Niisato M, Nitanai H, Kobayashi H, Ogasawara M, Endo R, Konishi K, Sugai T, Sawai T, Yamauchi K. Lymphangiogenic factors are associated with the severity of hypersensitivity pneumonitis. BMJ Open Respir Res 2015; 2:e000085. [PMID: 26448865 PMCID: PMC4593170 DOI: 10.1136/bmjresp-2015-000085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/08/2015] [Indexed: 11/06/2022] Open
Abstract
Background Antigen presenting cells play a pivotal role in the adaptive immune response in hypersensitivity pneumonitis (HP). It was hypothesised that lymphangiogenesis is involved in the pathophysiology of HP via cell transport. Objective To determine the clinical significance of lymphangiogenic factors in HP. Methods Levels of vascular endothelial growth factors (VEGF)-A, VEGF-C, VEGF-D and CCL21 in the serum and bronchoalveolar lavage fluid (BALF) were measured in 29 healthy volunteers, 14 patients with idiopathic pulmonary fibrosis (IPF) and 26 patients with HP by ELISA. Additionally, immunohistochemical analyses were performed using lung specimens of patients with HP (n=8) and IPF (n=10). Results BALF VEGF-D levels were significantly elevated in patients with HP compared to the other groups. BALF VEGF–D levels in patients with HP correlated significantly with the BALF total cell and lymphocyte counts (r=0.485, p=0.014 and r=0.717, p<0.0001, respectively). BALF VEGF-C and CCL21 levels were increased in patients with HP compared to healthy volunteers, but not patients with IPF. BALF CCL21 levels were negatively correlated with the forced expiratory volume in 1 s percentage and diffuse capacity of the lung for carbon monoxide (r=−0.662, p=0.007 and r=−0.671, p=0.024, respectively). According to the immunohistochemical analyses, CCL21 was expressed in the lymphatic endothelium in both conditions and CCR7+ cells were aggregated around lymphatics in patients with HP, but not in patients with IPF. Conclusions Lymphangiogenic factors might be associated with the inflammatory and functional severity of HP. The increased BALF VEGF-D levels were associated with lymphatic alveolitis intensity, and CCL21 with lung function impairment.
Collapse
Affiliation(s)
- Masahiro Yamashita
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Takashi Mouri
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan ; Department of Respiratory Medicine , Iwate Prefectural Chubu Hospital , Kitakami , Japan
| | - Miyuki Niisato
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Hiroo Nitanai
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Hitoshi Kobayashi
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Masahito Ogasawara
- Department of Pharmacology , Ehime University Graduate School of Medicine , Toon , Japan
| | - Ryujin Endo
- Department of Gastroenterology and Hepatology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Kazuki Konishi
- Department of Pulmonary Medicine , Morioka Tsunagi Onsen Hospital , Morioka , Japan
| | - Tamotsu Sugai
- Department of Pathology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Takashi Sawai
- Department of Pathology , Iwate Medical University School of Medicine , Morioka , Japan
| | - Kohei Yamauchi
- Department of Pulmonary Medicine, Allergy and Rheumatology , Iwate Medical University School of Medicine , Morioka , Japan
| |
Collapse
|