1
|
Casillas-Ramírez A, Maroto-Serrat C, Sanus F, Micó-Carnero M, Rojano-Alfonso C, Cabrer M, Peralta C. Regulation of Adiponectin and Resistin in Liver Transplantation Protects Grafts from Extended-Criteria Donors. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00409-7. [PMID: 39566822 DOI: 10.1016/j.ajpath.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024]
Abstract
The donor shortage increases liver transplantation (LT) waiting lists, making it crucial to consider extended-criteria donors, such as steatotic donors after brain death (DBDs) or cardiocirculatory death (DCDs). Nevertheless, steatosis, brain death, and cardiocirculatory death are key risk factors for poor LT outcomes. We investigated the role and therapeutic usefulness of several adipocytokines to protect such grafts from extended-criteria donors. Sprague rats with nutritionally induced steatosis were used in an experimental LT model with grafts from DBDs or DCDs. Adiponectin, resistin, and visfatin were measured and pharmacologically modulated, and effects on liver injury were assessed. Visfatin played no role under conditions of neither DBD nor DCD LT. Brain death increased adiponectin and reduced resistin. Adiponectin harmed steatotic and nonsteatotic DBD grafts, via a resistin-dependent mechanism; restraining adiponectin increased resistin, reducing damage. Resistin treatment protected both types of DBD grafts, whereas suppressing it increased damage. This adiponectin-resistin pathway was dependent on protein kinase C. In DCD LT, adiponectin and resistin were not modified in nonsteatotic grafts, but reduced in steatotic ones. Adiponectin or resistin treatments protected steatotic grafts: hepatic adiponectin activated AMPK; hepatic resistin increased phosphatidylinositol 3-kinase-Akt. Concomitant administration of both adipocytokines increased both signaling pathways, intensifying protection. Therefore, pharmacologic modulation of adiponectin and resistin resulted in therapies that potentially might be translated to clinical studies to improve surgical outcomes for LT from extended-criteria donors.
Collapse
Affiliation(s)
- Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria, Servicios de Salud del Instituto Mexicano de Seguro Social para el Bienestar, Ciudad Victoria, Mexico; Faculty of Medicine of Matamoros, Autonomous University of Tamaulipas, Matamoros, Mexico
| | - Cristina Maroto-Serrat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Francisco Sanus
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Marc Micó-Carnero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Carlos Rojano-Alfonso
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Barcelona University, Barcelona, Spain
| | - Margalida Cabrer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
| |
Collapse
|
2
|
Sun X, Sun B, Sammani S, Dudek S, Belvitch P, Camp S, Zhang D, Bime C, Garcia J. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Biosci Rep 2024; 44:BSR20231934. [PMID: 39162263 PMCID: PMC11405783 DOI: 10.1042/bsr20231934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024] Open
Abstract
RATIONALE Cortactin, an actin-binding cytoskeletal protein, plays a crucial role in maintaining endothelial cell (EC) barrier integrity and regulating vascular permeability. The gene encoding cortactin, CTTN, is implicated in various lung inflammatory disorders. Despite this, the transcriptional regulation of CTTN by inflammatory stimuli and promoter SNPs remains unexplored. METHODS We transfected human lung ECs with a full-length CTTN promoters linked to a luciferase reporter to measure promoter activity. SNP-containing CTTN promoter was created via site-directed mutagenesis. Transfected ECs were exposed to LPS (PAMP), TNF-α (cytokine), cyclic stretch (CS), FG-4592 (HIF-inducer), NRF2 (anti-oxidant modulator), FTY-(S)-phosphate (endothelial barrier enhancer), and 5'-Aza (demethylation inducer). Immunohistochemistry was used to assess cortactin expression in mouse lungs exposed to LPS. RESULTS LPS, TNF-α, and 18%CS significantly increased CTTN promoter activities in a time-dependent manner (P<0.05). The variant rs34612166 (-212T/C) markedly enhanced LPS- and 18%CS- induced CTTN promoter activities (P<0.05). FG-4592 significantly boosted CTTN promoter activities (P<0.01), which were partially inhibited by HIF1α (KC7F2) and HIF2α (PT2385) inhibitors (P<0.05). NRF2 activator Bixin increased CTTN promoter activities, whereas NRF2 inhibitor Brusatol reduced them (P<0.05). 5'-Aza increased CTTN promoter activities by 2.9-fold (P<0.05). NF-κB response element mutations significantly reduced CTTN promoter activities response to LPS and TNFα. FTY-(S)-phosphate significantly increased CTTN promoter activities in 24 h. In vivo, cortactin levels were significantly elevated in inflammatory mouse lungs exposed to LPS for 18 h. CONCLUSION CTTN transcriptional is significantly influenced by inflammatory factors and promoter variants. Cortactin, essential in mitigating inflammatory edema, presents a promising therapeutic target to alleviate severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Patrick Belvitch
- Department of Medicine, University of Illinois Chicago, Chicago IL, U.S.A
| | - Sara M. Camp
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| | - Donna Zhang
- College of Pharmacy, University of Arizona, Tucson, AZ, U.S.A
| | - Christian Bime
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
- University of Florida, UF Scripps Research Institute, Jupiter, FL, U.S.A
| |
Collapse
|
3
|
Gao L, Ramirez FJ, Cabrera JTO, Varghese MV, Watanabe M, Tsuji-Hosokawa A, Zheng Q, Yang M, Razan MR, Kempf CL, Camp SM, Wang J, Garcia JGN, Makino A. eNAMPT is a novel therapeutic target for mitigation of coronary microvascular disease in type 2 diabetes. Diabetologia 2024; 67:1998-2011. [PMID: 38898303 PMCID: PMC11410976 DOI: 10.1007/s00125-024-06201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/25/2024] [Indexed: 06/21/2024]
Abstract
AIMS/HYPOTHESIS Individuals with diabetes are at high risk of cardiovascular complications, which significantly increase morbidity/mortality. Coronary microvascular disease (CMD) is recognised as a critical contributor to the increased cardiac mortality observed in people with diabetes. Therefore, there is an urgent need for treatments that are specific to CMD. eNAMPT (extracellular nicotinamide phosphoribosyltransferase) is a damage-associated molecular pattern and TLR4 ligand, whose plasma levels are elevated in people with diabetes. This study was thus designed to investigate the pathogenic role of intracellular nicotinamide phosphoribosyltransferase (iNAMPT) and eNAMPT in promoting the development of CMD in a preclinical murine model of type 2 diabetes. METHODS An inducible type 2 diabetic mouse model was generated by a single injection of low-dose streptozocin (75 mg/kg, i.p.) combined with a high-fat diet for 16 weeks. The in vivo effects of i/eNAMPT inhibition on cardiac endothelial cell (CEC) function were evaluated by using Nampt+/- heterozygous mice, chronic administration of eNAMPT-neutralising monoclonal antibody (mAb) or use of an NAMPT enzymatic inhibitor (FK866). RESULTS As expected, diabetic wild-type mice exhibited significantly lower coronary flow velocity reserve (CFVR), a determinant of coronary microvascular function, compared with control wild-type mice. eNAMPT plasma levels or expression in CECs were significantly greater in diabetic mice than in control mice. Furthermore, in comparison with diabetic wild-type mice, diabetic Nampt+/- heterozygous mice showed markedly improved CFVR, accompanied by increased left ventricular capillary density and augmented endothelium-dependent relaxation (EDR) in the coronary artery. NAMPT inhibition by FK866 or an eNAMPT-neutralising mAb significantly increased CFVR in diabetic mice. Furthermore, administration of the eNAMPT mAb upregulated expression of angiogenesis- and EDR-related genes in CECs from diabetic mice. Treatment with either eNAMPT or NAD+ significantly decreased CEC migration and reduced EDR in coronary arteries, partly linked to increased production of mitochondrial reactive oxygen species. CONCLUSIONS/INTERPRETATION These data indicate that increased i/eNAMPT expression contributes to the development of diabetic coronary microvascular dysfunction, and provide compelling support for eNAMPT inhibition as a novel and effective therapeutic strategy for CMD in diabetes.
Collapse
Affiliation(s)
- Lei Gao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco J Ramirez
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jody Tori O Cabrera
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Makiko Watanabe
- Department of Physiology, The University of Arizona, Tucson, AZ, USA
| | | | - Qiuyu Zheng
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingya Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Md Rahatullah Razan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Carrie L Kempf
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Sara M Camp
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Joe G N Garcia
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
- Department of Physiology, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
4
|
Pokharel MD, Fu P, Garcia-Flores A, Yegambaram M, Lu Q, Sun X, Unwalla H, Aggarwal S, Fineman JR, Wang T, Black SM. Inflammatory lung injury is associated with endothelial cell mitochondrial fission and requires the nitration of RhoA and cytoskeletal remodeling. Free Radic Biol Med 2024; 221:125-135. [PMID: 38734269 PMCID: PMC11179967 DOI: 10.1016/j.freeradbiomed.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Higher levels of extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a TLR4 agonist, are associated with poor clinical outcomes in sepsis-induced acute lung injury (ALI). Little is known regarding the mechanisms by which eNAMPT is involved in ALI. Our recent work has identified a crucial role for mitochondrial dysfunction in ALI. Thus, this study aimed to determine if eNAMPT-mediated inflammatory injury is associated with the loss of mitochondrial function. Our data show that eNAMPT disrupted mitochondrial bioenergetics. This was associated with cytoskeleton remodeling and the loss of endothelial barrier integrity. These changes were associated with enhanced mitochondrial fission and blocked when Rho-kinase (ROCK) was inhibited. The increases in mitochondrial fission were also associated with the nitration-mediated activation of the small GTPase activator of ROCK, RhoA. Blocking RhoA nitration decreased eNAMPT-mediated mitochondrial fission and endothelial barrier dysfunction. The increase in fission was linked to a RhoA-ROCK mediated increase in Drp1 (dynamin-related protein 1) at serine(S)616. Another TLR4 agonist, lipopolysaccharide (LPS), also increased mitochondrial fission in a Drp1 and RhoA-ROCK-dependent manner. To validate our findings in vivo, we challenged C57BL/6 mice with eNAMPT in the presence and absence of the Drp1 inhibitor, Mdivi-1. Mdivi-1 treatment protected against eNAMPT-induced lung inflammation, edema, and lung injury. These studies demonstrate that mitochondrial fission-dependent disruption of mitochondrial function is essential in TLR4-mediated inflammatory lung injury and identify a key role for RhoA-ROCK signaling. Reducing mitochondrial fission could be a potential therapeutic strategy to improve ARDS outcomes.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Panfeng Fu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | | | - Manivannan Yegambaram
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Qing Lu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Xutong Sun
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Hoshang Unwalla
- Department of Immunology and Nano-Medicine, Howard Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Saurabh Aggarwal
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA; Department of Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA
| | - Stephen M Black
- Department of Cellular & Molecular Medicine, Herbert Wertheim College of Medicine, Miami, FL, USA; Center for Translational Science, Florida International University, Port St. Lucie, FL, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, University Park, FL, USA.
| |
Collapse
|
5
|
Price DR, Garcia JGN. A Razor's Edge: Vascular Responses to Acute Inflammatory Lung Injury/Acute Respiratory Distress Syndrome. Annu Rev Physiol 2024; 86:505-529. [PMID: 38345908 PMCID: PMC11259086 DOI: 10.1146/annurev-physiol-042222-030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Historically considered a metabolically inert cellular layer separating the blood from the underlying tissue, the endothelium is now recognized as a highly dynamic, metabolically active tissue that is critical to organ homeostasis. Under homeostatic conditions, lung endothelial cells (ECs) in healthy subjects are quiescent, promoting vasodilation, platelet disaggregation, and anti-inflammatory mechanisms. In contrast, lung ECs are essential contributors to the pathobiology of acute respiratory distress syndrome (ARDS), as the quiescent endothelium is rapidly and radically altered upon exposure to environmental stressors, infectious pathogens, or endogenous danger signals into an effective and formidable regulator of innate and adaptive immunity. These dramatic perturbations, produced in a tsunami of inflammatory cascade activation, result in paracellular gap formation between lung ECs, sustained lung edema, and multi-organ dysfunction that drives ARDS mortality. The astonishing plasticity of the lung endothelium in negotiating this inflammatory environment and efforts to therapeutically target the aberrant ARDS endothelium are examined in further detail in this review.
Collapse
Affiliation(s)
- David R Price
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY, USA
| | - Joe G N Garcia
- Center for Inflammation Sciences and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA;
| |
Collapse
|
6
|
Kempf CL, Song JH, Sammani S, Bermudez T, Reyes Hernon V, Tang L, Cai H, Camp SM, Johnson CA, Basiouny MS, Bloomquist LA, Rioux JS, White CW, Veress LA, Garcia JGN. TLR4 Ligation by eNAMPT, a Novel DAMP, is Essential to Sulfur Mustard- Induced Inflammatory Lung Injury and Fibrosis. EUROPEAN JOURNAL OF RESPIRATORY MEDICINE 2024; 6:389-397. [PMID: 38390523 PMCID: PMC10883439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Objective Human and preclinical studies of sulfur mustard (SM)-induced acute and chronic lung injuries highlight the role of unremitting inflammation. We assessed the utility of targeting the novel DAMP and TLR4 ligand, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), utilizing a humanized mAb (ALT-100) in rat models of SM exposure. Methods Acute (SM 4.2 mg/kg, 24 hrs), subacute (SM 0.8 mg/kg, day 7), subacute (SM 2.1 mg/kg, day 14), and chronic (SM 1.2 mg/kg, day 29) SM models were utilized. Results Each SM model exhibited significant increases in eNAMPT expression (lung homogenates) and increased levels of phosphorylated NFkB and NOX4. Lung fibrosis (Trichrome staining) was observed in both sub-acute and chronic SM models in conjunction with elevated smooth muscle actin (SMA), TGFβ, and IL-1β expression. SM-exposed rats receiving ALT-100 (1 or 4 mg/kg, weekly) exhibited increased survival, highly significant reductions in histologic/biochemical evidence of lung inflammation and fibrosis (Trichrome staining, decreased pNFkB, SMA, TGFβ, NOX4), decreased airways strictures, and decreased plasma cytokine levels (eNAMPT, IL-6, IL-1β. TNFα). Conclusion The highly druggable, eNAMPT/TLR4 signaling pathway is a key contributor to SM-induced ROS production, inflammatory lung injury and fibrosis. The ALT-100 mAb is a potential medical countermeasure to address the unmet need to reduce SM-associated lung pathobiology/mortality.
Collapse
Affiliation(s)
- Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | | | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| | - Carly A Johnson
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Mohamed S Basiouny
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Leslie A Bloomquist
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Jacqueline S Rioux
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Carl W White
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Livia A Veress
- Department of Pediatrics, Center for Advanced Drug Development, University of Colorado Anschutz Campus, Aurora, CO
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ
| |
Collapse
|
7
|
Liu Z, Sammani S, Barber CJ, Kempf CL, Li F, Yang Z, Bermudez RT, Camp SM, Herndon VR, Furenlid LR, Martin DR, Garcia JGN. An eNAMPT-neutralizing mAb reduces post-infarct myocardial fibrosis and left ventricular dysfunction. Biomed Pharmacother 2024; 170:116103. [PMID: 38160623 PMCID: PMC10872269 DOI: 10.1016/j.biopha.2023.116103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial infarction (MI) triggers adverse ventricular remodeling (VR), cardiac fibrosis, and subsequent heart failure. Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is postulated to play a significant role in VR processing via activation of the TLR4 inflammatory pathway. We hypothesized that an eNAMPT specific monoclonal antibody (mAb) could target and neutralize overexpressed eNAMPT post-MI and attenuate chronic cardiac inflammation and fibrosis. We investigated humanized ALT-100 and ALT-300 mAb with high eNAMPT-neutralizing capacity in an infarct rat model to test our hypothesis. ALT-300 was 99mTc-labeled to generate 99mTc-ALT-300 for imaging myocardial eNAMPT expression at 2 hours, 1 week, and 4 weeks post-IRI. The eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg) or saline was administered intraperitoneally at 1 hour and 24 hours post-reperfusion and twice a week for 4 weeks. Cardiac function changes were determined by echocardiography at 3 days and 4 weeks post-IRI. 99mTc-ALT-300 uptake was initially localized to the ischemic area at risk (IAR) of the left ventricle (LV) and subsequently extended to adjacent non-ischemic areas 2 hours to 4 weeks post-IRI. Radioactive uptake (%ID/g) of 99mTc-ALT-300 in the IAR increased from 1 week to 4 weeks (0.54 ± 0.16 vs. 0.78 ± 0.13, P < 0.01). Rats receiving ALT-100 mAb exhibited significantly improved myocardial histopathology and cardiac function at 4 weeks, with a significant reduction in the collagen volume fraction (%LV) compared to controls (21.5 ± 6.1% vs. 29.5 ± 9.9%, P < 0.05). Neutralization of the eNAMPT/TLR4 inflammatory cascade is a promising therapeutic strategy for MI by reducing chronic inflammation, fibrosis, and preserving cardiac function.
Collapse
Affiliation(s)
- Zhonglin Liu
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States; Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States.
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christy J Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L Kempf
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Feng Li
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Zhen Yang
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States
| | - Rosendo T Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Sara M Camp
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| | - Vivian Reyes Herndon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lars R Furenlid
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Diego R Martin
- Translational Imaging Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, United States.
| | - Joe G N Garcia
- University of Florida UF Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
8
|
Semerena E, Nencioni A, Masternak K. Extracellular nicotinamide phosphoribosyltransferase: role in disease pathophysiology and as a biomarker. Front Immunol 2023; 14:1268756. [PMID: 37915565 PMCID: PMC10616597 DOI: 10.3389/fimmu.2023.1268756] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) plays a central role in mammalian cell metabolism by contributing to nicotinamide adenine dinucleotide biosynthesis. However, NAMPT activity is not limited to the intracellular compartment, as once secreted, the protein accomplishes diverse functions in the extracellular space. Extracellular NAMPT (eNAMPT, also called visfatin or pre-B-cell colony enhancing factor) has been shown to possess adipocytokine, pro-inflammatory, and pro-angiogenic activities. Numerous studies have reported the association between elevated levels of circulating eNAMPT and various inflammatory and metabolic disorders such as obesity, diabetes, atherosclerosis, arthritis, inflammatory bowel disease, lung injury and cancer. In this review, we summarize the current state of knowledge on eNAMPT biology, proposed roles in disease pathogenesis, and its potential as a disease biomarker. We also briefly discuss the emerging therapeutic approaches for eNAMPT inhibition.
Collapse
Affiliation(s)
- Elise Semerena
- Light Chain Bioscience - Novimmune SA, Plan-les-Ouates, Switzerland
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Genoa, Italy
| | | |
Collapse
|
9
|
Sun BL, Sun X, Kempf CL, Song JH, Casanova NG, Camp SM, Hernon VR, Fallon M, Bime C, Martin DR, Travelli C, Zhang DD, Garcia JGN. Involvement of eNAMPT/TLR4 inflammatory signaling in progression of non-alcoholic fatty liver disease, steatohepatitis, and fibrosis. FASEB J 2023; 37:e22825. [PMID: 36809677 PMCID: PMC11265521 DOI: 10.1096/fj.202201972rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Although the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand. Histologic and biochemical markers were measured in liver tissues and plasma from human NAFLD subjects and NAFLD mice (streptozotocin/high-fat diet-STZ/HFD, 12 weeks). Human NAFLD subjects (n = 5) exhibited significantly increased NAMPT hepatic expression and significantly elevated plasma levels of eNAMPT, IL-6, Ang-2, and IL-1RA compared to healthy controls, with IL-6 and Ang-2 levels significantly increased in NASH non-survivors. Untreated STZ/HFD-exposed mice displayed significant increases in NAFLD activity scores, liver triglycerides, NAMPT hepatic expression, plasma cytokine levels (eNAMPT, IL-6, and TNFα), and histologic evidence of hepatocyte ballooning and hepatic fibrosis. Mice receiving the eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg/week, IP, weeks 9 to 12) exhibited marked attenuation of each index of NASH progression/severity. Thus, activation of the eNAMPT/TLR4 inflammatory pathway contributes to NAFLD severity and NASH/hepatic fibrosis. ALT-100 is potentially an effective therapeutic approach to address this unmet NAFLD need.
Collapse
Affiliation(s)
- Belinda L. Sun
- Department of Pathology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Xiaoguang Sun
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carrie L. Kempf
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Jin H. Song
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nancy G. Casanova
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sara M. Camp
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Vivian Reyes Hernon
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Michael Fallon
- Department of Medicine, College of Medicine, University of Arizona, Phoenix, Arizona, USA
| | - Christian Bime
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Donna D. Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Joe G. N. Garcia
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
10
|
Lynn H, Sun X, Casanova NG, Bime C, Reyes Hernon V, Lanham C, Oita RC, Ramos N, Sun B, Coletta DK, Camp SM, Karnes JH, Ellis NA, Garcia JG. Linkage of NAMPT promoter variants to eNAMPT secretion, plasma eNAMPT levels, and ARDS severity. Ther Adv Respir Dis 2023; 17:17534666231181262. [PMID: 37477094 PMCID: PMC10363883 DOI: 10.1177/17534666231181262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/25/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVES eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel DAMP and TLR4 ligand, is a druggable ARDS therapeutic target with NAMPT promoter SNPs associated with ARDS severity. This study assesses the previously unknown influence of NAMPT promoter SNPs on NAMPT transcription, eNAMPT secretion, and ARDS severity. METHODS AND DESIGN Human lung endothelial cells (ECs) transfected with NAMPT promoter luciferase reporters harboring SNPs G-1535A, A-1001 C, and C-948A, were exposed to LPS or LPS/18% cyclic stretch (CS) and NAMPT promoter activity, NAMPT protein expression, and secretion assessed. NAMPT genotypes and eNAMPT plasma measurements (Days 0/7) were assessed in two ARDS cohorts (DISCOVERY n = 428; ALVEOLI n = 103). RESULTS Comparisons of minor allelic frequency (MAF) in both ARDS cohorts with the 1000 Human Genome Project revealed the G-1535A and C-948A SNPs to be significantly associated with ARDS in Blacks compared with controls and trended toward significance in non-Hispanic Whites. LPS-challenged and LPS/18% CS-challenged EC harboring the -1535G wild-type allele exhibited significantly increased NAMPT promoter activity (compared with -1535A) with the -1535G/-948A diplotype exhibiting significantly increased NAMPT promoter activity, NAMPT protein expression, and eNAMPT secretion compared with the -1535A/-948 C diplotype. Highly significant increases in Day 0 eNAMPT plasma values were observed in both DISCOVERY and ALVEOLI ARDS cohorts (compared with healthy controls). Among subjects surviving to Day 7, Day 7 eNAMPT values were significantly increased in Day 28 non-survivors versus survivors. The protective -1535A SNP allele drove -1535A/-1001A and -1535A/-948 C diplotypes that confer significantly reduced ARDS risk (compared with -1535G, -1535G/-1001 C, -1535G/-948A), particularly in Black ARDS subjects. NAMPT SNP comparisons within the two ARDS cohorts did not identify significant association with either APACHE III scores or plasma eNAMPT levels. CONCLUSION NAMPT SNPs influence promoter activity, eNAMPT protein expression/secretion, plasma eNAMPT levels, and ARDS severity. NAMPT genotypes are a potential tool for stratification in eNAMPT-focused ARDS clinical trials.
Collapse
Affiliation(s)
- Heather Lynn
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G. Casanova
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Clayton Lanham
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C. Oita
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nikolas Ramos
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Belinda Sun
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Dawn K. Coletta
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jason H. Karnes
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nathan A. Ellis
- College of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G.N. Garcia
- Dr. Herbert A. Wertheim Professor of Inflammation Science, Director, Center for Inflammation Science and Systems Medicine, University of Florida Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
11
|
Tumurkhuu G, Casanova NG, Kempf CL, Ercan Laguna D, Camp SM, Dagvadorj J, Song JH, Reyes Hernon V, Travelli C, Montano EN, Yu JM, Ishimori M, Wallace DJ, Sammani S, Jefferies C, Garcia JG. eNAMPT/TLR4 inflammatory cascade activation is a key contributor to SLE Lung vasculitis and alveolar hemorrhage. J Transl Autoimmun 2022; 6:100181. [PMID: 36619655 PMCID: PMC9816774 DOI: 10.1016/j.jtauto.2022.100181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale Effective therapies to reduce the severity and high mortality of pulmonary vasculitis and diffuse alveolar hemorrhage (DAH) in patients with systemic lupus erythematosus (SLE) is a serious unmet need. We explored whether biologic neutralization of eNAMPT (extracellular nicotinamide phosphoribosyl-transferase), a novel DAMP and Toll-like receptor 4 ligand, represents a viable therapeutic strategy in lupus vasculitis. Methods Serum was collected from SLE subjects (n = 37) for eNAMPT protein measurements. In the preclinical pristane-induced murine model of lung vasculitis/hemorrhage, C57BL/6 J mice (n = 5-10/group) were treated with PBS, IgG (1 mg/kg), or the eNAMPT-neutralizing ALT-100 mAb (1 mg/kg, IP or subcutaneously (SQ). Lung injury evaluation (Day 10) included histology/immuno-histochemistry, BAL protein/cellularity, tissue biochemistry, RNA sequencing, and plasma biomarker assessment. Results SLE subjects showed highly significant increases in blood NAMPT mRNA expression and eNAMPT protein levels compared to healthy controls. Preclinical pristane-exposed mice studies showed significantly increased NAMPT lung tissue expression and increased plasma eNAMPT levels accompanied by marked increases in alveolar hemorrhage and lung inflammation (BAL protein, PMNs, activated monocytes). In contrast, ALT-100 mAb-treated mice showed significant attenuation of inflammatory lung injury, alveolar hemorrhage, BAL protein, tissue leukocytes, and plasma inflammatory cytokines (eNAMPT, IL-6, IL-8). Lung RNA sequencing showed pristane-induced activation of inflammatory genes/pathways including NFkB, cytokine/chemokine, IL-1β, and MMP signaling pathways, each rectified in ALT-100 mAb-treated mice. Conclusions These findings highlight the role of eNAMPT/TLR4-mediated inflammatory signaling in the pathobiology of SLE pulmonary vasculitis and alveolar hemorrhage. Biologic neutralization of this novel DAMP appears to serve as a viable strategy to reduce the severity of SLE lung vasculitis.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Duygu Ercan Laguna
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Erica N. Montano
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeong Min Yu
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mariko Ishimori
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel J. Wallace
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Caroline Jefferies
- Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| |
Collapse
|
12
|
Song JH, Mascarenhas JB, Sammani S, Kempf CL, Cai H, Camp SM, Bermudez T, Zhang DD, Natarajan V, Garcia JGN. TLR4 activation induces inflammatory vascular permeability via Dock1 targeting and NOX4 upregulation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166562. [PMID: 36179995 DOI: 10.1016/j.bbadis.2022.166562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/30/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.
Collapse
Affiliation(s)
- Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Joseph B Mascarenhas
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Hua Cai
- Department of Anesthesiology. University of California Los Angeles, Los Angeles, CA, United States of America
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, University of Arizona Health Sciences, Tucson, AZ, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States of America.
| |
Collapse
|
13
|
Shin H, Morty RE, Sucre JM, Negretti NM, Markmann M, Hossain H, Krauss-Etschmann S, Dehmel S, Hilgendorff A. Reference genes for the developing mouse lung under consideration of biological, technical and experimental confounders. Sci Rep 2022; 12:17679. [PMID: 36271035 PMCID: PMC9587035 DOI: 10.1038/s41598-022-19071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023] Open
Abstract
For gene expression analysis, the raw data obtained from RT-qPCR are preferably normalized to reference genes, which should be constantly expressed regardless of experimental conditions. Selection of reference genes is particularly challenging for the developing lung because of the complex transcriptional and epigenetic regulation of genes during organ maturation and injury repair. To date, there are only limited experimental data addressing reliable reference genes for this biological circumstance. In this study, we evaluated reference genes for the lung in neonatal C57BL/6 mice under consideration of biological, technical and experimental conditions. For that, we thoroughly selected candidates from commonly used reference genes side-by-side with novel ones by analyzing publicly available microarray datasets. We performed RT-qPCR of the selected candidate genes and analyzed their expression variability using GeNorm and Normfinder. Cell-specific expression of the candidate genes was analyzed using our own single-cell RNA-sequencing data from the developing mouse lung. Depending on the investigated conditions, i.e., developmental stages, sex, RNA quality, experimental condition (hyperoxia) and cell types, distinct candidate genes demonstrated stable expression confirming their eligibility as reliable reference genes. Our results provide valuable information for the selection of proper reference genes in studies investigating the neonatal mouse lung.
Collapse
Affiliation(s)
- H. Shin
- grid.4567.00000 0004 0483 2525Institute for Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of German Center for Lung Research (DZL), Munich, Germany
| | - R. E. Morty
- grid.5253.10000 0001 0328 4908Department of Translational Pulmonology, University Hospital Heidelberg, Heidelberg, Germany ,Translational Lung Research Center, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - J. M. Sucre
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - N. M. Negretti
- grid.412807.80000 0004 1936 9916Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN USA
| | - M. Markmann
- grid.8664.c0000 0001 2165 8627Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Justus-Liebig-University, Giessen, Germany
| | - H. Hossain
- grid.440273.6Institute of Laboratory Medicine and Microbiology, Klinikum St. Marien Amberg and Kliniken Nordoberpfalz AG, Weiden, Germany
| | - S. Krauss-Etschmann
- grid.4567.00000 0004 0483 2525Institute for Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of German Center for Lung Research (DZL), Munich, Germany ,grid.452624.3Present Address: Priority Area Chronic Lung Diseases, Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Borstel, Germany ,grid.9764.c0000 0001 2153 9986Present Address: Institute for Experimental Medicine, Christian Albrechts University, German Center for Lung Research (DZL) and the Airway Research Center North (ARCN), Kiel, Germany
| | - S. Dehmel
- grid.4567.00000 0004 0483 2525Institute for Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of German Center for Lung Research (DZL), Munich, Germany ,grid.4567.00000 0004 0483 2525Present Address: Strategy, Programs, Resources (SPR), Helmholtz Zentrum München, Munich, Germany
| | - A. Hilgendorff
- grid.4567.00000 0004 0483 2525Institute for Lung Biology and Disease and Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of German Center for Lung Research (DZL), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Comprehensive Developmental Care (CDeCLMU), University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
14
|
Xu Q, Liu X, Mohseni G, Hao X, Ren Y, Xu Y, Gao H, Wang Q, Wang Y. Mechanism research and treatment progress of NAD pathway related molecules in tumor immune microenvironment. Cancer Cell Int 2022; 22:242. [PMID: 35906622 PMCID: PMC9338646 DOI: 10.1186/s12935-022-02664-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is the core of cellular energy metabolism. NAMPT, Sirtuins, PARP, CD38, and other molecules in this classic metabolic pathway affect many key cellular functions and are closely related to the occurrence and development of many diseases. In recent years, several studies have found that these molecules can regulate cell energy metabolism, promote the release of related cytokines, induce the expression of neoantigens, change the tumor immune microenvironment (TIME), and then play an anticancer role. Drugs targeting these molecules are under development or approved for clinical use. Although there are some side effects and drug resistance, the discovery of novel drugs, the development of combination therapies, and the application of new technologies provide solutions to these challenges and improve efficacy. This review presents the mechanisms of action of NAD pathway-related molecules in tumor immunity, advances in drug research, combination therapies, and some new technology-related therapies.
Collapse
Affiliation(s)
- QinChen Xu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Xiaodong Hao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yidan Ren
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Yiwei Xu
- Marine College, Shandong University, 264209, Weihai, China
| | - Huiru Gao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China
| | - Qin Wang
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, 250033, Jinan, Shandong, China.
| |
Collapse
|
15
|
Sammani S, Bermudez T, Kempf CL, Song JH, Fleming JC, Reyes Hernon V, Hufford M, Tang L, Cai H, Camp SM, Natarajan V, Jacobson JR, Dudek SM, Martin DR, Karmonik C, Sun X, Sun B, Casanova NG, Bime C, Garcia JGN. eNAMPT Neutralization Preserves Lung Fluid Balance and Reduces Acute Renal Injury in Porcine Sepsis/VILI-Induced Inflammatory Lung Injury. Front Physiol 2022; 13:916159. [PMID: 35812318 PMCID: PMC9257134 DOI: 10.3389/fphys.2022.916159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Numerous potential ARDS therapeutics, based upon preclinical successful rodent studies that utilized LPS challenge without mechanical ventilation, have failed in Phase 2/3 clinical trials. Recently, ALT-100 mAb, a novel biologic that neutralizes the TLR4 ligand and DAMP, eNAMPT (extracellular nicotinamide phosphoribosyltransferase), was shown to reduce septic shock/VILI-induced porcine lung injury when delivered 2 h after injury onset. We now examine the ALT-100 mAb efficacy on acute kidney injury (AKI) and lung fluid balance in a porcine ARDS/VILI model when delivered 6 h post injury.Methods/Results: Compared to control PBS-treated pigs, exposure of ALT-100 mAb-treated pigs (0.4 mg/kg, 2 h or 6 h after injury initiation) to LPS-induced pneumonia/septic shock and VILI (12 h), demonstrated significantly diminished lung injury severity (histology, BAL PMNs, plasma cytokines), biochemical/genomic evidence of NF-kB/MAP kinase/cytokine receptor signaling, and AKI (histology, plasma lipocalin). ALT-100 mAb treatment effectively preserved lung fluid balance reflected by reduced BAL protein/tissue albumin levels, lung wet/dry tissue ratios, ultrasound-derived B lines, and chest radiograph opacities. Delayed ALT-100 mAb at 2 h was significantly more protective than 6 h delivery only for plasma eNAMPT while trending toward greater protection for remaining inflammatory indices. Delayed ALT-100 treatment also decreased lung/renal injury indices in LPS/VILI-exposed rats when delivered up to 12 h after LPS.Conclusions: These studies indicate the delayed delivery of the eNAMPT-neutralizing ALT-100 mAb reduces inflammatory lung injury, preserves lung fluid balance, and reduces multi-organ dysfunction, and may potentially address the unmet need for novel therapeutics that reduce ARDS/VILI mortality.
Collapse
Affiliation(s)
- Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Justin C Fleming
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Lin Tang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, CA, United States
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Viswanathan Natarajan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jeffrey R. Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Steven M. Dudek
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Diego R. Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Christof Karmonik
- Department of Radiology and the Translational Imaging Center, Houston Methodist Hospital and the Houston Methodist Research Institute, Houston, TX, United States
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Belinda Sun
- Department of Pathology, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
| | - Joe G. N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, United States
- *Correspondence: Joe G. N. Garcia,
| |
Collapse
|
16
|
Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG, Song JH, Sun X, Cai H, Moreno-Vinasco L, Gregory T, Oita RC, Hernon VR, Camp SM, Rogers C, Kyubwa EM, Menon N, Axtelle J, Rappaport J, Bime C, Sammani S, Cress AE, Garcia JGN. eNAMPT Is a Novel Damage-associated Molecular Pattern Protein That Contributes to the Severity of Radiation-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 66:497-509. [PMID: 35167418 PMCID: PMC9116358 DOI: 10.1165/rcmb.2021-0357oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-β, TSP1 (thrombospondin-1), NOX4, IL-1β, and NRF2; 3) plasma eNAMPT and IL-1β concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Louisiana
| | | | | | - Anne E. Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
17
|
Bermudez T, Sammani S, Song JH, Hernon VR, Kempf CL, Garcia AN, Burt J, Hufford M, Camp SM, Cress AE, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Cancio LC, Alvarez J, Rafikov R, Li Y, Zhang DD, Casanova NG, Bime C, Garcia JGN. eNAMPT neutralization reduces preclinical ARDS severity via rectified NFkB and Akt/mTORC2 signaling. Sci Rep 2022; 12:696. [PMID: 35027578 PMCID: PMC8758770 DOI: 10.1038/s41598-021-04444-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Despite encouraging preclinical data, therapies to reduce ARDS mortality remains a globally unmet need, including during the COVID-19 pandemic. We previously identified extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a novel damage-associated molecular pattern protein (DAMP) via TLR4 ligation which regulates inflammatory cascade activation. eNAMPT is tightly linked to human ARDS by biomarker and genotyping studies in ARDS subjects. We now hypothesize that an eNAMPT-neutralizing mAb will significantly reduce the severity of ARDS lung inflammatory lung injury in diverse preclinical rat and porcine models. Sprague Dawley rats received eNAMPT mAb intravenously following exposure to intratracheal lipopolysaccharide (LPS) or to a traumatic blast (125 kPa) but prior to initiation of ventilator-induced lung injury (VILI) (4 h). Yucatan minipigs received intravenous eNAMPT mAb 2 h after initiation of septic shock and VILI (12 h). Each rat/porcine ARDS/VILI model was strongly associated with evidence of severe inflammatory lung injury with NFkB pathway activation and marked dysregulation of the Akt/mTORC2 signaling pathway. eNAMPT neutralization dramatically reduced inflammatory indices and the severity of lung injury in each rat/porcine ARDS/VILI model (~ 50% reduction) including reduction in serum lactate, and plasma levels of eNAMPT, IL-6, TNFα and Ang-2. The eNAMPT mAb further rectified NFkB pathway activation and preserved the Akt/mTORC2 signaling pathway. These results strongly support targeting the eNAMPT/TLR4 inflammatory pathway as a potential ARDS strategy to reduce inflammatory lung injury and ARDS mortality.
Collapse
Affiliation(s)
- Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica Burt
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Matthew Hufford
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | | | - Julie Alvarez
- Institute of Surgical Research, San Antonio, TX, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yansong Li
- Institute of Surgical Research, San Antonio, TX, USA
| | - Donna D Zhang
- College of Pharmacy, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
18
|
Garcia AN, Casanova NG, Valera DG, Sun X, Song JH, Kempf CL, Moreno-Vinasco L, Burns K, Bermudez T, Valdez M, Cuellar G, Gregory T, Oita RC, Hernon VR, Barber C, Camp SM, Martin D, Liu Z, Bime C, Sammani S, Cress AE, Garcia JG. Involvement of eNAMPT/TLR4 signaling in murine radiation pneumonitis: protection by eNAMPT neutralization. Transl Res 2022; 239:44-57. [PMID: 34139379 PMCID: PMC8671169 DOI: 10.1016/j.trsl.2021.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
Therapeutic strategies to prevent or reduce the severity of radiation pneumonitis are a serious unmet need. We evaluated extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a damage-associated molecular pattern protein (DAMP) and Toll-Like Receptor 4 (TLR4) ligand, as a therapeutic target in murine radiation pneumonitis. Radiation-induced murine and human NAMPT expression was assessed in vitro, in tissues (IHC, biochemistry, imaging), and in plasma. Wild type C57Bl6 mice (WT) and Nampt+/- heterozygous mice were exposed to 20Gy whole thoracic lung irradiation (WTLI) with or without weekly IP injection of IgG1 (control) or an eNAMPT-neutralizing polyclonal (pAb) or monoclonal antibody (mAb). BAL protein/cells and H&E staining were used to generate a WTLI severity score. Differentially-expressed genes (DEGs)/pathways were identified by RNA sequencing and bioinformatic analyses. Radiation exposure increases in vitro NAMPT expression in lung epithelium (NAMPT promoter activity) and NAMPT lung tissue expression in WTLI-exposed mice. Nampt+/- mice and eNAMPT pAb/mAb-treated mice exhibited significant histologic attenuation of WTLI-mediated lung injury with reduced levels of BAL protein and cells, and plasma levels of eNAMPT, IL-6, and IL-1β. Genomic and biochemical studies from WTLI-exposed lung tissues highlighted dysregulation of NFkB/cytokine and MAP kinase signaling pathways which were rectified by eNAMPT mAb treatment. The eNAMPT/TLR4 pathway is essentially involved in radiation pathobiology with eNAMPT neutralization an effective therapeutic strategy to reduce the severity of radiation pneumonitis.
Collapse
Affiliation(s)
- Alexander N Garcia
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, Arizona
| | - Nancy G Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Daniel G Valera
- Department of Radiation Oncology, University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Jin H Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Carrie L Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | | - Kimberlie Burns
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Mia Valdez
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Genesis Cuellar
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Taylor Gregory
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Christy Barber
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, Arizona
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Diego Martin
- Department of Radiology and the Translational Imaging Center, Houston Methodist Research Institute, Houston, Texas
| | - Zhonglin Liu
- Department of Medical Imaging, University of Arizona Health Sciences, Tucson, Arizona
| | - Christian Bime
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Anne E Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe Gn Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, Arizona.
| |
Collapse
|
19
|
Ahmed M, Zaghloul N, Zimmerman P, Casanova NG, Sun X, Song JH, Hernon VR, Sammani S, Rischard F, Rafikova O, Rafikov R, Makino A, Kempf CL, Camp SM, Wang J, Desai AA, Lussier Y, Yuan JXJ, Garcia JG. Endothelial eNAMPT drives EndMT and preclinical PH: rescue by an eNAMPT-neutralizing mAb. Pulm Circ 2021; 11:20458940211059712. [PMID: 34790349 PMCID: PMC8591779 DOI: 10.1177/20458940211059712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pharmacologic interventions to halt/reverse the vascular remodeling and right ventricular dysfunction in pulmonary arterial hypertension (PAH) remains an unmet need. We previously demonstrated extracellular nicotinamide phosphoribosyltransferase (eNAMPT) as a DAMP (damage-associated molecular pattern protein) contributing to PAH pathobiology via TLR4 ligation. We examined the role of endothelial cell (EC)-specific eNAMPT in experimental PH and an eNAMPT-neutralizing mAb as a therapeutic strategy to reverse established PH. Hemodynamic/echocardiographic measurements and tissue analyses were performed in Sprague Dawley rats exposed to 10% hypoxia/Sugen (three weeks) followed by return to normoxia and weekly intraperitoneal delivery of the eNAMPT mAb (1 mg/kg). WT C57BL/6J mice and conditional EC-cNAMPTec-/- mice were exposed to 10% hypoxia (three weeks). Biochemical and RNA sequencing studies were performed on rat PH lung tissues and human PAH PBMCs. Hypoxia/Sugen-exposed rats exhibited multiple indices of severe PH (right ventricular systolic pressure, Fulton index), including severe vascular remodeling, compared to control rats. PH severity indices and plasma levels of eNAMPT, IL-6, and TNF-α were all significantly attenuated by eNAMPT mAb neutralization. Compared to hypoxia-exposed WT mice, cNAMPTec-/- KO mice exhibited significantly reduced PH severity and evidence of EC to mesenchymal transition (EndMT). Finally, biochemical and RNAseq analyses revealed eNAMPT mAb-mediated rectification of dysregulated inflammatory signaling pathways (TLR/NF-κB, MAP kinase, Akt/mTOR) and EndMT in rat PH lung tissues and human PAH PBMCs. These studies underscore EC-derived eNAMPT as a key contributor to PAH pathobiology and support the eNAMPT/TLR4 inflammatory pathway as a highly druggable therapeutic target to reduce PH severity and reverse PAH.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nahla Zaghloul
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Prisca Zimmerman
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Nancy G. Casanova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H. Song
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Vivian Reyes Hernon
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Franz Rischard
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Olga Rafikova
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ruslan Rafikov
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ayako Makino
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Carrie L. Kempf
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jian Wang
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- State Key Laboratory of Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A. Desai
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Yves Lussier
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jason X.-J. Yuan
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- State Key Laboratory of Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Strategies to DAMPen COVID-19-mediated lung and systemic inflammation and vascular injury. Transl Res 2021; 232:37-48. [PMID: 33358868 PMCID: PMC7749994 DOI: 10.1016/j.trsl.2020.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Approximately 15%-20% of patients infected with SARS-CoV-2 coronavirus (COVID-19) progress beyond mild and self-limited disease to require supplemental oxygen for severe pneumonia; 5% of COVID-19-infected patients further develop acute respiratory distress syndrome (ARDS) and multiorgan failure. Despite mortality rates surpassing 40%, key insights into COVID-19-induced ARDS pathology have not been fully elucidated and multiple unmet needs remain. This review focuses on the unmet need for effective therapies that target unchecked innate immunity-driven inflammation which drives unchecked vascular permeability, multiorgan dysfunction and ARDS mortality. Additional unmet needs including the lack of insights into factors predicting pathogenic hyperinflammatory viral host responses, limited approaches to address the vast disease heterogeneity in ARDS, and the absence of clinically-useful ARDS biomarkers. We review unmet needs persisting in COVID-19-induced ARDS in the context of the potential role for damage-associated molecular pattern proteins in lung and systemic hyperinflammatory host responses to SARS-CoV-2 infection that ultimately drive multiorgan dysfunction and ARDS mortality. Insights into promising stratification-enhancing, biomarker-based strategies in COVID-19 and non-COVID ARDS may enable the design of successful clinical trials of promising therapies.
Collapse
Key Words
- ace2, angiotensin converting enzyme 2
- ang-2, angiopoietin-2
- ards, acute respiratory distress syndrome
- covid-19, coronavirus disease 19 infection
- crp, c-reactive protein
- damps, damage-associated molecular pattern proteins
- enampt, extracellular nicotinamide phosphoribosyl-transferase
- ifnγ, interferon gamma
- il-1ra, interleukin 1 receptor antagonist
- il-6, interleukin 6
- ip-10, interferon gamma-induced protein 10
- irf7, interferon regulatory factor 7
- mcp1, monocyte chemoattractant protein 1
- mif, macrophage migration inhibition factor
- hmgb1, the high mobility group box 1 protein
- no, nitric oxide
- pamps, pathogen-associated molecular pattern proteins
- ripk1, receptor-interacting serine/threonine-protein kinase
- ros, reactive oxygen species
- sars-cov-2, severe acute respiratory syndrome-related coronavirus 2
- smi, small molecule inhibitor
- tlrs, toll-like family of receptors
- tnfα, tumor necrosis factor alpha
- vili, ventilator-induced lung injury
Collapse
|
21
|
Quijada H, Bermudez T, Kempf CL, Valera DG, Garcia AN, Camp SM, Song JH, Franco E, Burt JK, Sun B, Mascarenhas JB, Burns K, Gaber A, Oita RC, Reyes Hernon V, Barber C, Moreno-Vinasco L, Sun X, Cress AE, Martin D, Liu Z, Desai AA, Natarajan V, Jacobson JR, Dudek SM, Bime C, Sammani S, Garcia JG. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. Eur Respir J 2021; 57:2002536. [PMID: 33243842 PMCID: PMC8100338 DOI: 10.1183/13993003.02536-2020] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.
Collapse
Affiliation(s)
- Hector Quijada
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-first authors
| | - Tadeo Bermudez
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-first authors
| | - Carrie L. Kempf
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Daniel G. Valera
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Alexander N. Garcia
- Dept of Radiation Oncology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Sara M. Camp
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jin H. Song
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Evelyn Franco
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Jessica K. Burt
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Belinda Sun
- Dept of Pathology, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Kimberlie Burns
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Amir Gaber
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Radu C. Oita
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Christy Barber
- Dept of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, USA
| | | | - Xiaoguang Sun
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Anne E. Cress
- Dept of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Diego Martin
- Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - Zhonglin Liu
- Dept of Medical Imaging, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Ankit A. Desai
- Dept of Medicine, Indiana University, Indianapolis IN, USA
| | | | | | - Steven M. Dudek
- Dept of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Christian Bime
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
| | - Saad Sammani
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-senior authors
| | - Joe G.N. Garcia
- Dept of Medicine, University of Arizona Health Sciences, Tucson, AZ, USA
- Co-senior authors
| |
Collapse
|
22
|
Sun X, Sun B, Sammani S, Bermudez T, Dudek S, Camp S, Garcia J. Genetic and epigenetic regulation of the non-muscle myosin light chain kinase isoform by lung inflammatory factors and mechanical stress. Clin Sci (Lond) 2021; 135:963-977. [PMID: 33792658 PMCID: PMC8047480 DOI: 10.1042/cs20201448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
RATIONALE The myosin light chain kinase gene, MYLK, encodes three proteins via unique promoters, including the non-muscle isoform of myosin light chain kinase (nmMLCK), a cytoskeletal protein centrally involved in regulation of vascular integrity. As MYLK coding SNPs are associated with severe inflammatory disorders (asthma, acute respiratory distress syndrome (ARDS)), we explored clinically relevant inflammatory stimuli and promoter SNPs in nmMLCK promoter regulation. METHODS Full-length or serially deleted MYLK luciferase reporter promoter activities were measured in human lung endothelial cells (ECs). SNP-containing non-muscle MYLK (nmMYLK) DNA fragments were generated and nmMYLK promoter binding by transcription factors (TFs) detected by protein-DNA electrophoretic mobility shift assay (EMSA). Promoter demethylation was evaluated by 5-aza-2'-deoxycytidine (5-Aza). A preclinical mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) was utilized for nmMLCK validation. RESULTS Lung EC levels of nmMLCK were significantly increased in LPS-challenged mice and LPS, tumor necrosis factor-α (TNF-α), 18% cyclic stretch (CS) and 5-Aza each significantly up-regulated EC nmMYLK promoter activities. EC exposure to FG-4592, a prolyl hydroxylase inhibitor that increases hypoxia-inducible factor (HIF) expression, increased nmMYLK promoter activity, confirmed by HIF1α/HIF2α silencing. nmMYLK promoter deletion studies identified distal inhibitory and proximal enhancing promoter regions as well as mechanical stretch-, LPS- and TNFα-inducible regions. Insertion of ARDS-associated SNPs (rs2700408, rs11714297) significantly increased nmMYLK promoter activity via increased transcription binding (glial cells missing homolog 1 (GCM1) and intestine-specific homeobox (ISX), respectively). Finally, the MYLK rs78755744 SNP (-261G/A), residing within a nmMYLK CpG island, significantly attenuated 5-Aza-induced promoter activity. CONCLUSION These findings indicate nmMYLK transcriptional regulation by clinically relevant inflammatory factors and ARDS-associated nmMYLK promoter variants are consistent with nmMLCK as a therapeutic target in severe inflammatory disorders.
Collapse
Affiliation(s)
- Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Belinda L. Sun
- Department of Pathology, University of Arizona, Tucson, AZ, U.S.A
| | - Saad Sammani
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Tadeo Bermudez
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Steven M. Dudek
- Department of Medicine, University of Illinois Chicago, Chicago, IL, U.S.A
| | - Sara M. Camp
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| | - Joe G.N. Garcia
- Department of Medicine, University of Arizona, Tucson, AZ, U.S.A
| |
Collapse
|
23
|
Martínez-Morcillo FJ, Cantón-Sandoval J, Martínez-Menchón T, Corbalán-Vélez R, Mesa-Del-Castillo P, Pérez-Oliva AB, García-Moreno D, Mulero V. Non-canonical roles of NAMPT and PARP in inflammation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103881. [PMID: 33038343 DOI: 10.1016/j.dci.2020.103881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is the most important hydrogen carrier in cell redox reactions. It is involved in mitochondrial function and metabolism, circadian rhythm, the immune response and inflammation, DNA repair, cell division, protein-protein signaling, chromatin remodeling and epigenetics. Recently, NAD+ has been recognized as the molecule of life, since, by increasing NAD+ levels in old or sick animals, it is possible to improve their health and lengthen their lifespan. In this review, we summarize the contribution of NAD+ metabolism to inflammation, with special emphasis in the major NAD+ biosynthetic enzyme, nicotinamide phosphoribosyl transferase (NAMPT), and the NAD+-consuming enzyme, poly(ADP-ribose) polymerase (PARP). The extracurricular roles of these enzymes, i.e. the proinflammatory role of NAMPT after its release, and the ability of PARP to promote a novel form of cell death, known as parthanatos, upon hyperactivation are revised and discussed in the context of several chronic inflammatory diseases.
Collapse
Affiliation(s)
- Francisco J Martínez-Morcillo
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Joaquín Cantón-Sandoval
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
| | - Teresa Martínez-Menchón
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Raúl Corbalán-Vélez
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Dermatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Mesa-Del-Castillo
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Servicio de Reumatología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana B Pérez-Oliva
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Diana García-Moreno
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| | - Victoriano Mulero
- Departmento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
24
|
Bime C, Camp SM, Casanova N, Oita RC, Ndukum J, Lynn H, Garcia JGN. The acute respiratory distress syndrome biomarker pipeline: crippling gaps between discovery and clinical utility. Transl Res 2020; 226:105-115. [PMID: 32599095 PMCID: PMC7319618 DOI: 10.1016/j.trsl.2020.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent innovations in translational research have ushered an exponential increase in the discovery of novel biomarkers, thereby elevating the hope for deeper insights into "personalized" medicine approaches to disease phenotyping and care. However, a critical gap exists between the fast pace of biomarker discovery and the successful translation to clinical use. This gap underscores the fundamental biomarker conundrum across various acute and chronic disorders: how does a biomarker address a specific unmet need? Additionally, the gap highlights the need to shift the paradigm from a focus on biomarker discovery to greater translational impact and the need for a more streamlined drug approval process. The unmet need for biomarkers in acute respiratory distress syndrome (ARDS) is for reliable and validated biomarkers that minimize heterogeneity and allow for stratification of subject selection for enrollment in clinical trials of tailored therapies. This unmet need is particularly highlighted by the ongoing SARS-CoV-2/COVID-19 pandemic. The unprecedented numbers of COVID-19-induced ARDS cases has strained health care systems across the world and exposed the need for biomarkers that would accelerate drug development and the successful phenotyping of COVID-19-infected patients at risk for development of ARDS and ARDS mortality. Accordingly, this review discusses the current state of ARDS biomarkers in the context of the drug development pipeline and highlight gaps between biomarker discovery and clinical implementation while proposing potential paths forward. We discuss potential ARDS biomarkers by category and by context of use, highlighting progress in the development continuum. We conclude by discussing challenges to successful translation of biomarker candidates to clinical impact and proposing possible novel strategies.
Collapse
Affiliation(s)
- Christian Bime
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona.
| | - Sara M Camp
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Nancy Casanova
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Radu C Oita
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Juliet Ndukum
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Heather Lynn
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- College of Medicine, University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
25
|
Sun BL, Sun X, Casanova N, Garcia AN, Oita R, Algotar AM, Camp SM, Hernon VR, Gregory T, Cress AE, Garcia JGN. Role of secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) in prostate cancer progression: Novel biomarker and therapeutic target. EBioMedicine 2020; 61:103059. [PMID: 33045468 PMCID: PMC7559260 DOI: 10.1016/j.ebiom.2020.103059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/13/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There remains a serious need to prevent the progression of invasive prostate cancer (PCa). We previously showed that secreted extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is a multifunctional innate immunity regulator via TLR4 ligation which has been implicated in PCa progression. Here we investigate the role of eNAMPT as a diagnostic biomarker and therapeutic target in the progression of PCa. METHODS Tumor NAMPT expression and plasma eNAMPT level were evaluated in human subjects with various PCa tumor stages and high risk subjects followed-up clinically for PCa. The genetic regulation of NAMPT expression in PCa cells and the role of eNAMPT in PCa invasion were investigated utilizing in vitro and in vivo models. FINDINGS Marked NAMPT expression was detected in human extraprostatic-invasive PCa tissues compared to minimal expression of organ-confined PCa. Plasma eNAMPT levels were significantly elevated in PCa subjects compared to male controls, and significantly greater in subjects with extraprostatic-invasive PCa compared to subjects with organ-confined PCa. Plasma eNAMPT levels showed significant predictive value for diagnosing PCa. NAMPT expression and eNAMPT secretion were highly upregulated in human PCa cells in response to hypoxia-inducible factors and EGF. In vitro cell culture and in vivo preclinical mouse model studies confirmed eNAMPT-mediated enhancement of PCa invasiveness into muscle tissues and dramatic attenuation of PCa invasion by weekly treatment with an eNAMPT-neutralizing polyclonal antibody. INTERPRETATION This study suggests that eNAMPT is a potential biomarker for PCa, especially invasive PCa. Neutralization of eNAMPT may be an effective therapeutic approach to prevent PCa invasion and progression.
Collapse
Affiliation(s)
- Belinda L Sun
- Department of Pathology, The University of Arizona Health Sciences, United States.
| | - Xiaoguang Sun
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Nancy Casanova
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Alexander N Garcia
- Department of Radiation Oncology, The University of Arizona Health Sciences, United States
| | - Radu Oita
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Amit M Algotar
- Department of Family Medicine, The University of Arizona Health Sciences, United States
| | - Sara M Camp
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Vivian Reyes Hernon
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Taylor Gregory
- Department of Medicine, The University of Arizona Health Sciences, United States
| | - Anne E Cress
- Department of Cellular and Molecular Medicine, the University of Arizona Health Sciences, United States
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, United States.
| |
Collapse
|
26
|
Sun X, Sun BL, Babicheva A, Vanderpool R, Oita RC, Casanova N, Tang H, Gupta A, Lynn H, Gupta G, Rischard F, Sammani S, Kempf CL, Moreno-Vinasco L, Ahmed M, Camp SM, Wang J, Desai AA, Yuan JXJ, Garcia JGN. Direct Extracellular NAMPT Involvement in Pulmonary Hypertension and Vascular Remodeling. Transcriptional Regulation by SOX and HIF-2α. Am J Respir Cell Mol Biol 2020; 63:92-103. [PMID: 32142369 PMCID: PMC7328254 DOI: 10.1165/rcmb.2019-0164oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 03/05/2020] [Indexed: 12/21/2022] Open
Abstract
We previously demonstrated involvement of NAMPT (nicotinamide phosphoribosyltransferase) in pulmonary arterial hypertension (PAH) and now examine NAMPT regulation and extracellular NAMPT's (eNAMPT's) role in PAH vascular remodeling. NAMPT transcription and protein expression in human lung endothelial cells were assessed in response to PAH-relevant stimuli (PDGF [platelet-derived growth factor], VEGF [vascular endothelial growth factor], TGF-β1 [transforming growth factor-β1], and hypoxia). Endothelial-to-mesenchymal transition was detected by SNAI1 (snail family transcriptional repressor 1) and PECAM1 (platelet endothelial cell adhesion molecule 1) immunofluorescence. An eNAMPT-neutralizing polyclonal antibody was tested in a PAH model of monocrotaline challenge in rats. Plasma eNAMPT concentrations, significantly increased in patients with idiopathic pulmonary arterial hypertension, were highly correlated with indices of PAH severity. eNAMPT increased endothelial-to-mesenchymal transition, and each PAH stimulus significantly increased endothelial cell NAMPT promoter activity involving transcription factors STAT5 (signal transducer and activator of transcription 5), SOX18 (SRY-box transcription factor 18), and SOX17 (SRY-box transcription factor 17), a PAH candidate gene newly defined by genome-wide association study. The hypoxia-induced transcription factor HIF-2α (hypoxia-inducible factor-2α) also potently regulated NAMPT promoter activity, and HIF-2α binding sites were identified between -628 bp and -328 bp. The PHD2 (prolyl hydroxylase domain-containing protein 2) inhibitor FG-4592 significantly increased NAMPT promoter activity and protein expression in an HIF-2α-dependent manner. Finally, the eNAMPT-neutralizing polyclonal antibody significantly reduced monocrotaline-induced vascular remodeling, PAH hemodynamic alterations, and NF-κB activation. eNAMPT is a novel and attractive therapeutic target essential to PAH vascular remodeling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mohamed Ahmed
- Department of Pediatrics, University of Arizona Health Sciences, Tucson, Arizona
| | | | | | | | | | | |
Collapse
|
27
|
Feng D, Xu D, Murakoshi N, Tajiri K, Qin R, Yonebayashi S, Okabe Y, Li S, Yuan Z, Aonuma K, Ieda M. Nicotinamide Phosphoribosyltransferase (Nampt)/Nicotinamide Adenine Dinucleotide (NAD) Axis Suppresses Atrial Fibrillation by Modulating the Calcium Handling Pathway. Int J Mol Sci 2020; 21:ijms21134655. [PMID: 32629939 PMCID: PMC7370160 DOI: 10.3390/ijms21134655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/13/2022] Open
Abstract
Aging and obesity are the most prominent risk factors for onset of atrial fibrillation (AF). Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme that catalyzes nicotinamide adenine dinucleotide (NAD) activity. Nampt and NAD are essential for maintenance of cellular redox homeostasis and modulation of cellular metabolism, and their expression levels decrease with aging and obesity. However, a role for Nampt in AF is unknown. The present study aims to test whether there is a role of Nampt/NAD axis in the pathogenesis of obesity-induced AF. Male C57BL/6J (WT) mice and heterozygous Nampt knockout (NKO) mice were fed with a normal chow diet (ND) or a high-fat diet (HFD). Electrophysiological study showed that AF inducibility was significantly increased in WT+HFD, NKO+ND, and NKO+HFD mice compared with WT+ND mice. AF duration was significantly longer in WT+HFD and NKO+ND mice and further prolonged in NKO+HFD mice compared with WT+ND mice and the calcium handling pathway was altered on molecular level. Also, treatment with nicotinamide riboside, a NAD precursor, partially restored the HFD-induced AF perpetuation. Overall, this work demonstrates that partially deletion of Nampt facilitated HFD-induced AF through increased diastolic calcium leaks. The Nampt/NAD axis may be a potent therapeutic target for AF.
Collapse
Affiliation(s)
| | - DongZhu Xu
- Correspondence: ; Tel.: +81-29-853-3142; Fax: +81-29-853-3143
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zheng Q, Wang YC, Liu QX, Dong XJ, Xie ZX, Liu XH, Gao W, Bai XJ, Li ZF. FK866 attenuates sepsis-induced acute lung injury through c-jun-N-terminal kinase (JNK)-dependent autophagy. Life Sci 2020; 250:117551. [PMID: 32179075 DOI: 10.1016/j.lfs.2020.117551] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022]
Abstract
AIMS Increasing evidence indicates that FK866, a specific noncompetitive nicotinamide phosphoribosyl transferase inhibitor, exhibits a protective effect on acute lung injury (ALI). Autophagy plays a pivotal role in sepsis-induced ALI. However, the contribution of autophagy and the underlying mechanism by which FK866-confered lung protection remains elusive. Herein, we aimed to study whether FK866 could alleviate sepsis-induced ALI via the JNK-dependent autophagy. MAIN METHODS Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) to establish the polymicrobial sepsis mice model, and treated with FK866 (10 mg/kg) at 24, 12 and 0.5 h before the CLP procedure. The lung protective effects were measured by lung histopathology, tissue edema, vascular leakage, inflammation infiltration, autophagy-related protein expression and JNK activity. A549 cells were stimulated with LPS (1000 ng/ml) to generate the ALI cell model, and pretreated with FK866 or SP600125 for 30 min to measure the autophagy-related protein expression and JNK activity. KEY FINDINGS Our results demonstrated that FK866 reduced lung injury score, tissue edema, vascular leakage, and inflammatory infiltration, and upregulated autophagy. The protective effect of autophagy conferred by FK866 on ALI was further clarified by using 3-methyladenine (3MA) and rapamycin. Additionally, the activity of JNK was suppressed by FK866, and inhibition of JNK promoted autophagy and showed a benefit effect. SIGNIFICANCE Our study indicates that FK866 protects against sepsis-induced ALI by induction of JNK-dependent autophagy. This may provide new insights into the functional mechanism of NAMPT inhibition in sepsis-induced ALI.
Collapse
Affiliation(s)
- Qiang Zheng
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Yu-Chang Wang
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Qin-Xin Liu
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xi-Jie Dong
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Zhen-Xing Xie
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xing-Hua Liu
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Wei Gao
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Xiang-Jun Bai
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China
| | - Zhan-Fei Li
- Trauma center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei province, China.
| |
Collapse
|
29
|
Molugu TR, Oita RC, Chawla U, Camp SM, Brown MF, Garcia JGN. Nicotinamide phosphoribosyltransferase purification using SUMO expression system. Anal Biochem 2020; 598:113597. [PMID: 31982408 DOI: 10.1016/j.ab.2020.113597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the salvage pathway required for nicotinamide adenine dinucleotide synthesis. The secreted NAMPT protein serves as a master regulatory cytokine involved in activation of evolutionarily conserved inflammatory networks. Appreciation of the role of NAMPT as a damage-associated molecular pattern protein (DAMP) has linked its activities to several disorders via Toll-like receptor 4 (TLR4) binding and inflammatory cascade activation. Information is currently lacking concerning the precise mode of the NAMPT protein functionality due to limited availability of purified protein for use in in vitro and in vivo studies. Here we report successful NAMPT expression using the pET-SUMO expression vector in E. coli strain SHuffle containing a hexa-His tag for purification. The Ulp1 protease was used to cleave the SUMO and hexa-His tags, and the protein was purified by immobilized-metal affinity chromatography. The protein yield was ~4 mg/L and initial biophysical characterization of the protein using circular dichroism revealed the secondary structural elements, while dynamic light scattering demonstrated the presence of oligomeric units. The NAMPT-SUMO showed a predominantly dimeric protein with functional enzymatic activity. Finally, we report NAMPT solubilization in n-dodecyl-β-d-maltopyranoside (DDM) detergent in monomeric form, thus enhancing the opportunity for further structural and functional investigations.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Radu C Oita
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Udeep Chawla
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA; Department of Physics, University of Arizona, Tucson, AZ, 85721, USA.
| | - Joe G N Garcia
- Department of Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
30
|
Lynn H, Sun X, Casanova N, Gonzales-Garay M, Bime C, Garcia JGN. Genomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality. Antioxid Redox Signal 2019; 31:1027-1052. [PMID: 31016989 PMCID: PMC6939590 DOI: 10.1089/ars.2018.7701] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. We undertook a comprehensive survey of the available ARDS literature to identify genes and genetic variants (candidate gene and limited genome-wide association study approaches) implicated in susceptibility to developing ARDS in hopes of uncovering novel biomarkers for ARDS risk and mortality and potentially novel therapeutic targets in ARDS. We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
Collapse
Affiliation(s)
- Heather Lynn
- Department of Physiological Sciences and University of Arizona, Tucson, Arizona.,Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Nancy Casanova
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | | | - Christian Bime
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Department of Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
31
|
Loosen SH, Koch A, Tacke F, Roderburg C, Luedde T. The Role of Adipokines as Circulating Biomarkers in Critical Illness and Sepsis. Int J Mol Sci 2019; 20:ijms20194820. [PMID: 31569348 PMCID: PMC6801868 DOI: 10.3390/ijms20194820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Sepsis represents a major global health burden. Early diagnosis of sepsis as well as guiding early therapeutic decisions in septic patients still represent major clinical challenges. In this context, a whole plethora of different clinical and serum-based markers have been tested regarding their potential for early detection of sepsis and their ability to stratify patients according to their probability to survive critical illness and sepsis. Adipokines represent a fast-growing class of proteins that have gained an increasing interest with respect to their potential to modulate immune responses in inflammatory and infectious diseases. We review current knowledge on the role of different adipokines in diagnostic work-up and risk stratification of sepsis as well as critical illness. We discuss recent data from animal models as well as from clinical studies and finally highlight the limitations of these analyses that currently prevent the use of adipokines as biomarkers in daily practice.
Collapse
Affiliation(s)
- Sven H. Loosen
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Alexander Koch
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Augustenburger Platz 1, 10117 Berlin, Germany;
- Correspondence: ; Tel.: +49-3045-0653-022; Fax: +49-3045-0553-902
| | - Tom Luedde
- Department of Medicine III, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany (A.K.); (T.L.)
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
32
|
Mascarenhas JB, Tchourbanov AY, Danilov SM, Zhou T, Wang T, Garcia JGN. The Splicing Factor hnRNPA1 Regulates Alternate Splicing of the MYLK Gene. Am J Respir Cell Mol Biol 2019; 58:604-613. [PMID: 29077485 DOI: 10.1165/rcmb.2017-0141oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y464 and Y471) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants. Using bioinformatic in silico approaches, we identified a putative binding site for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a recognized splicing factor. We verified hnRNPA1 binding to MYLK by gel shift analyses and that hnRNPA1 gene and protein expression is upregulated in mouse lungs obtained from preclinical models of ARDS and VILI and in human endothelial cells exposed to 18% cyclic stretch, a model that reproduces the excessive mechanical stress observed in VILI. Using an MYLK minigene approach, we established a direct role of hnRNPA1 in MYLK splicing and in the context of 18% cyclic stretch. In summary, these data indicate an important regulatory role for hnRNPA1 in MYLK splicing, and they increase understanding of MYLK splicing in the regulation of lung vascular integrity during acute lung inflammation and excessive mechanical stress, such as that observed in ARDS and VILI.
Collapse
Affiliation(s)
| | | | - Sergei M Danilov
- 1 Department of Medicine, College of Medicine, and.,3 Department of Anesthesiology, University of Illinois at Chicago, Chicago, Illinois; and
| | - Tong Zhou
- 4 Department of Physiology and Cell Biology, The University of Nevada, Reno School of Medicine, Reno, Nevada
| | - Ting Wang
- 1 Department of Medicine, College of Medicine, and
| | | |
Collapse
|
33
|
Oita RC, Camp SM, Ma W, Ceco E, Harbeck M, Singleton P, Messana J, Sun X, Wang T, Garcia JGN. Novel Mechanism for Nicotinamide Phosphoribosyltransferase Inhibition of TNF-α-mediated Apoptosis in Human Lung Endothelial Cells. Am J Respir Cell Mol Biol 2019; 59:36-44. [PMID: 29337590 DOI: 10.1165/rcmb.2017-0155oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) exists as both intracellular NAMPT and extracellular NAMPT (eNAMPT) proteins. eNAMPT is secreted into the blood and functions as a cytokine/enzyme (cytozyme) that activates NF-κB signaling via ligation of Toll-like receptor 4 (TLR4), further serving as a biomarker for inflammatory lung disorders such as acute respiratory distress syndrome. In contrast, intracellular NAMPT is involved in nicotinamide mononucleotide synthesis and has been implicated in the regulation of cellular apoptosis, although the exact mechanisms for this regulation are poorly understood. We examined the role of NAMPT in TNF-α-induced human lung endothelial cell (EC) apoptosis and demonstrated that reduced NAMPT expression (siRNA) increases EC susceptibility to TNF-α-induced apoptosis as reflected by PARP-1 cleavage and caspase-3 activation. In contrast, overexpression of NAMPT served to reduce degrees of TNF-α-induced EC apoptosis. Inhibition of nicotinamide mononucleotide synthesis by FK866 (a selective NAMPT enzymatic inhibitor) failed to alter TNF-α-induced human lung EC apoptosis, suggesting that NAMPT-dependent NAD+ generation is unlikely to be involved in regulation of TNF-α-induced EC apoptosis. We next confirmed that TNF-α-induced EC apoptosis is attributable to NAMPT secretion into the EC culture media and subsequent eNAMPT ligation of TLR4 on the EC membrane surface. Silencing of NAMPT expression, direct neutralization of secreted eNAMPT by an NAMPT-specific polyclonal antibody (preventing TLR4 ligation), or direct TLR4 antagonism all served to significantly increase EC susceptibility to TNF-α-induced EC apoptosis. Together, these studies provide novel insights into NAMPT contributions to lung inflammatory events and to novel mechanisms of EC apoptosis regulation.
Collapse
Affiliation(s)
- Radu C Oita
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Sara M Camp
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Wenli Ma
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Ermelinda Ceco
- 2 Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mark Harbeck
- 2 Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois; and
| | | | - Joe Messana
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Xiaoguang Sun
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Ting Wang
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- 1 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Arizona Health Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
34
|
Essential Role of Visfatin in Lipopolysaccharide and Colon Ascendens Stent Peritonitis-Induced Acute Lung Injury. Int J Mol Sci 2019; 20:ijms20071678. [PMID: 30987270 PMCID: PMC6480124 DOI: 10.3390/ijms20071678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening syndrome characterized by acute and severe hypoxemic respiratory failure. Visfatin, which is known as an obesity-related cytokine with pro-inflammatory activities, plays a role in regulation of inflammatory cytokines. The mechanisms of ALI remain unclear in critically ill patients. Survival in ALI patients appear to be influenced by the stress generated by mechanical ventilation and by ALI-associated factors that initiate the inflammatory response. The objective for this study was to understand the mechanisms of how visfatin regulates inflammatory cytokines and promotes ALI. The expression of visfatin was evaluated in ALI patients and mouse sepsis models. Moreover, the underlying mechanisms were investigated using human bronchial epithelial cell lines, BEAS-2B and NL-20. An increase of serum visfatin was discovered in ALI patients compared to normal controls. Results from hematoxylin and eosin (H&E) and immunohistochemistry staining also showed that visfatin protein was upregulated in mouse sepsis models. Moreover, lipopolysaccharide (LPS) induced visfatin expression, activated the STAT3/NFκB pathway, and increased the expression of pro-inflammatory cytokines, including IL1-β, IL-6, and TNF-α in human bronchial epithelial cell lines NL-20 and BEAS-2B. Co-treatment of visfatin inhibitor FK866 reversed the activation of the STAT3/NFκB pathway and the increase of pro-inflammatory cytokines induced by LPS. Our study provides new evidence for the involvement of visfatin and down-stream events in acute lung injury. Further studies are required to confirm whether the anti-visfatin approaches can improve ALI patient survival by alleviating the pro-inflammatory process.
Collapse
|
35
|
Li X, Islam S, Xiong M, Nsumu NN, Lee MW, Zhang LQ, Ueki Y, Heruth DP, Lei G, Ye SQ. Epigenetic regulation of NfatC1 transcription and osteoclastogenesis by nicotinamide phosphoribosyl transferase in the pathogenesis of arthritis. Cell Death Discov 2019; 5:62. [PMID: 30774990 PMCID: PMC6365567 DOI: 10.1038/s41420-018-0134-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/15/2018] [Accepted: 11/29/2018] [Indexed: 01/17/2023] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) functions in NAD synthesis, apoptosis, and inflammation. Dysregulation of NAMPT has been associated with several inflammatory diseases, including rheumatoid arthritis (RA). The purpose of this study was to investigate NAMPT’s role in arthritis using mouse and cellular models. Collagen-induced arthritis (CIA) in DBA/1J Nampt+/− mice was evaluated by ELISA, micro-CT, and RNA-sequencing (RNA-seq). In vitro Nampt loss-of-function and gain-of-function studies on osteoclastogenesis were examined by TRAP staining, nascent RNA capture, luciferase reporter assays, and ChIP-PCR. Nampt-deficient mice presented with suppressed inflammatory bone destruction and disease progression in a CIA mouse model. Nampt expression was required for the epigenetic regulation of the Nfatc1 promoter and osteoclastogenesis. Finally, RNA-seq identified 690 differentially expressed genes in whole ankle joints which associated (P < 0.05) with Nampt expression and CIA. Selected target was validated by RT-PCR or functional characterization. We have provided evidence that NAMPT functions as a genetic risk factor and a potential therapeutic target to RA.
Collapse
Affiliation(s)
- Xuanan Li
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA.,3Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410005 China
| | - Shamima Islam
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Min Xiong
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Ndona N Nsumu
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Mark W Lee
- 4Department of Chemistry, University of Missouri, Columbia, MO 65211 USA
| | - Li Qin Zhang
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA
| | - Yasuyoshi Ueki
- 5Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108 USA
| | - Daniel P Heruth
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA
| | - Guanghua Lei
- 3Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410005 China
| | - Shui Qing Ye
- 1Division of Experimental and Translational Genetics, Children's Mercy, Kansas City, MO 64108 USA.,2Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108 USA
| |
Collapse
|
36
|
Visfatin Serum Levels Predict Mortality in Critically Ill Patients. DISEASE MARKERS 2018; 2018:7315356. [PMID: 30224938 PMCID: PMC6129328 DOI: 10.1155/2018/7315356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/22/2018] [Indexed: 02/01/2023]
Abstract
The adipokine visfatin, also termed pre-B-cell colony-enhancing factor (PBEF), is mainly derived from adipose tissue but has been implicated in the regulation of innate immune responses. We hypothesized that visfatin could be a potential circulating biomarker in critical illness and sepsis. We therefore measured serum levels of visfatin in a cohort of 229 critically ill medical patients upon admission to the intensive care unit (ICU). In comparison to 53 healthy controls, visfatin levels were significantly elevated in medical ICU patients, especially in patients with sepsis. Visfatin serum concentrations were strongly associated with disease severity and organ failure but did not differ between patients with or without obesity or type 2 diabetes. Visfatin levels correlated with biomarkers of renal failure, liver dysfunction, and other adipokines (e.g., resistin, leptin, and adiponectin) in critically ill patients. High visfatin levels at ICU admission indicated an increased mortality, both at the ICU and during long-term follow-up of approximately two years. Our data therefore demonstrate that circulating visfatin is a valuable biomarker for risk and prognosis assessment in critically ill patients. Furthermore, visfatin seems to be involved in the pathogenesis of excessive systemic inflammation, supporting further research on visfatin as a therapeutic target.
Collapse
|
37
|
Bi G, Wu L, Huang P, Islam S, Heruth DP, Zhang LQ, Li DY, Sampath V, Huang W, Simon BA, Easley RB, Ye SQ. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown. FASEB J 2018; 32:3583-3596. [PMID: 29452569 PMCID: PMC5998971 DOI: 10.1096/fj.201701059r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Although a deficiency of surfactant protein B (SFTPB) has been associated with lung injury, SFTPB expression has not yet been linked with nicotinamide phosphoribosyltransferase (NAMPT), a potential biomarker of acute lung injury (ALI). The effects of Nampt in the pulmonary epithelial cell on both SFTPB expression and lung inflammation were investigated in a LPS-induced ALI mouse model. Pulmonary epithelial cell-specific knockdown of Nampt gene expression, achieved by the crossing of Nampt gene exon 2 floxed mice with mice expressing epithelial-specific transgene Cre or by the use of epithelial-specific expression of anti-Nampt antibody cDNA, significantly attenuated LPS-induced ALI. Knockdown of Nampt expression was accompanied by lower levels of bronchoalveolar lavage (BAL) neutrophil infiltrates, total protein and TNF-α levels, as well as lower lung injury scores. Notably, Nampt knockdown was also associated with significantly increased BAL SFTPB levels relative to the wild-type control mice. Down-regulation of NAMPT increased the expression of SFTPB and rescued TNF-α-induced inhibition of SFTPB, whereas overexpression of NAMPT inhibited SFTPB expression in both H441 and A549 cells. Inhibition of NAMPT up-regulated SFTPB expression by enhancing histone acetylation to increase its transcription. Additional data indicated that these effects were mainly mediated by NAMPT nonenzymatic function via the JNK pathway. This study shows that pulmonary epithelial cell-specific knockdown of NAMPT expression attenuated ALI, in part, via up-regulation of SFTPB expression. Thus, epithelial cell-specific knockdown of Nampt may be a potential new and viable therapeutic modality to ALI.-Bi, G., Wu, L., Huang, P., Islam, S., Heruth, D. P., Zhang, L. Q., Li, D.-Y., Sampath, V., Huang, W., Simon, B. A., Easley, R. B., Ye, S. Q. Up-regulation of SFTPB expression and attenuation of acute lung injury by pulmonary epithelial cell-specific NAMPT knockdown.
Collapse
Affiliation(s)
- Guangliang Bi
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wu
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Changsha Central Hospital, Changsha, China
| | - Peixin Huang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Shamima Islam
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Daniel P. Heruth
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Li Qin Zhang
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Ding-You Li
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Venkatesh Sampath
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Weimin Huang
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Brett A. Simon
- Department of Anesthesiology, Josie Robertson Surgery Center, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ronald Blaine Easley
- Department of Pediatrics-Anesthesiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shui Qing Ye
- Department of Pediatrics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
- Department of Biomedical and Health Informatics, Children’s Mercy, University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| |
Collapse
|
38
|
Zhang LQ, Nsumu M, Huang P, Heruth DP, Riordan SM, Shortt K, Zhang N, Grigoryev DN, Li DY, Friesen CA, Van Haandel L, Leeder JS, Olson J, Ye SQ. Novel Protective Role of Nicotinamide Phosphoribosyltransferase in Acetaminophen-Induced Acute Liver Injury in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1640-1652. [PMID: 29684358 DOI: 10.1016/j.ajpath.2018.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/23/2022]
Abstract
Acetaminophen overdose is the most common cause of acute liver injury (ALI) or acute liver failure in the United States. Its pathogenetic mechanisms are incompletely understood. Additional studies are warranted to identify new genetic risk factors for more mechanistic insights and new therapeutic target discoveries. The objective of this study was to explore the role and mechanisms of nicotinamide phosphoribosyltransferase (NAMPT) in acetaminophen-induced ALI. C57BL/6 Nampt gene wild-type (Nampt+/+), heterozygous knockout (Nampt+/-), and overexpression (NamptOE) mice were treated with overdose of acetaminophen, followed by histologic, biochemical, and transcriptomic evaluation of liver injury. The mechanism of Nampt in acetaminophen-induced hepatocytic toxicity was also explored in cultured primary hepatocytes. Three lines of evidence have convergently demonstrated that acetaminophen overdose triggers the most severe oxidative stress and necrosis, and the highest expression of key necrosis driving genes in Nampt+/- mice, whereas the effects in NamptOE mice were least severe relative to Nampt+/+ mice. Treatment of P7C3-A20, a small chemical molecule up-regulator of Nampt, ameliorated acetaminophen-induced mouse ALI over the reagent control. These findings support the fact that NAMPT protects against acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Li Q Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical Sciences, University of Missouri Kansas City School of Medicine, Kansas City, Missouri.
| | - Marianne Nsumu
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Peixin Huang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Daniel P Heruth
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Sean M Riordan
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Katherine Shortt
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri
| | - Nini Zhang
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Dmitry N Grigoryev
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Ding-You Li
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Craig A Friesen
- Division of Gastroenterology, Hepatology, and Nutrition, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Leon Van Haandel
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - J Steven Leeder
- Division of Clinical Pharmacology and Therapeutic Innovation, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, Missouri
| | - Jody Olson
- The University of Kansas Liver Center, University of Kansas School of Medicine, Kansas City, Missouri
| | - Shui Q Ye
- Division of Experimental and Translational Genetics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine, Kansas City, Missouri; Division of Cell Biology and Biophysics, University of Missouri Kansas City School of Biological Sciences, Kansas City, Missouri.
| |
Collapse
|
39
|
Mauri T, Lazzeri M, Bellani G, Zanella A, Grasselli G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol Meas 2017; 38:R280-H303. [PMID: 28967868 DOI: 10.1088/1361-6579/aa9052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. SIGNIFICANCE The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy. Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | | | | | | | | |
Collapse
|
40
|
Lu XG, Kang X, Zhan LB, Kang LM, Fan ZW, Bai LZ. Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol 2017; 23:7440-7449. [PMID: 29151698 PMCID: PMC5685850 DOI: 10.3748/wjg.v23.i41.7440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/23/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify circulating micro (mi)RNAs as biological markers for prediction of severe acute pancreatitis (SAP) with acute lung injury (ALI).
METHODS Twenty-four serum samples were respectively collected and classified as SAP associated with ALI and SAP without ALI, and the miRNA expression profiles were determined by microarray analysis. These miRNAs were validated by quantitative reverse transcription-polymerase chain reaction, and their putative targets were predicted by the online software TargetScan, miRanda and PicTar database. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (commonly known as KEGG) were used to predict their possible functions and pathways involved.
RESULTS We investigated 287 miRNAs based on microarray data analysis. Twelve miRNAs were differentially expressed in the patients with SAP with ALI and those with SAP without ALI. Hsa-miR-1260b, 762, 22-3p, 23b and 23a were differently up-regulated and hsa-miR-550a*, 324-5p, 484, 331-3p, 140-3p, 342-3p and 150 were differently down-regulated in patients with SAP with ALI compared to those with SAP without ALI. In addition, 85 putative target genes of the significantly dysregulated miRNAs were found by TargetScan, miRanda and PicTar. Finally, GO and pathway network analysis showed that they were mainly enriched in signal transduction, metabolic processes, cytoplasm and cell membranes.
CONCLUSION This is the first study to identify 12 circulating miRNAs in patients with SAP with ALI, which may be biomarkers for prediction of ALI after SAP.
Collapse
Affiliation(s)
- Xiao-Guang Lu
- Department of Emergency, Zhongshan Hospital, Dalian University, Dalian 116001, Liaoning Province, China
| | - Xin Kang
- Department of Emergency, Zhongshan Hospital, Dalian University, Dalian 116001, Liaoning Province, China
| | - Li-Bin Zhan
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, Jiangsu Province, China
| | - Li-Min Kang
- Department of Hepatobiliary and Pancreatic Surgery, Puer People’s Hospital, Puer 665000, Yunnan Province, China
| | - Zhi-Wei Fan
- Department of Emergency, Zhongshan Hospital, Dalian University, Dalian 116001, Liaoning Province, China
| | - Li-Zhi Bai
- Department of Emergency, Zhongshan Hospital, Dalian University, Dalian 116001, Liaoning Province, China
| |
Collapse
|
41
|
Abstract
BACKGROUND Adipose tissue is an endocrine organ that plays a critical role in immunity and metabolism by virtue of a large number of hormones and cytokines, collectively termed adipokines. Dysregulation of adipokines has been linked to the pathogenesis of multiple diseases, but some questions have arisen concerning the value of adipokines in critical illness setting. The objective of this review was to evaluate the associations between blood adipokines and critical illness outcomes. METHODS PubMed, CINAHL, Scopus, and the Cochrane Library databases were searched from inception through July 2016 without language restriction. Studies reporting the associations of adipokines, leptin, adiponectin, resistin, and/or visfatin with critical illness outcomes mortality, organ dysfunction, and/or inflammation were included. RESULTS A total of 38 articles were selected according to the inclusion/exclusion criteria of the study. Significant alterations of circulating adipokines have been reported in critically ill patients, some of which were indicative of patient outcomes. The associations of leptin and adiponectin with critical illness outcomes were not conclusive in that blood levels of both adipokines did not always correlate with the illness severity scores or risks of organ failure and mortality. By contrast, studies consistently reported striking increase of blood resistin and visfatin, independently of the critical illness etiology. More interestingly, increased levels of these adipokines were systematically associated with severe inflammation, and high incidence of organ failure and mortality. CONCLUSIONS There is strong evidence to indicate that increased levels of blood resistin and visfatin are associated with poor outcomes of critically ill patients, including higher inflammation, and greater risk of organ dysfunction and mortality. LEVEL OF EVIDENCE Systematic review, level III.
Collapse
|
42
|
Yan N, Yang W, Dong X, Fang Q, Gong Y, Zhou JL, Xu JJ. Promotion of anoxia-reoxygenation-induced inflammation and permeability enhancement by nicotinamide phosphoribosyltransferase-activated MAPK signaling in human umbilical vein endothelial cells. Exp Ther Med 2017; 14:4595-4601. [PMID: 29104667 DOI: 10.3892/etm.2017.5083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/19/2017] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that nicotinamide phosphoribosyltransferase (NAMPT) promoted inflammation and permeability of vascular endothelial cells following cardiopulmonary bypass (CPB). In addition, mitogen-activated protein kinase (MAPK) signaling was activated and contributed to these cell responses. However, the mechanism by which NAMPT regulates cellular inflammation and permeability remains unknown, and whether NAMPT regulates MAPK signaling during this process is also not clear. The present study established an anoxia-reoxygenation (A-R) model using human umbilical vein endothelial cells (HUVECs) and investigated the regulation of MAPK signaling by NAMPT by using small RNA transfection, ELISA and western blot analysis. The results demonstrated that A-R significantly induced the expression levels of NAMPT and cellular permeability-associated proteins, and the release of several inflammatory factors. Furthermore, calcium and MAPK signaling were evidently increased. When the A-R cells were transfected with NAMPT small interfering RNA, the expression of cellular permeability-associated proteins was downregulated, the release of inflammatory factors was decreased, and calcium and MAPK signaling was blocked. These data suggest that NAMPT may activate MAPK signaling to promote A-R-induced inflammation and permeability enhancement of HUVECs. Therefore, the current study indicates that NAMPT may be a potential drug target for A-R-induced endothelial cell injury subsequent to CPB.
Collapse
Affiliation(s)
- Nao Yan
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Yang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao Dong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiao Fang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Gong
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Liang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
43
|
Sweeney TE, Lofgren S, Khatri P, Rogers AJ. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury. Am J Respir Cell Mol Biol 2017; 57:184-192. [PMID: 28324666 DOI: 10.1165/rcmb.2016-0395oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P < 1E-16). Neutrophil signatures are enriched in both animal and human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.
Collapse
Affiliation(s)
- Timothy E Sweeney
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Shane Lofgren
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Purvesh Khatri
- 1 Stanford Institute for Immunity, Transplantation and Infection.,2 Biomedical Informatics Research, and
| | - Angela J Rogers
- 3 Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
44
|
Cui H, Li S, Xu C, Zhang J, Sun Z, Chen H. Emodin alleviates severe acute pancreatitis-associated acute lung injury by decreasing pre-B-cell colony-enhancing factor expression and promoting polymorphonuclear neutrophil apoptosis. Mol Med Rep 2017; 16:5121-5128. [PMID: 28849044 PMCID: PMC5647045 DOI: 10.3892/mmr.2017.7259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective effects of emodin on severe acute pancreatitis (SAP)‑associated acute lung injury (ALI), and investigated the possible mechanism involved. SAP was induced in Sprague‑Dawley rats by retrograde infusion of 5% sodium taurocholate (1 ml/kg), after which, rats were divided into various groups and were administered emodin, FK866 [a competitive inhibitor of pre‑B‑cell colony‑enhancing factor (PBEF)] or dexamethasone (DEX). DEX was used as a positive control. Subsequently, PBEF expression was detected in polymorphonuclear neutrophils (PMNs) isolated from rat peripheral blood by reverse transcription‑quantitative polymerase chain reaction and western blotting. In addition, histological alterations, apoptosis in lung/pancreatic tissues, apoptosis of peripheral blood PMNs and alterations in the expression of apoptosis‑associated proteins were examined by hematoxylin and eosin staining, terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end labeling assay, Annexin V/propidium iodide (PI) assay and western blotting, respectively. Serum amylase activity and wet/dry (W/D) weight ratios were also measured. An in vitro study was also conducted, in which PMNs were obtained from normal Sprague‑Dawley rats and were incubated with emodin, FK866 or DEX in the presence of lipopolysaccharide (LPS). Apoptosis of PMNs and the expression levels of apoptosis‑associated proteins were examined in cultured PMNs in vitro by Annexin V/PI assay and western blotting, respectively. The results demonstrated that emodin, FK866 and DEX significantly downregulated PBEF expression in peripheral blood PMNs. In addition, emodin, FK866 and DEX reduced serum amylase activity, decreased lung and pancreas W/D weight ratios, alleviated lung and pancreatic injuries, and promoted PMN apoptosis by regulating the expression of apoptosis‑associated proteins: Fas, Fas ligand, B‑cell lymphoma (Bcl)‑2‑associated X protein, cleaved caspase‑3 and Bcl‑extra‑large. In addition, the in vitro study demonstrated that emodin, FK866 and DEX significantly reversed the LPS‑induced decrease of apoptosis in PMNs by regulating the expression of apoptosis‑associated proteins. In conclusion, the present study demonstrated that emodin may protect against SAP‑associated ALI by decreasing PBEF expression, and promoting PMN apoptosis via the mitochondrial and death receptor apoptotic pathways.
Collapse
Affiliation(s)
- Hongzhang Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Shu Li
- Department of Chinese Medicine, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Caiming Xu
- Department of Chinese Medicine, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116083, P.R. China
| | - Jingwen Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhongwei Sun
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
45
|
Wu GC, Liao WI, Wu SY, Pao HP, Tang SE, Li MH, Huang KL, Chu SJ. Targeting of nicotinamide phosphoribosyltransferase enzymatic activity ameliorates lung damage induced by ischemia/reperfusion in rats. Respir Res 2017; 18:71. [PMID: 28438162 PMCID: PMC5404693 DOI: 10.1186/s12931-017-0557-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
Abstract
Background Emerging evidence reveals that nicotinamide phosphoribosyltransferase (NAMPT) has a significant role in the pathophysiology of the inflammatory process. NAMPT inhibition has a beneficial effect in the treatment of a variety of inflammatory diseases. However, it remains unclear whether NAMPT inhibition has an impact on ischemia-reperfusion (I/R)-induced acute lung injury. In this study, we examined whether NAMPT inhibition provided protection against I/R lung injury in rats. Methods Isolated perfused rat lungs were subjected to 40 min of ischemia followed by 60 min of reperfusion. The rats were randomly allotted to the control, control + FK866 (NAMPT inhibitor, 10 mg/kg), I/R, or I/R + FK866 groups (n = 6 per group). The effects of FK866 on human alveolar epithelial cells exposed to hypoxia-reoxygenation (H/R) were also investigated. Results Treatment with FK866 significantly attenuated the increases in lung edema, pulmonary arterial pressure, lung injury scores, and TNF-α, CINC-1, and IL-6 concentrations in bronchoalveolar lavage fluid in the I/R group. Malondialdehyde levels, carbonyl contents and MPO-positive cells in lung tissue were also significantly reduced by FK866. Additionally, FK866 mitigated I/R-stimulated degradation of IκB-α, nuclear translocation of NF-κB, Akt phosphorylation, activation of mitogen-activated protein kinase, and downregulated MKP-1 activity in the injured lung tissue. Furthermore, FK866 increased Bcl-2 and decreased caspase-3 activity in the I/R rat lungs. Comparably, the in vitro experiments showed that FK866 also inhibited IL-8 production and NF-κB activation in human alveolar epithelial cells exposed to H/R. Conclusions Our findings suggest that NAMPT inhibition may be a novel therapeutic approach for I/R-induced lung injury. The protective effects involve the suppression of multiple signal pathways.
Collapse
Affiliation(s)
- Geng-Chin Wu
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Shu-Yu Wu
- The Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Min-Hui Li
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Lun Huang
- The Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan. .,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan.
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
46
|
Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase. Cell Death Dis 2017; 8:e2705. [PMID: 28333140 PMCID: PMC5386535 DOI: 10.1038/cddis.2017.132] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/20/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a pleiotropic protein implicated in the pathogenesis of acute respiratory distress syndrome, aging, cancer, coronary heart diseases, diabetes, nonalcoholic fatty liver disease, obesity, rheumatoid arthritis, and sepsis. However, the underlying molecular mechanisms of NAMPT in these physiological and pathological processes are not fully understood. Here, we provide experimental evidence that a Nampt gene homozygous knockout (Nampt−/−) resulted in lethality at an early stage of mouse embryonic development and death within 5–10 days in adult mice accompanied by a 25.24±2.22% body weight loss, after the tamoxifen induction of NamptF/F × Cre mice. These results substantiate that Nampt is an essential gene for life. In Nampt−/− mice versusNampt+/+ mice, biochemical assays indicated that liver and intestinal tissue NAD levels were decreased significantly; histological examination showed that mouse intestinal villi were atrophic and disrupted, and visceral fat was depleted; mass spectrometry detected unusual higher serum polyunsaturated fatty acid containing triglycerides. RNA-seq analyses of both mouse and human pediatric liver transcriptomes have convergently revealed that NAMPT is involved in key basic cellular functions such as transcription, translation, cell signaling, and fundamental metabolism. Notably, the expression of all eight enzymes in the tricarboxylic acid cycle were decreased significantly in the Nampt−/− mice. These findings prompt us to posit that adult Nampt−/− mouse lethality is a result of a short supply of ATP from compromised intestinal absorption of nutrients from digested food, which leads to the exhaustion of body fat stores.
Collapse
|
47
|
Carbone F, Liberale L, Bonaventura A, Vecchiè A, Casula M, Cea M, Monacelli F, Caffa I, Bruzzone S, Montecucco F, Nencioni A. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr Physiol 2017; 7:603-621. [PMID: 28333382 DOI: 10.1002/cphy.c160029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Huang P, Lee MW, Sadrerafi K, Heruth DP, Zhang LQ, Maulik D, Ye SQ. MC-PPEA as a new and more potent inhibitor of CLP-induced sepsis and pulmonary inflammation than FK866. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:629-641. [PMID: 28424540 PMCID: PMC5344436 DOI: 10.2147/dddt.s125349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Our previous study indicated that overexpression of nicotinamide phosphoribosyltransferase (NAMPT) aggravated acute lung injury, while knockdown of NAMPT expression attenuated ventilator-induced lung injury. Recently, we found that meta-carborane-butyl-3-(3-pyridinyl)-2E-propenamide (MC-PPEA, MC4), in which the benzoylpiperidine moiety of FK866 has been replaced by a carborane, displayed a 100-fold increase in NAMPT inhibition over FK866. Here, we determined the effects of MC4 and FK866 on cecal ligation and puncture (CLP) surgery-induced sepsis in C57BL/6J mice. MC4 showed stronger inhibitory effects than FK866 on CLP-induced mortality, serum tumor necrosis factor α (TNFα) levels, pulmonary myeloperoxidase activity, alveolar injury, and interleukin 6 and interleukin1β messenger RNA levels. In vitro cell permeability and electric cell-substrate impedance sensing assays demonstrated that MC4 inhibited TNFα- and thrombin-mediated pulmonary endothelial cell permeability better than FK866. MC4 also exerted more potent effects than FK866, at concentrations as low as 0.3 nM, to attenuate TNFα-mediated intracellular cytokine expression, nicotinamide adenine dinucleotide (NAD+) and its reduced form NADH levels, and nuclear factor kappa B p65 phosphorylation and nuclear translocation in A549 cells. Our results strongly suggest that the newly developed MC4 is a more potent suppressor of CLP-induced pulmonary inflammation and sepsis than FK866, with potential clinical application as a new treatment agent for sepsis and inflammation.
Collapse
Affiliation(s)
- Peixin Huang
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Mark W Lee
- Department of Chemistry, University of Missouri, Columbia, MO
| | | | - Daniel P Heruth
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Li Q Zhang
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City
| | - Dev Maulik
- Department of Biomedical and Health Informatics, University of Missouri Kansas City School of Medicine.,Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, MO, USA
| | - Shui Qing Ye
- Division of Experimental and Translational Genetics, Department of Pediatrics, The Children's Mercy Hospital, University of Missouri Kansas City School of Medicine Kansas City.,Department of Obstetrics and Gynecology, Truman Medical Center, Kansas City, MO, USA
| |
Collapse
|
49
|
Elangovan VR, Camp SM, Kelly GT, Desai AA, Adyshev D, Sun X, Black SM, Wang T, Garcia JGN. Endotoxin- and mechanical stress-induced epigenetic changes in the regulation of the nicotinamide phosphoribosyltransferase promoter. Pulm Circ 2017; 6:539-544. [PMID: 28090296 DOI: 10.1086/688761] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mechanical ventilation, a lifesaving intervention for patients with acute respiratory distress syndrome (ARDS), also unfortunately contributes to excessive mechanical stress and impaired lung physiological and structural integrity. We have elsewhere established the pivotal role of increased nicotinamide phosphoribosyltransferase (NAMPT) transcription and secretion as well as its direct binding to the toll-like receptor 4 (TLR4) in the progression of this devastating syndrome; however, regulation of this critical gene in ventilator-induced lung injury (VILI) is not well characterized. On the basis of an emerging role for epigenetics in enrichment of VILI and CpG sites within the NAMPT promoter and 5'UTR, we hypothesized that NAMPT expression and downstream transcriptional events are influenced by epigenetic mechanisms. Concomitantly, excessive mechanical stress of human pulmonary artery endothelial cells or lipopolysaccharide (LPS) treatment led to both reduced DNA methylation levels in the NAMPT promoter and increased gene transcription. Histone deacetylase inhibition by trichostatin A or Sirt-1-silencing RNA attenuates LPS-induced NAMPT expression. Furthermore, recombinant NAMPT administration induced TLR4-dependent global H3K9 hypoacetylation. These studies suggest a complex epigenetic regulatory network of NAMPT in VILI and ARDS and open novel strategies for combating VILI and ARDS.
Collapse
Affiliation(s)
- Venkateswaran Ramamoorthi Elangovan
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sara M Camp
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Gabriel T Kelly
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ankit A Desai
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Djanybek Adyshev
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xiaoguang Sun
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Ting Wang
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Joe G N Garcia
- Department of Medicine, University of Arizona, Tucson, Arizona, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA; Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
50
|
Palumbo S, Shin YJ, Ahmad K, Desai AA, Quijada H, Mohamed M, Knox A, Sammani S, Colson BA, Wang T, Garcia JGN, Hecker L. Dysregulated Nox4 ubiquitination contributes to redox imbalance and age-related severity of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2017; 312:L297-L308. [PMID: 28062482 DOI: 10.1152/ajplung.00305.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/12/2016] [Accepted: 12/30/2016] [Indexed: 12/28/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating critical illness disproportionately affecting the elderly population, with both higher incidence and mortality. The integrity of the lung endothelial cell (EC) monolayer is critical for preservation of lung function. However, mechanisms mediating EC barrier regulation in the context of aging remain unclear. We assessed the severity of acute lung injury (ALI) in young (2 mo) and aged (18 mo) mice using a two-hit preclinical model. Compared with young cohorts, aged mice exhibited increased ALI severity, with greater vascular permeability characterized by elevated albumin influx and levels of bronchoalveolar lavage (BAL) cells (neutrophils) and protein. Aged/injured mice also demonstrated elevated levels of reactive oxygen species (ROS) in the BAL, which was associated with upregulation of the ROS-generating enzyme, Nox4. We evaluated the role of aging in human lung EC barrier regulation utilizing a cellular model of replicative senescence. Senescent EC populations were defined by increases in β-galactosidase activity and p16 levels. In response to lipopolysaccharide (LPS) challenge, senescent ECs demonstrate exacerbated permeability responses compared with control "young" ECs. LPS challenge led to a rapid induction of Nox4 expression in both control and senescent ECs, which was posttranslationally mediated via the proteasome/ubiquitin system. However, senescent ECs demonstrated deficient Nox4 ubiquitination, resulting in sustained expression of Nox4 and alterations in cellular redox homeostasis. Pharmacological inhibition of Nox4 in senescent ECs reduced LPS-induced alterations in permeability. These studies provide insight into the roles of Nox4/senescence in EC barrier responses and offer a mechanistic link to the increased incidence and mortality of ARDS associated with aging.
Collapse
Affiliation(s)
- Sunmi Palumbo
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Yoon-Joo Shin
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Kareem Ahmad
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Ankit A Desai
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Hector Quijada
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Mohamed Mohamed
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Adam Knox
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Saad Sammani
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Brett A Colson
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Ting Wang
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Joe G N Garcia
- College of Medicine, University of Arizona, Tucson, Arizona; and
| | - Louise Hecker
- College of Medicine, University of Arizona, Tucson, Arizona; and .,Southern Arizona VA Health Care System (SAVAHCS), Tucson, Arizona
| |
Collapse
|