1
|
Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1251-1273. [PMID: 37665346 DOI: 10.1007/s00210-023-02679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium which causes tuberculosis (TB). TB control programmes are facing threats from drug resistance. Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains need longer and more expensive treatment with many medications resulting in more adverse effects and decreased chances of treatment outcomes. The World Health Organization (WHO) has emphasised the development of not just new individual anti-TB drugs, but also novel medication regimens as an alternative treatment option for the drug-resistant Mtb strains. Many plants, as well as marine creatures (sponge; Haliclona sp.) and fungi, have been continuously used to treat TB in various traditional treatment systems around the world, providing an almost limitless supply of active components. Natural products, in addition to their anti-mycobacterial action, can be used as adjuvant therapy to increase the efficacy of conventional anti-mycobacterial medications, reduce their side effects, and reverse MDR Mtb strain due to Mycobacterium's genetic flexibility and environmental adaptation. Several natural compounds such as quercetin, ursolic acid, berberine, thymoquinone, curcumin, phloretin, and propolis have shown potential anti-mycobacterial efficacy and are still being explored in preclinical and clinical investigations for confirmation of their efficacy and safety as anti-TB medication. However, more high-level randomized clinical trials are desperately required. The current review provides an overview of drug-resistant TB along with the latest anti-TB medications, drug-induced hepatotoxicity and oxidative stress. Further, the role and mechanisms of action of first and second-line anti-TB drugs and new drugs have been highlighted. Finally, the role of natural compounds as anti-TB medication and hepatoprotectants have been described and their mechanisms discussed.
Collapse
Affiliation(s)
- Harvesh Kumar Rana
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Zoology, Feroze Gandhi College, Raebareli, 229001, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Botany, BMK Government. Girls College, Balod, Chhattisgarh, 491226, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India.
| |
Collapse
|
2
|
Nguyen TVA, Anthony RM, Cao TTH, Bañuls AL, Nguyen VAT, Vu DH, Nguyen NV, Alffenaar JWC. Delamanid Resistance: Update and Clinical Management. Clin Infect Dis 2021; 71:3252-3259. [PMID: 32521000 DOI: 10.1093/cid/ciaa755] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/05/2020] [Indexed: 12/29/2022] Open
Abstract
Delamanid, a-first-in-class bicyclic nitroimidazole, was recently approved for multidrug-resistant tuberculosis treatment. Pitted against the hope for improving treatment outcomes is the threat of the rapid resistance emergence. This review provides information on the mechanisms of action, resistance emergence, and drug susceptibility testing (DST) for delamanid. Delamanid resistance has already been reported in both in vitro experiments and clinical settings. Although mutations conferring delamanid resistance have been identified in fbiA, fbiB, fbiC, ddn, and fgd1 genes of Mycobacterium tuberculosis, knowledge about the molecular resistance mechanisms is limited, and there remains no standardized DST method. The rapid acquisition of delamanid resistance emphasizes the need for optimal use of new drugs, the need for drug resistance surveillance, and a comprehensive understanding of drug resistance mechanisms. Further studies are necessary to investigate genetic and phenotypic changes that determine clinically relevant delamanid resistance to help develop a rapid delamanid DST.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.,LMI Drug Resistance in South East Asia, Hanoi, Vietnam
| | - Richard M Anthony
- Tuberculosis reference laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thi Thu Huyen Cao
- The National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Anne-Laure Bañuls
- LMI Drug Resistance in South East Asia, Hanoi, Vietnam.,MIVEGEC, University of Montpellier-IRD-CNRS, Montpellier, France
| | - Van Anh Thi Nguyen
- Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology of Vietnam, Hanoi, Vietnam
| | - Dinh Hoa Vu
- The National Centre of Drug information and Adverse Drug Reaction Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | | | - Jan-Willem C Alffenaar
- University of Sydney, Faculty of Medicine and Health, School of Pharmacy, Sydney, Australia.,Westmead hospital, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Nguyen TVA, Anthony RM, Bañuls AL, Nguyen TVA, Vu DH, Alffenaar JWC. Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clin Infect Dis 2019; 66:1625-1630. [PMID: 29126225 DOI: 10.1093/cid/cix992] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/07/2017] [Indexed: 11/13/2022] Open
Abstract
Bedaquiline, a new antituberculosis drug, has already been used in >50 countries. The emergence of bedaquiline resistance is alarming, as it may result in the rapid loss of this new drug. This article aims to review currently identified mechanisms of resistance and the emergence of bedaquiline resistance, and discuss strategies to delay the resistance acquisition. In vitro and clinical studies as well as reports from compassionate use have identified the threat of bedaquiline resistance and cross-resistance with clofazimine, emphasizing the crucial need for the systematic surveillance of resistance. Currently known mechanisms of resistance include mutations within the atpE, Rv0678, and pepQ genes. The development of standardized drug susceptibility testing (DST) for bedaquiline is urgently needed. Understanding any target and non-target-based mechanisms is essential to minimize resistance development and treatment failure and help to develop appropriate DST for bedaquiline and genetic-based resistance screening.
Collapse
Affiliation(s)
- Thi Van Anh Nguyen
- Department of Pharmacological, Medical, Agronomical Biotechnology, University of Science and Technology of Hanoi, Vietnam.,LMI Drug Resistance in South East Asia, Hanoi, Vietnam
| | - Richard M Anthony
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Laure Bañuls
- LMI Drug Resistance in South East Asia, Hanoi, Vietnam.,Institute of Research for Development, Montpellier, France.,Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology of Vietnam
| | - Thi Van Anh Nguyen
- Laboratory of Tuberculosis, Department of Bacteriology, National Institute of Hygiene and Epidemiology of Vietnam
| | - Dinh Hoa Vu
- Department of Clinical Pharmacy and National Drug Information and Adverse Drug Reaction Monitoring Centre, Hanoi University of Pharmacy, Vietnam
| | - Jan-Willem C Alffenaar
- University of Groningen, University Medical Center Groningen, Clinical Pharmacy and Pharmacology, The Netherlands
| |
Collapse
|
4
|
Empirical ways to identify novel Bedaquiline resistance mutations in AtpE. PLoS One 2019; 14:e0217169. [PMID: 31141524 PMCID: PMC6541270 DOI: 10.1371/journal.pone.0217169] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022] Open
Abstract
Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a novel mechanism of action in over 40 years, has already been detected in Mycobacterium tuberculosis. As a new drug, however, there is currently insufficient clinical data to facilitate reliable and timely identification of genomic determinants of resistance. Here we investigate the structural basis for M. tuberculosis associated bedaquiline resistance in the drug target, AtpE. Together with the 9 previously identified resistance-associated variants in AtpE, 54 non-resistance-associated mutations were identified through comparisons of bedaquiline susceptibility across 23 different mycobacterial species. Computational analysis of the structural and functional consequences of these variants revealed that resistance associated variants were mainly localized at the drug binding site, disrupting key interactions with bedaquiline leading to reduced binding affinity. This was used to train a supervised predictive algorithm, which accurately identified likely resistance mutations (93.3% accuracy). Application of this model to circulating variants present in the Asia-Pacific region suggests that current circulating variants are likely to be susceptible to bedaquiline. We have made this model freely available through a user-friendly web interface called SUSPECT-BDQ, StrUctural Susceptibility PrEdiCTion for bedaquiline (http://biosig.unimelb.edu.au/suspect_bdq/). This tool could be useful for the rapid characterization of novel clinical variants, to help guide the effective use of bedaquiline, and to minimize the spread of clinical resistance.
Collapse
|
5
|
Hoffmann H, Borroni E, Schena E, Nedialkova L, Hofmann-Thiel S, Cirillo D. Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system-authors' response. J Antimicrob Chemother 2016; 71:3625. [PMID: 27621178 DOI: 10.1093/jac/dkw365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Harald Hoffmann
- WHO Supranational Reference Laboratory Munich-Gauting, IML red, Gauting, Germany .,Synlab MVZ Gauting, Synlab Services GmbH, Augsburg, Germany
| | - Emanuele Borroni
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Schena
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.,CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Lubov Nedialkova
- WHO Supranational Reference Laboratory Munich-Gauting, IML red, Gauting, Germany
| | - Sabine Hofmann-Thiel
- WHO Supranational Reference Laboratory Munich-Gauting, IML red, Gauting, Germany.,Synlab MVZ Gauting, Synlab Services GmbH, Augsburg, Germany
| | - Daniela Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|