1
|
Nova A, McNicholas B, Magliocca A, Laffey M, Zambelli V, Mariani I, Atif M, Giacomini M, Vitale G, Rona R, Foti G, Laffey J, Rezoagli E. Perfusion deficits may underlie lung and kidney injury in severe COVID-19 disease: insights from a multicenter international cohort study. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:40. [PMID: 38971842 PMCID: PMC11227201 DOI: 10.1186/s44158-024-00175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Lung perfusion defects, mainly due to endothelial and coagulation activation, are a key contributor to COVID-19 respiratory failure. COVID-19 patients may also develop acute kidney injury (AKI) because of renal perfusion deficit. We aimed to explore AKI-associated factors and the independent prediction of standardized minute ventilation (MV)-a proxy of alveolar dead space-on AKI onset and persistence in COVID-19 mechanically ventilated patients. METHODS This is a multicenter observational cohort study. We enrolled 157 COVID-19 patients requiring mechanical ventilation and intensive care unit (ICU) admission. We collected clinical information, ventilation, and laboratory data. AKI was defined by the 2012 KDIGO guidelines and classified as transient or persistent according to serum creatinine criteria persistence within 48 h. Ordered univariate and multivariate logistic regression analyses were employed to identify variables associated with AKI onset and persistence. RESULTS Among 157 COVID-19 patients on mechanical ventilation, 47% developed AKI: 10% had transient AKI, and 37% had persistent AKI. The degree of hypoxia was not associated with differences in AKI severity. Across increasing severity of AKI groups, despite similar levels of paCO2, we observed an increased MV and standardized MV, a robust proxy of alveolar dead space. After adjusting for other clinical and laboratory covariates, standardized MV remained an independent predictor of AKI development and persistence. D-dimer levels were higher in patients with persistent AKI. CONCLUSIONS In critically ill COVID-19 patients with respiratory failure, increased wasted ventilation is independently associated with a greater risk of persistent AKI. These hypothesis-generating findings may suggest that perfusion derangements may link the pathophysiology of both wasted ventilation and acute kidney injury in our population.
Collapse
Affiliation(s)
- Alice Nova
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Bairbre McNicholas
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Anesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Aurora Magliocca
- Department of Anesthesia and Intensive Care Medicine, Gruppo Ospedaliero San Donato, Policlinico San Marco, Zingonia, Bergamo, Italy
- Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Matthew Laffey
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Vanessa Zambelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Ilaria Mariani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Minahel Atif
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Anesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Matteo Giacomini
- Department of Anesthesia and Intensive Care Medicine, Gruppo Ospedaliero San Donato, Policlinico San Marco, Zingonia, Bergamo, Italy
| | - Giovanni Vitale
- Department of Anesthesia and Intensive Care Medicine, Gruppo Ospedaliero San Donato, Policlinico San Marco, Zingonia, Bergamo, Italy
| | - Roberto Rona
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy
| | - John Laffey
- School of Medicine, National University of Ireland Galway, Galway, Ireland
- Department of Anesthesia and Intensive Care Medicine, Galway University Hospitals, Galway, Ireland
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori Hospital, Monza, Italy.
| |
Collapse
|
2
|
Rampon GL, Simpson SQ, Agrawal R. Prone Positioning for Acute Hypoxemic Respiratory Failure and ARDS: A Review. Chest 2023; 163:332-340. [PMID: 36162482 DOI: 10.1016/j.chest.2022.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/14/2023] Open
Abstract
Prone positioning is an immediately accessible, readily implementable intervention that was proposed initially as a method for improvement in gas exchange > 50 years ago. Initially implemented clinically as an empiric therapy for refractory hypoxemia, multiple clinical trials were performed on the use of prone positioning in various respiratory conditions, cumulating in the landmark Proning Severe ARDS Patients trial, which demonstrated mortality benefit in patients with severe ARDS. After this trial and the corresponding meta-analysis, expert consensus and societal guidelines recommended the use of prone positioning for the management of severe ARDS. The ongoing COVID-19 pandemic has brought prone positioning to the forefront of medicine, including widespread implementation of prone positioning in awake, spontaneously breathing, nonintubated patients with acute hypoxemic respiratory failure. Multiple clinical trials now have been performed to investigate the safety and effectiveness of prone positioning in these patients and have enhanced our understanding of the effects of the prone position in respiratory failure. In this review, we discuss the physiologic features, clinical outcome data, practical considerations, and lingering questions of prone positioning.
Collapse
Affiliation(s)
- Garrett L Rampon
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Steven Q Simpson
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, KS.
| | - Ritwick Agrawal
- Pulmonary Critical Care and Sleep Medicine Section, Medical Care Line, Michael E. DeBakey Veteran Affairs Medical Center, Houston, TX; Pulmonary Critical Care and Sleep Medicine Section, Department of Medicine, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Connell M, Xin Y, Gerard SE, Herrmann J, Shah PK, Martin KT, Rezoagli E, Ippolito D, Rajaei J, Baron R, Delvecchio P, Humayun S, Rizi RR, Bellani G, Cereda M. Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN. Methods 2022; 205:200-209. [PMID: 35817338 PMCID: PMC9288584 DOI: 10.1016/j.ymeth.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Lesion segmentation is a critical step in medical image analysis, and methods to identify pathology without time-intensive manual labeling of data are of utmost importance during a pandemic and in resource-constrained healthcare settings. Here, we describe a method for fully automated segmentation and quantification of pathological COVID-19 lung tissue on chest Computed Tomography (CT) scans without the need for manually segmented training data. METHODS We trained a cycle-consistent generative adversarial network (CycleGAN) to convert images of COVID-19 scans into their generated healthy equivalents. Subtraction of the generated healthy images from their corresponding original CT scans yielded maps of pathological tissue, without background lung parenchyma, fissures, airways, or vessels. We then used these maps to construct three-dimensional lesion segmentations. Using a validation dataset, Dice scores were computed for our lesion segmentations and other published segmentation networks using ground truth segmentations reviewed by radiologists. RESULTS The COVID-to-Healthy generator eliminated high Hounsfield unit (HU) voxels within pulmonary lesions and replaced them with lower HU voxels. The generator did not distort normal anatomy such as vessels, airways, or fissures. The generated healthy images had higher gas content (2.45 ± 0.93 vs 3.01 ± 0.84 L, P < 0.001) and lower tissue density (1.27 ± 0.40 vs 0.73 ± 0.29 Kg, P < 0.001) than their corresponding original COVID-19 images, and they were not significantly different from those of the healthy images (P < 0.001). Using the validation dataset, lesion segmentations scored an average Dice score of 55.9, comparable to other weakly supervised networks that do require manual segmentations. CONCLUSION Our CycleGAN model successfully segmented pulmonary lesions in mild and severe COVID-19 cases. Our model's performance was comparable to other published models; however, our model is unique in its ability to segment lesions without the need for manual segmentations.
Collapse
Affiliation(s)
- Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Gerard
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Parth K Shah
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T Martin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, San Gerardo Hospital, Monza, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Davide Ippolito
- Department of Diagnostic and Interventional Radiology, San Gerardo Hospital, Monza, Italy
| | - Jennia Rajaei
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ryan Baron
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paolo Delvecchio
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiraz Humayun
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Giacomo Bellani
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Xin Y, Cereda M, Yehya N, Humayun S, Delvecchio P, Thompson JM, Martin K, Hamedani H, Martorano P, Duncan I, Kadlecek S, Makvandi M, Brenner JS, Rizi RR. Imatinib alleviates lung injury and prolongs survival in ventilated rats. Am J Physiol Lung Cell Mol Physiol 2022; 322:L866-L872. [PMID: 35438574 PMCID: PMC9142156 DOI: 10.1152/ajplung.00006.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Imatinib, a tyrosine kinase inhibitor, attenuates pulmonary edema and inflammation in lung injury. However, the physiological effects of this drug and their impact on outcomes are poorly characterized. Using serial computed tomography (CT), we tested the hypothesis that imatinib reduces injury severity and improves survival in ventilated rats. Hydrochloric acid (HCl) was instilled in the trachea (pH 1.5, 2.5 mL/kg) of anesthetized, intubated supine rats. Animals were randomized (n = 17 each group) to receive intraperitoneal imatinib or vehicle immediately prior to HCl. All rats then received mechanical ventilation. CT was performed hourly for 4 h. Images were quantitatively analyzed to assess the progression of radiological abnormalities. Injury severity was confirmed via hourly blood gases, serum biomarkers, bronchoalveolar lavage (BAL), and histopathology. Serial blood drug levels were measured in a subset of rats. Imatinib reduced mortality while delaying functional and radiological injury progression: out of 17 rats per condition, 2 control vs. 8 imatinib-treated rats survived until the end of the experiment (P = 0.02). Imatinib attenuated edema after lung injury (P < 0.05), and survival time in both groups was negatively correlated with increased lung mass (R2 = 0.70) as well as other physiological and CT parameters. Capillary leak (BAL protein concentration) was significantly lower in the treated group (P = 0.04). Peak drug concentration was reached after 70 min, and the drug half-life was 150 min. Imatinib decreased both mortality and lung injury severity in mechanically ventilated rats. Pharmacological inhibition of edema could be used during mechanical ventilation to improve the severity and outcome of lung injury.
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nadir Yehya
- Pediatric Sepsis Program and Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shiraz Humayun
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paolo Delvecchio
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jill M Thompson
- Pediatric Sepsis Program and Division of Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kevin Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Martorano
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mehran Makvandi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jacob S Brenner
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rahim R Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Rezoagli E, Laffey JG, Bellani G. Monitoring Lung Injury Severity and Ventilation Intensity during Mechanical Ventilation. Semin Respir Crit Care Med 2022; 43:346-368. [PMID: 35896391 DOI: 10.1055/s-0042-1748917] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe form of respiratory failure burden by high hospital mortality. No specific pharmacologic treatment is currently available and its ventilatory management is a key strategy to allow reparative and regenerative lung tissue processes. Unfortunately, a poor management of mechanical ventilation can induce ventilation induced lung injury (VILI) caused by physical and biological forces which are at play. Different parameters have been described over the years to assess lung injury severity and facilitate optimization of mechanical ventilation. Indices of lung injury severity include variables related to gas exchange abnormalities, ventilatory setting and respiratory mechanics, ventilation intensity, and the presence of lung hyperinflation versus derecruitment. Recently, specific indexes have been proposed to quantify the stress and the strain released over time using more comprehensive algorithms of calculation such as the mechanical power, and the interaction between driving pressure (DP) and respiratory rate (RR) in the novel DP multiplied by four plus RR [(4 × DP) + RR] index. These new parameters introduce the concept of ventilation intensity as contributing factor of VILI. Ventilation intensity should be taken into account to optimize protective mechanical ventilation strategies, with the aim to reduce intensity to the lowest level required to maintain gas exchange to reduce the potential for VILI. This is further gaining relevance in the current era of phenotyping and enrichment strategies in ARDS.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| | - John G Laffey
- School of Medicine, National University of Ireland, Galway, Ireland.,Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Hospital Group, Galway, Ireland.,Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Monza, Italy
| |
Collapse
|
6
|
Protti A, Santini A, Pennati F, Chiurazzi C, Ferrari M, Iapichino GE, Carenzo L, Dalla Corte F, Lanza E, Martinetti N, Aliverti A, Cecconi M. Lung response to prone positioning in mechanically-ventilated patients with COVID-19. Crit Care 2022; 26:127. [PMID: 35526009 PMCID: PMC9076814 DOI: 10.1186/s13054-022-03996-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/23/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Prone positioning improves survival in moderate-to-severe acute respiratory distress syndrome (ARDS) unrelated to the novel coronavirus disease (COVID-19). This benefit is probably mediated by a decrease in alveolar collapse and hyperinflation and a more homogeneous distribution of lung aeration, with fewer harms from mechanical ventilation. In this preliminary physiological study we aimed to verify whether prone positioning causes analogue changes in lung aeration in COVID-19. A positive result would support prone positioning even in this other population. METHODS Fifteen mechanically-ventilated patients with COVID-19 underwent a lung computed tomography in the supine and prone position with a constant positive end-expiratory pressure (PEEP) within three days of endotracheal intubation. Using quantitative analysis, we measured the volume of the non-aerated, poorly-aerated, well-aerated, and over-aerated compartments and the gas-to-tissue ratio of the ten vertical levels of the lung. In addition, we expressed the heterogeneity of lung aeration with the standardized median absolute deviation of the ten vertical gas-to-tissue ratios, with lower values indicating less heterogeneity. RESULTS By the time of the study, PEEP was 12 (10-14) cmH2O and the PaO2:FiO2 107 (84-173) mmHg in the supine position. With prone positioning, the volume of the non-aerated compartment decreased by 82 (26-147) ml, of the poorly-aerated compartment increased by 82 (53-174) ml, of the normally-aerated compartment did not significantly change, and of the over-aerated compartment decreased by 28 (11-186) ml. In eight (53%) patients, the volume of the over-aerated compartment decreased more than the volume of the non-aerated compartment. The gas-to-tissue ratio of the ten vertical levels of the lung decreased by 0.34 (0.25-0.49) ml/g per level in the supine position and by 0.03 (- 0.11 to 0.14) ml/g in the prone position (p < 0.001). The standardized median absolute deviation of the gas-to-tissue ratios of those ten levels decreased in all patients, from 0.55 (0.50-0.71) to 0.20 (0.14-0.27) (p < 0.001). CONCLUSIONS In fifteen patients with COVID-19, prone positioning decreased alveolar collapse, hyperinflation, and homogenized lung aeration. A similar response has been observed in other ARDS, where prone positioning improves outcome. Therefore, our data provide a pathophysiological rationale to support prone positioning even in COVID-19.
Collapse
Affiliation(s)
- Alessandro Protti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Alessandro Santini
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Chiara Chiurazzi
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Michele Ferrari
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giacomo E Iapichino
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Carenzo
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Dalla Corte
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Ezio Lanza
- Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Nicolò Martinetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Maurizio Cecconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Department of Anesthesia and Intensive Care Units, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Jayamaha AR, Jones AV, Katagira W, Girase B, Yusuf ZK, Pina I, Wilde LJ, Akylbekov A, Divall P, Singh SJ, Orme MW. Systematic Review of Physical Activity, Sedentary Behaviour and Sleep Among Adults Living with Chronic Respiratory Disease in Low- and Middle-Income Countries. Int J Chron Obstruct Pulmon Dis 2022; 17:821-854. [PMID: 35469273 PMCID: PMC9033501 DOI: 10.2147/copd.s345034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023] Open
Abstract
Abstract Physical activity (PA), sedentary behaviour (SB) and sleep are important lifestyle behaviours associated with chronic respiratory disease (CRD) morbidity and mortality. These behaviours need to be understood in low- and middle-income countries (LMIC) to develop appropriate interventions. Purpose Where and how have free-living PA, SB and sleep data been collected for adults living with CRD in LMIC? What are the free-living PA, SB and sleep levels of adults living with CRD? Patients and Methods The literature on free-living PA, SB and sleep of people living with CRD in LMIC was systematically reviewed in five relevant scientific databases. The review included empirical studies conducted in LMIC, reported in any language. Reviewers screened the articles and extracted data on prevalence, levels and measurement approach of PA, SB and sleep using a standardised form. Quality of reporting was assessed using bespoke criteria. Results Of 89 articles, most were conducted in Brazil (n=43). PA was the commonest behaviour measured (n=66). Questionnaires (n=52) were more commonly used to measure physical behaviours than device-based (n=37) methods. International Physical Activity Questionnaire was the commonest for measuring PA/SB (n=11). For sleep, most studies used Pittsburgh Sleep Quality Index (n=18). The most common ways of reporting were steps per day (n=21), energy expenditure (n=21), sedentary time (n=16), standing time (n=13), sitting time (n=11), lying time (n=10) and overall sleep quality (n=32). Studies revealed low PA levels [steps per day (range 2669-7490steps/day)], sedentary lifestyles [sitting time (range 283-418min/day); standing time (range 139-270min/day); lying time (range 76-119min/day)] and poor sleep quality (range 33-100%) among adults with CRD in LMIC. Conclusion Data support low PA levels, sedentary lifestyles and poor sleep among people in LMIC living with CRDs. More studies are needed in more diverse populations and would benefit from a harmonised approach to data collection for international comparisons.
Collapse
Affiliation(s)
- Akila R Jayamaha
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Health Sciences, KIU, Battaramulla, Sri Lanka
| | - Amy V Jones
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| | - Winceslaus Katagira
- Makerere University Lung Institute, Makerere University College of Health Sciences, Mulago Hospital, Kampala, Uganda
| | | | - Zainab K Yusuf
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| | - Ilaria Pina
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| | - Laura J Wilde
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| | - Azamat Akylbekov
- National Centre for Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Pip Divall
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Sally J Singh
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| | - Mark W Orme
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Centre for Exercise and Rehabilitation Science, NIHR Leicester Biomedical Research Centre-Respiratory, Leicester, UK
| |
Collapse
|
8
|
Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM, Altemeier WA, Artigas A, Bates JHT, Calfee CS, Dela Cruz CS, Dickson RP, Englert JA, Everitt JI, Fessler MB, Gelman AE, Gowdy KM, Groshong SD, Herold S, Homer RJ, Horowitz JC, Hsia CCW, Kurahashi K, Laubach VE, Looney MR, Lucas R, Mangalmurti NS, Manicone AM, Martin TR, Matalon S, Matthay MA, McAuley DF, McGrath-Morrow SA, Mizgerd JP, Montgomery SA, Moore BB, Noël A, Perlman CE, Reilly JP, Schmidt EP, Skerrett SJ, Suber TL, Summers C, Suratt BT, Takata M, Tuder R, Uhlig S, Witzenrath M, Zemans RL, Matute-Bello G. Update on the Features and Measurements of Experimental Acute Lung Injury in Animals: An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2022; 66:e1-e14. [PMID: 35103557 PMCID: PMC8845128 DOI: 10.1165/rcmb.2021-0531st] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.
Collapse
|
9
|
Musch G. New Frontiers in Functional and Molecular Imaging of the Acutely Injured Lung: Pathophysiological Insights and Research Applications. Front Physiol 2021; 12:762688. [PMID: 34955883 PMCID: PMC8696200 DOI: 10.3389/fphys.2021.762688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
This review focuses on the advances in the understanding of the pathophysiology of ventilator-induced and acute lung injury that have been afforded by technological development of imaging methods over the last decades. Examples of such advances include the establishment of regional lung mechanical strain as a determinant of ventilator-induced lung injury, the relationship between alveolar recruitment and overdistension, the regional vs. diffuse nature of pulmonary involvement in acute respiratory distress syndrome (ARDS), the identification of the physiological determinants of the response to recruitment interventions, and the pathophysiological significance of metabolic alterations in the acutely injured lung. Taken together, these advances portray multimodality imaging as the next frontier to both advance knowledge of the pathophysiology of these conditions and to tailor treatment to the individual patient's condition.
Collapse
Affiliation(s)
- Guido Musch
- Department of Anesthesiology and Perioperative Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
10
|
Xin Y, Martin K, Morais CC, Delvecchio P, Gerard SE, Hamedani H, Herrmann J, Abate N, Lenart A, Humayun S, Sidhu U, Petrov M, Reutlinger K, Mandelbaum T, Duncan I, Tustison N, Kadlecek S, Chatterjee S, Gee JC, Rizi RR, Berra L, Cereda M. Diminishing Efficacy of Prone Positioning With Late Application in Evolving Lung Injury. Crit Care Med 2021; 49:e1015-e1024. [PMID: 33938714 PMCID: PMC8448902 DOI: 10.1097/ccm.0000000000005071] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES It is not known how lung injury progression during mechanical ventilation modifies pulmonary responses to prone positioning. We compared the effects of prone positioning on regional lung aeration in late versus early stages of lung injury. DESIGN Prospective, longitudinal imaging study. SETTING Research imaging facility at The University of Pennsylvania (Philadelphia, PA) and Medical and Surgical ICUs at Massachusetts General Hospital (Boston, MA). SUBJECTS Anesthetized swine and patients with acute respiratory distress syndrome (acute respiratory distress syndrome). INTERVENTIONS Lung injury was induced by bronchial hydrochloric acid (3.5 mL/kg) in 10 ventilated Yorkshire pigs and worsened by supine nonprotective ventilation for 24 hours. Whole-lung CT was performed 2 hours after hydrochloric acid (Day 1) in both prone and supine positions and repeated at 24 hours (Day 2). Prone and supine images were registered (superimposed) in pairs to measure the effects of positioning on the aeration of each tissue unit. Two patients with early acute respiratory distress syndrome were compared with two patients with late acute respiratory distress syndrome, using electrical impedance tomography to measure the effects of body position on regional lung mechanics. MEASUREMENTS AND MAIN RESULTS Gas exchange and respiratory mechanics worsened over 24 hours, indicating lung injury progression. On Day 1, prone positioning reinflated 18.9% ± 5.2% of lung mass in the posterior lung regions. On Day 2, position-associated dorsal reinflation was reduced to 7.3% ± 1.5% (p < 0.05 vs Day 1). Prone positioning decreased aeration in the anterior lungs on both days. Although prone positioning improved posterior lung compliance in the early acute respiratory distress syndrome patients, it had no effect in late acute respiratory distress syndrome subjects. CONCLUSIONS The effects of prone positioning on lung aeration may depend on the stage of lung injury and duration of prior ventilation; this may limit the clinical efficacy of this treatment if applied late.
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Caio C.A. Morais
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Paolo Delvecchio
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E. Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Nicholas Abate
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Austin Lenart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Shiraz Humayun
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Uday Sidhu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihail Petrov
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristan Reutlinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Tal Mandelbaum
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Shampa Chatterjee
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Herrmann J, Gerard SE, Shao W, Xin Y, Cereda M, Reinhardt JM, Christensen GE, Hoffman EA, Kaczka DW. Effects of Lung Injury on Regional Aeration and Expiratory Time Constants: Insights From Four-Dimensional Computed Tomography Image Registration. Front Physiol 2021; 12:707119. [PMID: 34393824 PMCID: PMC8355819 DOI: 10.3389/fphys.2021.707119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Intratidal changes in regional lung aeration, as assessed with dynamic four-dimensional computed tomography (CT; 4DCT), may indicate the processes of recruitment and derecruitment, thus portending atelectrauma during mechanical ventilation. In this study, we characterized the time constants associated with deaeration during the expiratory phase of pressure-controlled ventilation in pigs before and after acute lung injury using respiratory-gated 4DCT and image registration. Methods: Eleven pigs were mechanically ventilated in pressure-controlled mode under baseline conditions and following an oleic acid model of acute lung injury. Dynamic 4DCT scans were acquired without interrupting ventilation. Automated segmentation of lung parenchyma was obtained by a convolutional neural network. Respiratory structures were aligned using 4D image registration. Exponential regression was performed on the time-varying CT density in each aligned voxel during exhalation, resulting in regional estimates of intratidal aeration change and deaeration time constants. Regressions were also performed for regional and total exhaled gas volume changes. Results: Normally and poorly aerated lung regions demonstrated the largest median intratidal aeration changes during exhalation, compared to minimal changes within hyper- and non-aerated regions. Following lung injury, median time constants throughout normally aerated regions within each subject were greater than respective values for poorly aerated regions. However, parametric response mapping revealed an association between larger intratidal aeration changes and slower time constants. Lower aeration and faster time constants were observed for the dependent lung regions in the supine position. Regional gas volume changes exhibited faster time constants compared to regional density time constants, as well as better correspondence to total exhaled volume time constants. Conclusion: Mechanical time constants based on exhaled gas volume underestimate regional aeration time constants. After lung injury, poorly aerated regions experience larger intratidal changes in aeration over shorter time scales compared to normally aerated regions. However, the largest intratidal aeration changes occur over the longest time scales within poorly aerated regions. These dynamic 4DCT imaging data provide supporting evidence for the susceptibility of poorly aerated regions to ventilator-induced lung injury, and for the functional benefits of short exhalation times during mechanical ventilation of injured lungs.
Collapse
Affiliation(s)
- Jacob Herrmann
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Sarah E Gerard
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Wei Shao
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph M Reinhardt
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David W Kaczka
- Department of Radiology, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
12
|
Ross BD, Chenevert TL, Meyer CR. Retrospective Registration in Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
13
|
Xin Y, Cereda M, Hamedani H, Martin KT, Tustison NJ, Pourfathi M, Kadlecek S, Siddiqui S, Amzajerdian F, Connell M, Abate N, Kajanaku A, Duncan I, Gee JC, Rizi RR. Positional Therapy and Regional Pulmonary Ventilation. Anesthesiology 2020; 133:1093-1105. [PMID: 32773690 PMCID: PMC7572577 DOI: 10.1097/aln.0000000000003509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Prone ventilation redistributes lung inflation along the gravitational axis; however, localized, nongravitational effects of body position are less well characterized. The authors hypothesize that positional inflation improvements follow both gravitational and nongravitational distributions. This study is a nonoverlapping reanalysis of previously published large animal data. METHODS Five intubated, mechanically ventilated pigs were imaged before and after lung injury by tracheal injection of hydrochloric acid (2 ml/kg). Computed tomography scans were performed at 5 and 10 cm H2O positive end-expiratory pressure (PEEP) in both prone and supine positions. All paired prone-supine images were digitally aligned to each other. Each unit of lung tissue was assigned to three clusters (K-means) according to positional changes of its density and dimensions. The regional cluster distribution was analyzed. Units of tissue displaying lung recruitment were mapped. RESULTS We characterized three tissue clusters on computed tomography: deflation (increased tissue density and contraction), limited response (stable density and volume), and reinflation (decreased density and expansion). The respective clusters occupied (mean ± SD including all studied conditions) 29.3 ± 12.9%, 47.6 ± 11.4%, and 23.1 ± 8.3% of total lung mass, with similar distributions before and after lung injury. Reinflation was slightly greater at higher PEEP after injury. Larger proportions of the reinflation cluster were contained in the dorsal versus ventral (86.4 ± 8.5% vs. 13.6 ± 8.5%, P < 0.001) and in the caudal versus cranial (63.4 ± 11.2% vs. 36.6 ± 11.2%, P < 0.001) regions of the lung. After injury, prone positioning recruited 64.5 ± 36.7 g of tissue (11.4 ± 6.7% of total lung mass) at lower PEEP, and 49.9 ± 12.9 g (8.9 ± 2.8% of total mass) at higher PEEP; more than 59.0% of this recruitment was caudal. CONCLUSIONS During mechanical ventilation, lung reinflation and recruitment by the prone positioning were primarily localized in the dorso-caudal lung. The local effects of positioning in this lung region may determine its clinical efficacy. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas J. Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Mehrdad Pourfathi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Faraz Amzajerdian
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas Abate
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Agi Kajanaku
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian Duncan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - James C. Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Shin KM, Choi J, Chae KJ, Jin GY, Eskandari A, Hoffman EA, Hall C, Castro M, Lee CH. Quantitative CT-based image registration metrics provide different ventilation and lung motion patterns in prone and supine positions in healthy subjects. Respir Res 2020; 21:254. [PMID: 33008396 PMCID: PMC7531138 DOI: 10.1186/s12931-020-01519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Background Previous studies suggested that the prone position (PP) improves oxygenation and reduces mortality among patients with acute respiratory distress syndrome (ARDS). However, the mechanism of this clinical benefit of PP is not completely understood. The aim of the present study was to quantitatively compare regional characteristics of lung functions in the PP with those in the supine position (SP) using inspiratory and expiratory computed tomography (CT) scans. Methods Ninety subjects with normal pulmonary function and inspiration and expiration CT images were included in the study. Thirty-four subjects were scanned in PP, and 56 subjects were scanned in SP. Non-rigid image registration-based inspiratory-expiratory image matching assessment was used for regional lung function analysis. Tissue fractions (TF) were computed based on the CT density and compared on a lobar basis. Three registration-derived functional variables, relative regional air volume change (RRAVC), volumetric expansion ratio (J), and three-dimensional relative regional displacement (s*) were used to evaluate regional ventilation and deformation characteristics. Results J was greater in PP than in SP in the right middle lobe (P = 0 .025), and RRAVC was increased in the upper and right middle lobes (P < 0.001). The ratio of the TF on inspiratory and expiratory scans, J, and RRAVC at the upper lobes to those at the middle and lower lobes and that ratio at the upper and middle lobes to those at the lower lobes of were all near unity in PP, and significantly higher than those in SP (0.98–1.06 vs 0.61–0.94, P < 0.001). Conclusion We visually and quantitatively observed that PP not only induced more uniform contributions of regional lung ventilation along the ventral-dorsal axis but also minimized the lobar differences of lung functions in comparison with SP. This may help in the clinician’s search for an understanding of the benefits of the application of PP to the patients with ARDS or other gravitationally dependent pathologic lung diseases. Trial registration Retrospectively registered.
Collapse
Affiliation(s)
- Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, South Korea
| | - Jiwoong Choi
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA.,Department of Bioengineering, The University of Kansas, Lawrence, Kansas, USA
| | - Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Ali Eskandari
- Department of Radiology, University of Iowa, Iowa City, USA
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, USA.,Internal Medicine, University of Iowa, Iowa City, USA.,Biomedical Engineering, University of Iowa, Iowa City, USA
| | - Chase Hall
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA
| | - Mario Castro
- Department of Internal Medicine, School of Medicine, The University of Kansas, Kansas City, Kansas, USA
| | - Chang Hyun Lee
- Department of Radiology, University of Iowa, Iowa City, USA. .,Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongnogu, Seoul, 03080, South Korea.
| |
Collapse
|
15
|
Dalla Corte F, Mauri T, Spinelli E, Lazzeri M, Turrini C, Albanese M, Abbruzzese C, Lissoni A, Galazzi A, Eronia N, Bronco A, Maffezzini E, Pesenti A, Foti G, Bellani G, Grasselli G. Dynamic bedside assessment of the physiologic effects of prone position in acute respiratory distress syndrome patients by electrical impedance tomography. Minerva Anestesiol 2020; 86:1057-1064. [DOI: 10.23736/s0375-9393.20.14130-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
|
17
|
Kollisch-Singule M, Satalin J, Blair SJ, Andrews PL, Gatto LA, Nieman GF, Habashi NM. Mechanical Ventilation Lessons Learned From Alveolar Micromechanics. Front Physiol 2020; 11:233. [PMID: 32265735 PMCID: PMC7105828 DOI: 10.3389/fphys.2020.00233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023] Open
Abstract
Morbidity and mortality associated with lung injury remains disappointingly unchanged over the last two decades, in part due to the current reliance on lung macro-parameters set on the ventilator instead of considering the micro-environment and the response of the alveoli and alveolar ducts to ventilator adjustments. The response of alveoli and alveolar ducts to mechanical ventilation modes cannot be predicted with current bedside methods of assessment including lung compliance, oxygenation, and pressure-volume curves. Alveolar tidal volumes (Vt) are less determined by the Vt set on the mechanical ventilator and more dependent on the number of recruited alveoli available to accommodate that Vt and their heterogeneous mechanical properties, such that high lung Vt can lead to a low alveolar Vt and low Vt can lead to high alveolar Vt. The degree of alveolar heterogeneity that exists cannot be predicted based on lung calculations that average the individual alveolar Vt and compliance. Finally, the importance of time in promoting alveolar stability, specifically the inspiratory and expiratory times set on the ventilator, are currently under-appreciated. In order to improve outcomes related to lung injury, the respiratory physiology of the individual patient, specifically at the level of the alveolus, must be targeted. With experimental data, this review highlights some of the known mechanical ventilation adjustments that are helpful or harmful at the level of the alveolus.
Collapse
Affiliation(s)
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah J. Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny L. Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| | - Louis A. Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Nader M. Habashi
- Department of Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, United States
| |
Collapse
|
18
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Herrmann J, Gerard SE, Shao W, Hawley ML, Reinhardt JM, Christensen GE, Hoffman EA, Kaczka DW. Quantifying Regional Lung Deformation Using Four-Dimensional Computed Tomography: A Comparison of Conventional and Oscillatory Ventilation. Front Physiol 2020; 11:14. [PMID: 32153417 PMCID: PMC7044245 DOI: 10.3389/fphys.2020.00014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023] Open
Abstract
Mechanical ventilation strategies that reduce the heterogeneity of regional lung stress and strain may reduce the risk of ventilator-induced lung injury (VILI). In this study, we used registration of four-dimensional computed tomographic (4DCT) images to assess regional lung aeration and deformation in 10 pigs under baseline conditions and following acute lung injury induced with oleic acid. CT images were obtained via dynamic axial imaging (Siemens SOMATOM Force) during conventional pressure-controlled mechanical ventilation (CMV), as well as high-frequency and multi-frequency oscillatory ventilation modalities (HFOV and MFOV, respectively). Our results demonstrate that oscillatory modalities reduce intratidal strain throughout the lung in comparison to conventional ventilation, as well as the spatial gradients of dynamic strain along the dorsal-ventral axis. Harmonic distortion of parenchymal deformation was observed during HFOV with a single discrete sinusoid delivered at the airway opening, suggesting inherent mechanical nonlinearity of the lung tissues. MFOV may therefore provide improved lung-protective ventilation by reducing strain magnitudes and spatial gradients of strain compared to either CMV or HFOV.
Collapse
Affiliation(s)
- Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States.,OscillaVent, Inc., Iowa City, IA, United States
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Wei Shao
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States
| | | | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiation Oncology, University of Iowa, Iowa City, IA, United States
| | - Eric A Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States
| | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.,Department of Anesthesia, University of Iowa, Iowa City, IA, United States.,OscillaVent, Inc., Iowa City, IA, United States.,Department of Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
20
|
Nieman GF, Gatto LA, Andrews P, Satalin J, Camporota L, Daxon B, Blair SJ, Al-Khalisy H, Madden M, Kollisch-Singule M, Aiash H, Habashi NM. Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Ann Intensive Care 2020; 10:3. [PMID: 31907704 PMCID: PMC6944723 DOI: 10.1186/s13613-019-0619-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Mortality in acute respiratory distress syndrome (ARDS) remains unacceptably high at approximately 39%. One of the only treatments is supportive: mechanical ventilation. However, improperly set mechanical ventilation can further increase the risk of death in patients with ARDS. Recent studies suggest that ventilation-induced lung injury (VILI) is caused by exaggerated regional lung strain, particularly in areas of alveolar instability subject to tidal recruitment/derecruitment and stress-multiplication. Thus, it is reasonable to expect that if a ventilation strategy can maintain stable lung inflation and homogeneity, regional dynamic strain would be reduced and VILI attenuated. A time-controlled adaptive ventilation (TCAV) method was developed to minimize dynamic alveolar strain by adjusting the delivered breath according to the mechanical characteristics of the lung. The goal of this review is to describe how the TCAV method impacts pathophysiology and protects lungs with, or at high risk of, acute lung injury. We present work from our group and others that identifies novel mechanisms of VILI in the alveolar microenvironment and demonstrates that the TCAV method can reduce VILI in translational animal ARDS models and mortality in surgical/trauma patients. Our TCAV method utilizes the airway pressure release ventilation (APRV) mode and is based on opening and collapsing time constants, which reflect the viscoelastic properties of the terminal airspaces. Time-controlled adaptive ventilation uses inspiratory and expiratory time to (1) gradually “nudge” alveoli and alveolar ducts open with an extended inspiratory duration and (2) prevent alveolar collapse using a brief (sub-second) expiratory duration that does not allow time for alveolar collapse. The new paradigm in TCAV is configuring each breath guided by the previous one, which achieves real-time titration of ventilator settings and minimizes instability induced tissue damage. This novel methodology changes the current approach to mechanical ventilation, from arbitrary to personalized and adaptive. The outcome of this approach is an open and stable lung with reduced regional strain and greater lung protection.
Collapse
Affiliation(s)
- Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| | - Luigi Camporota
- Department of Critical Care, Guy's and St, Thomas' NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK
| | - Benjamin Daxon
- Dept of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Sarah J Blair
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Hassan Al-Khalisy
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Maria Madden
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | | | - Hani Aiash
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.,Department of Clinical Perfusion, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nader M Habashi
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| |
Collapse
|
21
|
Valuable Lung Injury Lessons From a Little Known Disease. Crit Care Med 2019; 47:295-296. [PMID: 30653061 DOI: 10.1097/ccm.0000000000003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Xiao Q, Wang Y, Sun L, Lu S, Li J, Chen Y, Wu Y. Immediate Prone Positioning After Massive Gastric Aspiration Reduces Lung Injury Possibly by Attenuating Interleukin-6-Mediated Lung-Tissue Inflammation in Pigs. Biol Res Nurs 2019; 22:64-74. [PMID: 31529988 DOI: 10.1177/1099800419875521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gastric aspiration, which can cause acute, diffuse, inflammatory lung injury, is of particular concern in critically ill patients. This study aimed to determine the effects of immediate prone positioning on the degree of lung injury and inflammatory response induced by gastric aspiration. Following induction of gastric aspiration by injection of gastric fluid, 16 healthy pigs were randomized to one of two groups: supine position (SP) or prone position (PP). After ventilation and monitoring for 6 hr, all pigs were euthanized. The ratio of the partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FIO2) and the partial pressure of arterial carbon dioxide (PaCO2) were recorded during the 6-hr study period. Serum levels of interleukin (IL)-6 were measured every 2 hr, and the mean optical density (MOD) of IL-6 in lung tissues and lung-injury scores were measured at the end of the experiment. The PP group showed a significantly higher PaO2/FIO2 ratio, lower serum IL-6 concentration (p = .015), lower lung-injury scores (p = .012), and lower IL-6 concentration and MOD of IL-6 in lung tissue, especially in dorsal (p = .001, p = .021, respectively) and nondependent regions (p = .005, p = .035, respectively) than the SP group. There were no statistically significant differences in PaCO2 between the groups. Lung-injury severity was positively correlated with the IL-6 concentration and MOD of IL-6 in lung tissues (p < .05). These results suggest that immediate prone positioning alleviated the degree of aspiration-induced lung injury, possibly through mitigating IL-6-mediated lung inflammation.
Collapse
Affiliation(s)
- Qian Xiao
- School of Nursing, Capital Medical University, Beijing, China
| | - Yanling Wang
- School of Nursing, Capital Medical University, Beijing, China
| | - Liu Sun
- School of Nursing, Capital Medical University, Beijing, China
| | - Sai Lu
- College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Jia Li
- School of Nursing, Capital Medical University, Beijing, China
| | - Yun Chen
- School of Nursing, Capital Medical University, Beijing, China
| | - Ying Wu
- School of Nursing, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Douglas IS, Bednash JS, Fein DG, Mallampalli RK, Mansoori JN, Gershengorn HB. Update in Critical Care and Acute Respiratory Distress Syndrome 2018. Am J Respir Crit Care Med 2019; 199:1335-1343. [PMID: 30958975 DOI: 10.1164/rccm.201903-0550up] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ivor S Douglas
- 1 Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Joseph S Bednash
- 2 Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Rama K Mallampalli
- 4 Department of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Jason N Mansoori
- 1 Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Hayley B Gershengorn
- 5 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
25
|
Kollisch-Singule M, Andrews P, Satalin J, Gatto LA, Nieman GF, Habashi NM. The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. Eur Respir Rev 2019; 28:28/152/180126. [PMID: 30996041 DOI: 10.1183/16000617.0126-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/16/2019] [Indexed: 11/05/2022] Open
Abstract
Airway pressure release ventilation (APRV) is a ventilator mode that has previously been considered a rescue mode, but has gained acceptance as a primary mode of ventilation. In clinical series and experimental animal models of extrapulmonary acute respiratory distress syndrome (ARDS), the early application of APRV was able to prevent the development of ARDS. Recent experimental evidence has suggested mechanisms by which APRV, using the time-controlled adaptive ventilation (TCAV) protocol, may reduce lung injury, including: 1) an improvement in alveolar recruitment and homogeneity; 2) reduction in alveolar and alveolar duct micro-strain and stress-risers; 3) reduction in alveolar tidal volumes; and 4) recruitment of the chest wall by combating increased intra-abdominal pressure. This review examines these studies and discusses our current understanding of the pleiotropic mechanisms by which TCAV protects the lung. APRV set according to the TCAV protocol has been misunderstood and this review serves to highlight the various protective physiological and mechanical effects it has on the lung, so that its clinical application may be broadened.
Collapse
Affiliation(s)
| | - Penny Andrews
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA.,Dept of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nader M Habashi
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Satalin J, Habashi NM, Nieman GF. Never give the lung the opportunity to collapse. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Hedenstierna G. Unstable Inflation Is Harmful and More Common Supine Than Prone. Am J Respir Crit Care Med 2018; 198:146-147. [DOI: 10.1164/rccm.201802-0313ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|