1
|
Gerard L, Lecocq M, Detry B, Bouzin C, Hoton D, Pinto Pereira J, Carlier F, Plante-Bordeneuve T, Gohy S, Lacroix V, Laterre PF, Pilette C. Airway epithelium damage in acute respiratory distress syndrome. Crit Care 2024; 28:350. [PMID: 39478566 PMCID: PMC11523598 DOI: 10.1186/s13054-024-05127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND The airway epithelium (AE) fulfils multiple functions to maintain pulmonary homeostasis, among which ensuring adequate barrier function, cell differentiation and polarization, and actively transporting immunoglobulin A (IgA), the predominant mucosal immunoglobulin in the airway lumen, via the polymeric immunoglobulin receptor (pIgR). Morphological changes of the airways have been reported in ARDS, while their detailed features, impact for mucosal immunity, and causative mechanisms remain unclear. Therefore, this study aimed to assess epithelial alterations in the distal airways of patients with ARDS. METHODS We retrospectively analyzed lung tissue samples from ARDS patients and controls to investigate and quantify structural and functional changes in the small airways, using multiplex fluorescence immunostaining and computer-assisted quantification on whole tissue sections. Additionally, we measured markers of mucosal immunity, IgA and pIgR, alongside with other epithelial markers, in the serum and the broncho-alveolar lavage fluid (BALF) prospectively collected from ARDS patients and controls. RESULTS Compared to controls, airways of ARDS were characterized by increased epithelial denudation (p = 0.0003) and diffuse epithelial infiltration by neutrophils (p = 0.0005). Quantitative evaluation of multiplex fluorescence immunostaining revealed a loss of ciliated cells (p = 0.0317) a trend towards decreased goblet cells (p = 0.056), and no change regarding cell progenitors (basal and club cells), indicating altered mucociliary differentiation. Increased epithelial permeability was also shown in ARDS with a significant decrease of tight (p < 0.0001) and adherens (p = 0.025) junctional proteins. Additionally, we observed a significant decrease of the expression of pIgR, (p < 0.0001), indicating impaired mucosal IgA immunity. Serum concentrations of secretory component (SC) and S-IgA were increased in ARDS (both p < 0.0001), along other lung-derived proteins (CC16, SP-D, sRAGE). However, their BALF concentrations remained unchanged, suggesting a spillover of airway and alveolar proteins through a damaged AE. CONCLUSION The airway epithelium from patients with ARDS exhibits multifaceted alterations leading to altered mucociliary differentiation, compromised defense functions and increased permeability with pneumoproteinemia.
Collapse
Affiliation(s)
- Ludovic Gerard
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium.
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| | - Marylene Lecocq
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bruno Detry
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP, RRID:SCR_023378), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine Hoton
- Department of Pathology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Joao Pinto Pereira
- Department of Critical Care Medicine, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - François Carlier
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Thomas Plante-Bordeneuve
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, CHU-UCL Namur, Yvoir, Belgium
| | - Sophie Gohy
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre-François Laterre
- Department of Intensive Care Medicine, Centre Hospitalier Régional Mons-Hainaut, Mons, Belgium
| | - Charles Pilette
- Pôle de Pneumologie, O.R.L. et Dermatologie (LuNS, Lung-Nose-Skin), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Pulmonology, Cliniques universitaires Saint Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
2
|
Rosà T, Bongiovanni F, Michi T, Mastropietro C, Menga LS, DE Pascale G, Antonelli M, Grieco DL. Recruitment-to-inflation ratio for bedside PEEP selection in acute respiratory distress syndrome. Minerva Anestesiol 2024; 90:694-706. [PMID: 39021144 DOI: 10.23736/s0375-9393.24.17982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
In acute respiratory distress syndrome, the role of positive end-expiratory pressure (PEEP) to prevent ventilator-induced lung injury is controversial. Randomized trials comparing higher versus lower PEEP strategies failed to demonstrate a clinical benefit. This may depend on the inter-individually variable potential for lung recruitment (i.e. recruitability), which would warrant PEEP individualization to balance alveolar recruitment and the unavoidable baby lung overinflation produced by high pressure. Many techniques have been used to assess recruitability, including lung imaging, multiple pressure-volume curves and lung volume measurement. The Recruitment-to-Inflation ratio (R/I) has been recently proposed to bedside assess recruitability without additional equipment. R/I assessment is a simplified technique based on the multiple pressure-volume curve concept: it is measured by monitoring respiratory mechanics and exhaled tidal volume during a 10-cmH2O one-breath derecruitment maneuver after a short high-PEEP test. R/I scales recruited volume to respiratory system compliance, and normalizes recruitment to a proxy of actual lung size. With modest R/I (<0.3-0.4), setting low PEEP (5-8 cmH2O) may be advisable; with R/I>0.6-0.7, high PEEP (≥15 cmH2O) can be considered, provided that airway and/or transpulmonary plateau pressure do not exceed safety limits. In case of intermediate R/I (≈0.5), a more granular assessment of recruitability may be needed. This could be accomplished with advanced monitoring tools, like sequential lung volume measurement with granular R/I assessment or electrical impedance tomography monitoring during a decremental PEEP trial. In this review, we discuss R/I rationale, applications and limits, providing insights on its clinical use for PEEP selection in moderate-to-severe acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Tommaso Rosà
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Claudia Mastropietro
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Luca S Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Gennaro DE Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| | - Domenico L Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, IRCCS A. Gemelli University Polyclinic Foundation, Rome, Italy -
- Institute of Anesthesiology and Resuscitation, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Haudebourg AF, Moncomble E, Lesimple A, Delamaire F, Louis B, Mekontso Dessap A, Mercat A, Richard JC, Beloncle F, Carteaux G. A novel method for assessment of airway opening pressure without the need for low-flow insufflation. Crit Care 2023; 27:273. [PMID: 37420282 PMCID: PMC10329375 DOI: 10.1186/s13054-023-04560-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Airway opening pressure (AOP) detection and measurement are essential for assessing respiratory mechanics and adapting ventilation. We propose a novel approach for AOP assessment during volume assist control ventilation at a usual constant-flow rate of 60 L/min. OBJECTIVES To validate the conductive pressure (Pcond) method, which compare the Pcond-defined on the airway pressure waveform as the difference between the airway pressure level at which an abrupt change in slope occurs at the beginning of insufflation and PEEP-to resistive pressure for AOP detection and measurement, and to compare its respiratory and hemodynamic tolerance to the standard low-flow insufflation method. METHODS The proof-of-concept of the Pcond method was assessed on mechanical (lung simulator) and physiological (cadavers) bench models. Its diagnostic performance was evaluated in 213 patients, using the standard low-flow insufflation method as a reference. In 45 patients, the respiratory and hemodynamic tolerance of the Pcond method was compared with the standard low-flow method. MEASUREMENTS AND MAIN RESULTS Bench assessments validated the Pcond method proof-of-concept. Sensitivity and specificity of the Pcond method for AOP detection were 93% and 91%, respectively. AOP obtained by Pcond and standard low-flow methods strongly correlated (r = 0.84, p < 0.001). Changes in SpO2 were significantly lower during Pcond than during standard method (p < 0.001). CONCLUSION Determination of Pcond during constant-flow assist control ventilation may permit to easily and safely detect and measure AOP.
Collapse
Affiliation(s)
- Anne-Fleur Haudebourg
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Elsa Moncomble
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Arnaud Lesimple
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Laboratoire Med2Lab ALMS, Antony, France
| | - Flora Delamaire
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
| | - Bruno Louis
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France
| | - Armand Mekontso Dessap
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France
| | - Alain Mercat
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
| | - Jean-Christophe Richard
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
- UMR 1066, INSERM, Créteil, France
| | - François Beloncle
- CNRS, INSERM 1083, MITOVASC, Université d'Angers, Angers, France
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Vent' Lab, Faculté de Santé, Université d'Angers, Angers, France
| | - Guillaume Carteaux
- Assistance Publique-Hôpitaux de Paris, CHU Henri Mondor-Albert Chenevier, Service de Médecine Intensive Réanimation, 51, Avenue du Maréchal de Lattre de Tassigny, 94010, Créteil Cedex, France.
- Groupe de Recherche Clinique CARMAS, Faculté de Santé, Université Paris Est-Créteil, 94010, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomédicale, 94010, Créteil, France.
| |
Collapse
|
4
|
Guérin C, Cour M, Argaud L. Airway Closure and Expiratory Flow Limitation in Acute Respiratory Distress Syndrome. Front Physiol 2022; 12:815601. [PMID: 35111078 PMCID: PMC8801584 DOI: 10.3389/fphys.2021.815601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is mostly characterized by the loss of aerated lung volume associated with an increase in lung tissue and intense and complex lung inflammation. ARDS has long been associated with the histological pattern of diffuse alveolar damage (DAD). However, DAD is not the unique pathological figure in ARDS and it can also be observed in settings other than ARDS. In the coronavirus disease 2019 (COVID-19) related ARDS, the impairment of lung microvasculature has been pointed out. The airways, and of notice the small peripheral airways, may contribute to the loss of aeration observed in ARDS. High-resolution lung imaging techniques found that in specific experimental conditions small airway closure was a reality. Furthermore, low-volume ventilator-induced lung injury, also called as atelectrauma, should involve the airways. Atelectrauma is one of the basic tenet subtending the use of positive end-expiratory pressure (PEEP) set at the ventilator in ARDS. Recent data revisited the role of airways in humans with ARDS and provided findings consistent with the expiratory flow limitation and airway closure in a substantial number of patients with ARDS. We discussed the pattern of airway opening pressure disclosed in the inspiratory volume-pressure curves in COVID-19 and in non-COVID-19 related ARDS. In addition, we discussed the functional interplay between airway opening pressure and expiratory flow limitation displayed in the flow-volume curves. We discussed the individualization of the PEEP setting based on these findings.
Collapse
Affiliation(s)
- Claude Guérin
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
- Institut Mondor de Recherches Biomédicales, INSERM-UPEC UMR 955 Team 13 - CNRS ERL 7000, Créteil, France
| | - Martin Cour
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| | - Laurent Argaud
- Médecine Intensive - Réanimation Hôpital Edouard Herriot Lyon, Lyon, France
- Faculté de Médecine Lyon-Est, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Becher T, Buchholz V, Hassel D, Meinel T, Schädler D, Frerichs I, Weiler N. Individualization of PEEP and tidal volume in ARDS patients with electrical impedance tomography: a pilot feasibility study. Ann Intensive Care 2021; 11:89. [PMID: 34080074 PMCID: PMC8171998 DOI: 10.1186/s13613-021-00877-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Background In mechanically ventilated patients with acute respiratory distress syndrome (ARDS), electrical impedance tomography (EIT) provides information on alveolar cycling and overdistension as well as assessment of recruitability at the bedside. We developed a protocol for individualization of positive end-expiratory pressure (PEEP) and tidal volume (VT) utilizing EIT-derived information on recruitability, overdistension and alveolar cycling. The aim of this study was to assess whether the EIT-based protocol allows individualization of ventilator settings without causing lung overdistension, and to evaluate its effects on respiratory system compliance, oxygenation and alveolar cycling. Methods 20 patients with ARDS were included. Initially, patients were ventilated according to the recommendations of the ARDS Network with a VT of 6 ml per kg predicted body weight and PEEP adjusted according to the lower PEEP/FiO2 table. Subsequently, ventilator settings were adjusted according to the EIT-based protocol once every 30 min for a duration of 4 h. To assess global overdistension, we determined whether lung stress and strain remained below 27 mbar and 2.0, respectively. Results Prospective optimization of mechanical ventilation with EIT led to higher PEEP levels (16.5 [14–18] mbar vs. 10 [8–10] mbar before optimization; p = 0.0001) and similar VT (5.7 ± 0.92 ml/kg vs. 5.8 ± 0.47 ml/kg before optimization; p = 0.96). Global lung stress remained below 27 mbar in all patients and global strain below 2.0 in 19 out of 20 patients. Compliance remained similar, while oxygenation was significantly improved and alveolar cycling was reduced after EIT-based optimization. Conclusions Adjustment of PEEP and VT using the EIT-based protocol led to individualization of ventilator settings with improved oxygenation and reduced alveolar cycling without promoting global overdistension. Trial registrationThis study was registered at clinicaltrials.gov (NCT02703012) on March 9, 2016 before including the first patient. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00877-7.
Collapse
Affiliation(s)
- Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| | - Valerie Buchholz
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniel Hassel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Timo Meinel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Dirk Schädler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Norbert Weiler
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
6
|
Santini A, Fumagalli J, Merrino A, Protti I, Paleari MC, Montoli M, Dondossola D, Gori F, Righi I, Rosso L, Gatti S, Pesenti A, Grasselli G, Zanella A. Evidence of Air Trapping During Ex Vivo Lung Perfusion: A Swine Experimental Lung Imaging and Mechanics Study. Transplant Proc 2020; 53:457-465. [PMID: 33339649 DOI: 10.1016/j.transproceed.2020.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022]
Abstract
Ex vivo lung perfusion (EVLP) allows the ventilation and perfusion of lungs to evaluate their viability for transplantation. The aim of this study is to compare the mechanical, morphologic and functional properties of lungs during EVLP with values obtained in vivo to guide a safe mechanical ventilation strategy. Lungs from 5 healthy pigs were studied in vivo and during 4 hours of EVLP. Lung compliance, airway resistance, gas exchange, and hemodynamic parameters were collected at positive end-expiratory pressure (PEEP) of 5 cm H2O. Computed tomography was performed at PEEP 0, PEEP 5, and total lung capacity (TLC). Lung pressure-volume (PV) curves were performed from PEEP 0 to TLC. Lung compliance decreased during EVLP (53 ± 5 mL/cm H2O vs 29 ± 7 mL/cm H2O, P < .05), and the PV curve showed a lower inflection point. Gas content (528 ± 118 mL vs 892 ± 402 mL at PEEP 0) and airway resistance (25 ± 5 vs 44 ± 9 cmH2O/L∗s-1, P < .05) were higher during EVLP. Alveolar dead space (5% ± 2% vs 17% ± 6%, P < .05) and intrapulmonary shunt (9% ± 2% vs 28% ± 13%, P < .05) increased ex vivo compared to in vivo, while the partial pressure of oxygen to inspired oxygen fraction ratio (PO2/FiO2) did not differ (468 ± 52 mm Hg vs 536 ± 14 mm Hg). In conclusion, during EVLP lungs show signs of air trapping and bronchoconstriction, resulting in low compliance and increased alveolar dead space. Intrapulmonary shunt is high despite oxygenation levels acceptable for transplantation.
Collapse
Affiliation(s)
- A Santini
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Anestesia e Terapie Intensive, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - J Fumagalli
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Merrino
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - I Protti
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M C Paleari
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M Montoli
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Dondossola
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy; Dipartimento di Chirurgia Generale e dei Trapianti di Fegato, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - F Gori
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - I Righi
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - L Rosso
- Dipartimento di Chirurgia Toracica, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - S Gatti
- Centro di Ricerche Precliniche, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A Pesenti
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - G Grasselli
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - A Zanella
- Dipartimento di Anestesia, Rianimazione ed Emergenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
7
|
Prevalence of Complete Airway Closure According to Body Mass Index in Acute Respiratory Distress Syndrome. Anesthesiology 2020; 133:867-878. [PMID: 32701573 DOI: 10.1097/aln.0000000000003444] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Complete airway closure during expiration may underestimate alveolar pressure. It has been reported in cases of acute respiratory distress syndrome (ARDS), as well as in morbidly obese patients with healthy lungs. The authors hypothesized that complete airway closure was highly prevalent in obese ARDS and influenced the calculation of respiratory mechanics. METHODS In a post hoc pooled analysis of two cohorts, ARDS patients were classified according to body mass index (BMI) terciles. Low-flow inflation pressure-volume curve and partitioned respiratory mechanics using esophageal manometry were recorded. The authors' primary aim was to compare the prevalence of complete airway closure according to BMI terciles. Secondary aims were to compare (1) respiratory system mechanics considering or not considering complete airway closure in their calculation, and (2) and partitioned respiratory mechanics according to BMI. RESULTS Among the 51 patients analyzed, BMI was less than 30 kg/m2 in 18, from 30 to less than 40 in 16, and greater than or equal to 40 in 17. Prevalence of complete airway closure was 41% overall (95% CI, 28 to 55; 21 of 51 patients), and was lower in the lowest (22% [3 to 41]; 4 of 18 patients) than in the highest BMI tercile (65% [42 to 87]; 11 of 17 patients). Driving pressure and elastances of the respiratory system and of the lung were higher when complete airway closure was not taken into account in their calculation. End-expiratory esophageal pressure (ρ = 0.69 [95% CI, 0.48 to 0.82]; P < 0.001), but not chest wall elastance, was associated with BMI, whereas elastance of the lung was negatively correlated with BMI (ρ = -0.27 [95% CI, -0.56 to -0.10]; P = 0.014). CONCLUSIONS Prevalence of complete airway closure was high in ARDS and should be taken into account when calculating respiratory mechanics, especially in the most morbidly obese patients. EDITOR’S PERSPECTIVE
Collapse
|
8
|
Turbil E, Terzi N, Cour M, Argaud L, Einav S, Guérin C. Positive end-expiratory pressure-induced recruited lung volume measured by volume-pressure curves in acute respiratory distress syndrome: a physiologic systematic review and meta-analysis. Intensive Care Med 2020; 46:2212-2225. [PMID: 32915255 PMCID: PMC7484614 DOI: 10.1007/s00134-020-06226-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Recruitment of lung volume is often cited as the reason for using positive end-expiratory pressure (PEEP) in acute respiratory distress syndrome (ARDS) patients. We performed a systematic review on PEEP-induced recruited lung volume measured from inspiratory volume-pressure (VP) curves in ARDS patients to assess the prevalence of patients with PEEP-induced recruited lung volume and the mortality in recruiters and non-recruiters. METHODS We conducted a systematic search of PubMed to identify studies including ARDS patients in which the intervention of an increase in PEEP was accompanied by measurement of the recruited volume (Vrec increase versus no increase) using the VP curve in order to assess the relation between Vrec and mortality at ICU discharge. We first analysed the pooled data from the papers identified and then analysed individual patient level data received from the authors via personal contact. The risk of bias of the included papers was assessed using the quality in prognosis studies tool and the certainty of the evidence regarding the relationship of mortality to Vrec by the GRADE approach. Recruiters were defined as patients with a Vrec > 150 ml. A random effects model was used for the pooled data. Multivariable logistic regression analysis was used for individual patient data. RESULTS We identified 16 papers with a total of 308 patients for the pooled data meta-analysis and 14 papers with a total of 384 patients for the individual data analysis. The quality of the articles was moderate. In the pooled data, the prevalence of recruiters was 74% and the mortality was not significantly different between recruiters and non-recruiters (relative risk 1.20 [95% confidence intervals 0.88-1.63]). The certainty of the evidence regarding this association was very low and publication bias evident. In the individual data, the prevalence of recruiters was 70%. In the multivariable logistic regression, Vrec was not associated with mortality but Simplified Acute Physiology Score II and driving pressure at PEEP of 5 cmH2O were. CONCLUSION After a PEEP increment, most patients are recruiters. Vrec was not associated with ICU mortality. The presence of similar findings in the individual patient level analysis and the driving pressure at PEEP of 5 cmH2O was associated with mortality as previously reported validate our findings. Publication bias and the lack of prospective studies suggest more research is required.
Collapse
Affiliation(s)
- Emanuele Turbil
- Department of Anesthesia and Critical Care, University of Sassari, Sassari, Italy
| | - Nicolas Terzi
- Médecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,University of Grenoble-Alpes, Grenoble, France
| | - Martin Cour
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | - Laurent Argaud
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France.,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France
| | | | - Claude Guérin
- Médecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69003, Lyon, France. .,Université de Lyon, Faculté de Médecine Lyon-Est, Lyon, France. .,Institut Mondor de Recherches Biomédicales, INSERM 955, CNRS ERL 7000, Créteil, France.
| |
Collapse
|
9
|
Grieco DL, Bongiovanni F, Chen L, Menga LS, Cutuli SL, Pintaudi G, Carelli S, Michi T, Torrini F, Lombardi G, Anzellotti GM, De Pascale G, Urbani A, Bocci MG, Tanzarella ES, Bello G, Dell’Anna AM, Maggiore SM, Brochard L, Antonelli M. Respiratory physiology of COVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care 2020; 24:529. [PMID: 32859264 PMCID: PMC7453378 DOI: 10.1186/s13054-020-03253-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Whether respiratory physiology of COVID-19-induced respiratory failure is different from acute respiratory distress syndrome (ARDS) of other etiologies is unclear. We conducted a single-center study to describe respiratory mechanics and response to positive end-expiratory pressure (PEEP) in COVID-19 ARDS and to compare COVID-19 patients to matched-control subjects with ARDS from other causes. METHODS Thirty consecutive COVID-19 patients admitted to an intensive care unit in Rome, Italy, and fulfilling moderate-to-severe ARDS criteria were enrolled within 24 h from endotracheal intubation. Gas exchange, respiratory mechanics, and ventilatory ratio were measured at PEEP of 15 and 5 cmH2O. A single-breath derecruitment maneuver was performed to assess recruitability. After 1:1 matching based on PaO2/FiO2, FiO2, PEEP, and tidal volume, COVID-19 patients were compared to subjects affected by ARDS of other etiologies who underwent the same procedures in a previous study. RESULTS Thirty COVID-19 patients were successfully matched with 30 ARDS from other etiologies. At low PEEP, median [25th-75th percentiles] PaO2/FiO2 in the two groups was 119 mmHg [101-142] and 116 mmHg [87-154]. Average compliance (41 ml/cmH2O [32-52] vs. 36 ml/cmH2O [27-42], p = 0.045) and ventilatory ratio (2.1 [1.7-2.3] vs. 1.6 [1.4-2.1], p = 0.032) were slightly higher in COVID-19 patients. Inter-individual variability (ratio of standard deviation to mean) of compliance was 36% in COVID-19 patients and 31% in other ARDS. In COVID-19 patients, PaO2/FiO2 was linearly correlated with respiratory system compliance (r = 0.52 p = 0.003). High PEEP improved PaO2/FiO2 in both cohorts, but more remarkably in COVID-19 patients (p = 0.005). Recruitability was not different between cohorts (p = 0.39) and was highly inter-individually variable (72% in COVID-19 patients and 64% in ARDS from other causes). In COVID-19 patients, recruitability was independent from oxygenation and respiratory mechanics changes due to PEEP. CONCLUSIONS Early after establishment of mechanical ventilation, COVID-19 patients follow ARDS physiology, with compliance reduction related to the degree of hypoxemia, and inter-individually variable respiratory mechanics and recruitability. Physiological differences between ARDS from COVID-19 and other causes appear small.
Collapse
Affiliation(s)
- Domenico Luca Grieco
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Bongiovanni
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lu Chen
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Luca S. Menga
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore Lucio Cutuli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Pintaudi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simone Carelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Michi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flava Torrini
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianmarco Lombardi
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Marco Anzellotti
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Science, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Laboratory and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Grazia Bocci
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eloisa S. Tanzarella
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Bello
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio M. Dell’Anna
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Salvatore M. Maggiore
- Department of Medical, Oral and Biotechnological Sciences, School of Medicine and Health Sciences, Section of Anesthesia, Analgesia, Perioperative and Intensive Care, SS. Annunziata Hospital, Gabriele d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Massimo Antonelli
- Department of Emergency, Intensive Care Medicine and Anesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
10
|
Pellegrini M, Gudmundsson M, Bencze R, Segelsjö M, Freden F, Rylander C, Hedenstierna G, Larsson AS, Perchiazzi G. Expiratory Resistances Prevent Expiratory Diaphragm Contraction, Flow Limitation, and Lung Collapse. Am J Respir Crit Care Med 2020; 201:1218-1229. [PMID: 32150440 DOI: 10.1164/rccm.201909-1690oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Tidal expiratory flow limitation (tidal-EFL) is not completely avoidable by applying positive end-expiratory pressure and may cause respiratory and hemodynamic complications in ventilated patients with lungs prone to collapse. During spontaneous breathing, expiratory diaphragmatic contraction counteracts tidal-EFL. We hypothesized that during both spontaneous breathing and controlled mechanical ventilation, external expiratory resistances reduce tidal-EFL.Objectives: To assess whether external expiratory resistances 1) affect expiratory diaphragmatic contraction during spontaneous breathing, 2) reduce expiratory flow and make lung compartments more homogeneous with more similar expiratory time constants, and 3) reduce tidal atelectasis, preventing hyperinflation.Methods: Three positive end-expiratory pressure levels and four external expiratory resistances were tested in 10 pigs after lung lavage. We analyzed expiratory diaphragmatic electric activity and respiratory mechanics. On the basis of computed tomography scans, four lung compartments-not inflated (atelectasis), poorly inflated, normally inflated, and hyperinflated-were defined.Measurements and Main Results: Consequently to additional external expiratory resistances, and mainly in lungs prone to collapse (at low positive end-expiratory pressure), 1) the expiratory transdiaphragmatic pressure decreased during spontaneous breathing by >10%, 2) expiratory flow was reduced and the expiratory time constants became more homogeneous, and 3) the amount of atelectasis at end-expiration decreased from 24% to 16% during spontaneous breathing and from 32% to 18% during controlled mechanical ventilation, without increasing hyperinflation.Conclusions: The expiratory modulation induced by external expiratory resistances preserves the positive effects of the expiratory brake while minimizing expiratory diaphragmatic contraction. External expiratory resistances optimize lung mechanics and limit tidal-EFL and tidal atelectasis, without increasing hyperinflation.
Collapse
Affiliation(s)
- Mariangela Pellegrini
- Department of Surgical Sciences and.,Central Intensive Care Unit, Department of Anesthesia, Operation, and Intensive Care and
| | - Magni Gudmundsson
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Reka Bencze
- Department of Surgical Sciences and.,Central Intensive Care Unit, Department of Anesthesia, Operation, and Intensive Care and
| | - Monica Segelsjö
- Department of Radiology, Uppsala University Hospital, Uppsala, Sweden; and
| | - Filip Freden
- Department of Surgical Sciences and.,Central Intensive Care Unit, Department of Anesthesia, Operation, and Intensive Care and
| | - Christian Rylander
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Hedenstierna
- Department of Medical Sciences, Hedenstierna Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders S Larsson
- Department of Surgical Sciences and.,Central Intensive Care Unit, Department of Anesthesia, Operation, and Intensive Care and
| | - Gaetano Perchiazzi
- Department of Surgical Sciences and.,Central Intensive Care Unit, Department of Anesthesia, Operation, and Intensive Care and
| |
Collapse
|
11
|
Spadaro S, Volta CA. A Physiological Point of View on Expiratory (Re)action during Mechanical Ventilation. Am J Respir Crit Care Med 2020; 201:1170-1172. [PMID: 32233982 PMCID: PMC7233354 DOI: 10.1164/rccm.202003-0645ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Savino Spadaro
- Department Morphology, Surgery and Experimental MedicineUniversity of FerraraFerrara, Italy
| | - Carlo Alberto Volta
- Department Morphology, Surgery and Experimental MedicineUniversity of FerraraFerrara, Italy
| |
Collapse
|
12
|
Guérin C, Terzi N, Galerneau LM, Mezidi M, Yonis H, Baboi L, Kreitmann L, Turbil E, Cour M, Argaud L, Louis B. Lung and chest wall mechanics in patients with acute respiratory distress syndrome, expiratory flow limitation, and airway closure. J Appl Physiol (1985) 2020; 128:1594-1603. [PMID: 32352339 DOI: 10.1152/japplphysiol.00059.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tidal expiratory flow limitation (EFL), which may herald airway closure (AC), is a mechanism of loss of aeration in ARDS. In this prospective, short-term, two-center study, we measured static and dynamic chest wall (Est,cw and Edyn,cw) and lung (Est,L and Edyn,L) elastance with esophageal pressure, EFL, and AC at 5 cmH2O positive end-expiratory pressure (PEEP) in intubated, sedated, and paralyzed ARDS patients. For EFL determination, we used the atmospheric method and a new device allowing comparison of tidal flow during expiration to PEEP and to atmosphere. AC was validated when airway opening pressure (AOP) assessed from volume-pressure curve was found greater than PEEP by at least 1 cmH2O. EFL was defined whenever flow did not increase between exhalation to PEEP and to atmosphere over all or part of expiration. Elastance values were expressed as percentage of normal predicted values (%N). Among the 25 patients included, eight had EFL (32%) and 13 AOP (52%). Between patients with and without EFL Edyn,cw [median (1st to 3rd quartiles)] was 70 (16-127) and 102 (70-142) %N (P = 0.32) and Edyn,L338 (332-763) and 224 (160-275) %N (P < 0.001). The corresponding values for Est,cw and Est,L were 70 (56-88) and 85 (64-103) %N (P = 0.35) and 248 (206-348) and 170 (144-195) (P = 0.02), respectively. Dynamic EL had an area receiver operating characteristic curve of 0.88 [95% confidence intervals 0.83-0.92] for EFL and 0.74[0.68-0.79] for AOP. Higher Edyn,L was accurate to predict EFL in ARDS patients; AC can occur independently of EFL, and both should be assessed concurrently in ARDS patients.NEW & NOTEWORTHY Expiratory flow limitation (EFL) and airway closure (AC) were observed in 32% and 52%, respectively, of 25 patients with ARDS investigated during mechanical ventilation in supine position with a positive end-expiratory pressure of 5 cmH2O. The performance of dynamic lung elastance to detect expiratory flow limitation was good and better than that to detect airway closure. The vast majority of patients with EFL also had AC; however, AC can occur in the absence of EFL.
Collapse
Affiliation(s)
- Claude Guérin
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France.,Institut Mondor de Recherches Biomédicales INSERM 955 CNRS ERL 7000, Créteil, France
| | - Nicolas Terzi
- Medecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,Université de Grenoble-Alpes, Grenoble, France
| | - Louis-Marie Galerneau
- Medecine Intensive-Réanimation, CHU Grenoble-Alpes, Grenoble, France.,Université de Grenoble-Alpes, Grenoble, France
| | - Mehdi Mezidi
- Université de Lyon, Lyon, France.,Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Hodane Yonis
- Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Loredana Baboi
- Médecine Intensive-Réanimation, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France
| | - Louis Kreitmann
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Emanuele Turbil
- Department of Anesthesia and Critical Care, University of Sassari, Sassari, Italy
| | - Martin Cour
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Laurent Argaud
- Medecine Intensive-Réanimation, Groupement Hospitalier Centre, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | - Bruno Louis
- Institut Mondor de Recherches Biomédicales INSERM 955 CNRS ERL 7000, Créteil, France
| |
Collapse
|
13
|
Zhang R, He H, Yun L, Zhou X, Wang X, Chi Y, Yuan S, Zhao Z. Effect of postextubation high-flow nasal cannula therapy on lung recruitment and overdistension in high-risk patient. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:82. [PMID: 32143664 PMCID: PMC7060646 DOI: 10.1186/s13054-020-2809-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 11/10/2022]
Abstract
Background Postextubation high-flow nasal cannula (HFNC) is used as a support therapy in high-risk patients in ICU. This study aimed to determine the effects of HFNC therapy on lung recruitment and overdistension assessed by electrical impedance tomography (EIT). Methods Twenty-four patients who received HFNC within 24 h after extubation were prospectively enrolled in this study. EIT was used to monitor regional lung ventilation distributions at baseline (conventional oxygen therapy) and three flow rate levels of HFNC therapy (20, 40, and 60 L/min). Change of end-expiratory lung impedance (ΔEELI), regional recruitment (recruited-pixels) and overdistension (overdistended-pixels), and lung strain change were determined by EIT. EIT images were equally divided into four ventral-to-dorsal horizontal regions of interest (ROIs 1, 2, 3, and 4). “Overdistension-by HFNC” due to HFNC is defined as an increase of overdistened-pixels > 10 than baseline. Patients were divided into two groups: (1) high potential of recruitment (HPR), recruited-pixels > 10 pixels at 60 L/min than baseline, and (2) low potential of recruitment (LPR), recruited-pixels < 10 pixels at 60 L/min than baseline. Results When the flow rate gradually increased from baseline to 60 L/min, a significant and consistent increasing trend of global ΔEELI (%) (p < 0.0001), recruited-pixels (p < 0.001), and overdistended-pixels (p = 0.101) was observed. Moreover, the increase of ΔEELI was mainly distributed in ROI2 (p = 0.001) and ROI3 (p < 0.0001). The HPR group (13/24 patients) had significantly higher recruited-pixels than the LPR group (11/24 patients) at 20, 40, and 60 L/min. There were no significant differences in PaO2/FiO2, ΔEELI (%), and overdistention pixels between the two groups. The HPR group had 13 patients in which no one had “overdistension-by HFNC”, and the LPR group had 11 patients in which 4 patients had “overdistension-by HFNC” (0/13 vs. 4/11, p = 0.017). Conclusions Using EIT could identify diverse effects of HFNC on lung regional ventilation in postextubation situations. Further study is required to validate using “HFNC effect” based on lung recruitment and overdistension by EIT in clinical practice. Trial registration The study was retrospectively registered at www.clinicaltrials.gov (no. NCT04245241).
Collapse
Affiliation(s)
- Rui Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Long Yun
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China.
| | - Xiang Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Xu Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Yi Chi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Siyi Yuan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China.,Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
14
|
Chen L, Del Sorbo L, Grieco DL, Junhasavasdikul D, Rittayamai N, Soliman I, Sklar MC, Rauseo M, Ferguson ND, Fan E, Richard JCM, Brochard L. Potential for Lung Recruitment Estimated by the Recruitment-to-Inflation Ratio in Acute Respiratory Distress Syndrome. A Clinical Trial. Am J Respir Crit Care Med 2020; 201:178-187. [DOI: 10.1164/rccm.201902-0334oc] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lu Chen
- Keenan Research Centre and Li Ka Shing Institute, Department of Critical Care, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, and
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Lorenzo Del Sorbo
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Domenico L. Grieco
- Istituto di Anestesia e Rianimazione, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Nuttapol Rittayamai
- Division of Respiratory Diseases and Tuberculosis, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ibrahim Soliman
- Critical Care Department, King Saud Medical City, Riyadh, Saudi Arabia
| | - Michael C. Sklar
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michela Rauseo
- Anestesia e Rianimazione, Ospedali Riuniti di Foggia, Foggia, Italy; and
| | - Niall D. Ferguson
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | - Eddy Fan
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology and Critical Care Medicine, Toronto General Hospital, Toronto, Ontario, Canada
| | | | - Laurent Brochard
- Keenan Research Centre and Li Ka Shing Institute, Department of Critical Care, St. Michael’s Hospital, Toronto, Ontario, Canada
- Interdepartmental Division of Critical Care Medicine, and
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Grieco DL, J Brochard L, Drouet A, Telias I, Delisle S, Bronchti G, Ricard C, Rigollot M, Badat B, Ouellet P, Charbonney E, Mancebo J, Mercat A, Savary D, Richard JCM. Intrathoracic Airway Closure Impacts CO 2 Signal and Delivered Ventilation during Cardiopulmonary Resuscitation. Am J Respir Crit Care Med 2020; 199:728-737. [PMID: 30257100 DOI: 10.1164/rccm.201806-1111oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE End-tidal CO2 (EtCO2) is used to monitor cardiopulmonary resuscitation (CPR), but it can be affected by intrathoracic airway closure. Chest compressions induce oscillations in expired CO2, and this could reflect variable degrees of airway patency. OBJECTIVES To understand the impact of airway closure during CPR, and the relationship between the capnogram shape, airway closure, and delivered ventilation. METHODS This study had three parts: 1) a clinical study analyzing capnograms after intubation in patients with out-of-hospital cardiac arrest receiving continuous chest compressions, 2) a bench model, and 3) experiments with human cadavers. For 2 and 3, a constant CO2 flow was added in the lung to simulate CO2 production. Capnograms similar to clinical recordings were obtained and different ventilator settings tested. EtCO2 was compared with alveolar CO2 (bench). An airway opening index was used to quantify chest compression-induced expired CO2 oscillations in all three clinical and experimental settings. MEASUREMENTS AND MAIN RESULTS A total of 89 patients were analyzed (mean age, 69 ± 15 yr; 23% female; 12% of hospital admission survival): capnograms exhibited various degrees of oscillations, quantified by the opening index. CO2 value varied considerably across oscillations related to consecutive chest compressions. In bench and cadavers, similar capnograms were reproduced with different degrees of airway closure. Differences in airway patency were associated with huge changes in delivered ventilation. The opening index and delivered ventilation increased with positive end-expiratory pressure, without affecting intrathoracic pressure. Maximal EtCO2 recorded between ventilator breaths reflected alveolar CO2 (bench). CONCLUSIONS During chest compressions, intrathoracic airway patency greatly affects the delivered ventilation. The expired CO2 signal can reflect CPR effectiveness but is also dependent on airway patency. The maximal EtCO2 recorded between consecutive ventilator breaths best reflects alveolar CO2.
Collapse
Affiliation(s)
- Domenico L Grieco
- 1 Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,3 Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Laurent J Brochard
- 1 Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Adrien Drouet
- 4 SAMU74, Emergency Department, General Hospital of Annecy, Annecy, France
| | - Irene Telias
- 1 Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Canada.,2 Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | | | - Gilles Bronchti
- 6 Laboratoire d'anatomie, Université du Québec à Trois-Rivières et CIUSSS MCQ, Trois-Rivières, Canada
| | - Cecile Ricard
- 4 SAMU74, Emergency Department, General Hospital of Annecy, Annecy, France
| | | | - Bilal Badat
- 7 Air Liquide Medical Systems, Antony, France
| | - Paul Ouellet
- 8 Vitalité Health Network, North West Zone, Edmundston, Canada
| | - Emmanuel Charbonney
- 5 Université de Montréal, Montreal, Canada.,6 Laboratoire d'anatomie, Université du Québec à Trois-Rivières et CIUSSS MCQ, Trois-Rivières, Canada
| | - Jordi Mancebo
- 9 Department of Intensive Care, Sant Pau University Hospital, Barcelona, Spain
| | - Alain Mercat
- 10 Critical Care Department, Angers University Hospital, Angers, France; and
| | - Dominique Savary
- 4 SAMU74, Emergency Department, General Hospital of Annecy, Annecy, France
| | - Jean-Christophe M Richard
- 4 SAMU74, Emergency Department, General Hospital of Annecy, Annecy, France.,11 INSERM UMR 1066, Créteil, France
| |
Collapse
|
16
|
Abstract
BACKGROUND Airway closure causes lack of communication between proximal airways and alveoli, making tidal inflation start only after a critical airway opening pressure is overcome. The authors conducted a matched cohort study to report the existence of this phenomenon among obese patients undergoing general anesthesia. METHODS Within the procedures of a clinical trial during gynecological surgery, obese patients underwent respiratory/lung mechanics and lung volume assessment both before and after pneumoperitoneum, in the supine and Trendelenburg positions, respectively. Among patients included in this study, those exhibiting airway closure were compared to a control group of subjects enrolled in the same trial and matched in 1:1 ratio according to body mass index. RESULTS Eleven of 50 patients (22%) showed airway closure after intubation, with a median (interquartile range) airway opening pressure of 9 cm H2O (6 to 12). With pneumoperitoneum, airway opening pressure increased up to 21 cm H2O (19 to 28) and end-expiratory lung volume remained unchanged (1,294 ml [1,154 to 1,363] vs. 1,160 ml [1,118 to 1,256], P = 0.155), because end-expiratory alveolar pressure increased consistently with airway opening pressure and counterbalanced pneumoperitoneum-induced increases in end-expiratory esophageal pressure (16 cm H2O [15 to 19] vs. 27 cm H2O [23 to 30], P = 0.005). Conversely, matched control subjects experienced a statistically significant greater reduction in end-expiratory lung volume due to pneumoperitoneum (1,113 ml [1,040 to 1,577] vs. 1,000 ml [821 to 1,061], P = 0.006). With airway closure, static/dynamic mechanics failed to measure actual lung/respiratory mechanics. When patients with airway closure underwent pressure-controlled ventilation, no tidal volume was inflated until inspiratory pressure overcame airway opening pressure. CONCLUSIONS In obese patients, complete airway closure is frequent during anesthesia and is worsened by Trendelenburg pneumoperitoneum, which increases airway opening pressure and alveolar pressure: besides preventing alveolar derecruitment, this yields misinterpretation of respiratory mechanics and generates a pressure threshold to inflate the lung that can reach high values, spreading concerns on the safety of pressure-controlled modes in this setting.
Collapse
|
17
|
Volta CA, Dalla Corte F, Ragazzi R, Marangoni E, Fogagnolo A, Scaramuzzo G, Grieco DL, Alvisi V, Rizzuto C, Spadaro S. Expiratory flow limitation in intensive care: prevalence and risk factors. Crit Care 2019; 23:395. [PMID: 31806045 PMCID: PMC6896682 DOI: 10.1186/s13054-019-2682-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expiratory flow limitation (EFL) is characterised by a markedly reduced expiratory flow insensitive to the expiratory driving pressure. The presence of EFL can influence the respiratory and cardiovascular function and damage the small airways; its occurrence has been demonstrated in different diseases, such as COPD, asthma, obesity, cardiac failure, ARDS, and cystic fibrosis. Our aim was to evaluate the prevalence of EFL in patients requiring mechanical ventilation for acute respiratory failure and to determine the main clinical characteristics, the risk factors and clinical outcome associated with the presence of EFL. METHODS Patients admitted to the intensive care unit (ICU) with an expected length of mechanical ventilation of 72 h were enrolled in this prospective, observational study. Patients were evaluated, within 24 h from ICU admission and for at least 72 h, in terms of respiratory mechanics, presence of EFL through the PEEP test, daily fluid balance and followed for outcome measurements. RESULTS Among the 121 patients enrolled, 37 (31%) exhibited EFL upon admission. Flow-limited patients had higher BMI, history of pulmonary or heart disease, worse respiratory dyspnoea score, higher intrinsic positive end-expiratory pressure, flow and additional resistance. Over the course of the initial 72 h of mechanical ventilation, additional 21 patients (17%) developed EFL. New onset EFL was associated with a more positive cumulative fluid balance at day 3 (103.3 ml/kg) compared to that of patients without EFL (65.8 ml/kg). Flow-limited patients had longer duration of mechanical ventilation, longer ICU length of stay and higher in-ICU mortality. CONCLUSIONS EFL is common among ICU patients and correlates with adverse outcomes. The major determinant for developing EFL in patients during the first 3 days of their ICU stay is a positive fluid balance. Further studies are needed to assess if a restrictive fluid therapy might be associated with a lower incidence of EFL.
Collapse
Affiliation(s)
- Carlo Alberto Volta
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Francesca Dalla Corte
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Riccardo Ragazzi
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Elisabetta Marangoni
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Alberto Fogagnolo
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Gaetano Scaramuzzo
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Domenico Luca Grieco
- Department of Anesthesiology and Intensive Care Medicine, Catholic University of The Sacred Heart, Milan, Italy
| | - Valentina Alvisi
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
| | - Chiara Rizzuto
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy
- Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Milan, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, Azienda Ospedaliera-Universitaria Arcispedale Sant'Anna, University of Ferrara, Via Aldo Moro, 8, 44124, Ferrara, Italy.
| |
Collapse
|
18
|
Coppola S, Caccioppola A, Froio S, Ferrari E, Gotti M, Formenti P, Chiumello D. Dynamic hyperinflation and intrinsic positive end-expiratory pressure in ARDS patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:375. [PMID: 31775830 PMCID: PMC6880369 DOI: 10.1186/s13054-019-2611-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 02/02/2023]
Abstract
Background In ARDS patients, changes in respiratory mechanical properties and ventilatory settings can cause incomplete lung deflation at end-expiration. Both can promote dynamic hyperinflation and intrinsic positive end-expiratory pressure (PEEP). The aim of this study was to investigate, in a large population of ARDS patients, the presence of intrinsic PEEP, possible associated factors (patients’ characteristics and ventilator settings), and the effects of two different external PEEP levels on the intrinsic PEEP. Methods We made a secondary analysis of published data. Patients were ventilated with a tidal volume of 6–8 mL/kg of predicted body weight, sedated, and paralyzed. After a recruitment maneuver, a PEEP trial was run at 5 and 15 cmH2O, and partitioned mechanics measurements were collected after 20 min of stabilization. Lung computed tomography scans were taken at 5 and 45 cmH2O. Patients were classified into two groups according to whether or not they had intrinsic PEEP at the end of an expiratory pause. Results We enrolled 217 sedated, paralyzed patients: 87 (40%) had intrinsic PEEP with a median of 1.1 [1.0–2.3] cmH2O at 5 cmH2O of PEEP. The intrinsic PEEP significantly decreased with higher PEEP (1.1 [1.0–2.3] vs 0.6 [0.0–1.0] cmH2O; p < 0.001). The applied tidal volume was significantly lower (480 [430–540] vs 520 [445–600] mL at 5 cmH2O of PEEP; 480 [430–540] vs 510 [430–590] mL at 15 cmH2O) in patients with intrinsic PEEP, while the respiratory rate was significantly higher (18 [15–20] vs 15 [13–19] bpm at 5 cmH2O of PEEP; 18 [15–20] vs 15 [13–19] bpm at 15 cmH2O). At both PEEP levels, the total airway resistance and compliance of the respiratory system were not different in patients with and without intrinsic PEEP. The total lung gas volume and lung recruitability were also not different between patients with and without intrinsic PEEP (respectively 961 [701–1535] vs 973 [659–1433] mL and 15 [0–32] % vs 22 [0–36] %). Conclusions In sedated, paralyzed ARDS patients without a known obstructive disease, the amount of intrinsic PEEP during lung-protective ventilation is negligible and does not influence respiratory mechanical properties.
Collapse
Affiliation(s)
- Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | | | - Sara Froio
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Erica Ferrari
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Miriam Gotti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Paolo Formenti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy. .,Department of Health Sciences, University of Milan, Milan, Italy. .,Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy. .,SC Anestesia e Rianimazione, ASST Santi Paolo e Carlo, Via Di Rudinì, Milan, Italy.
| |
Collapse
|
19
|
Airway closure and fiberoptic evidence of bronchial collapse during the acute respiratory distress syndrome. Intensive Care Med 2019; 45:1838-1839. [DOI: 10.1007/s00134-019-05800-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2019] [Indexed: 11/27/2022]
|
20
|
Chen L, Del Sorbo L, Fan E, Brochard L. Reply to Koutsoukou: Expiratory Flow Limitation and Airway Closure in Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:128-129. [PMID: 30256655 DOI: 10.1164/rccm.201808-1504le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lu Chen
- 1 University of Toronto Toronto, Ontario, Canada.,2 St Michael's Hospital Toronto, Ontario, Canada
| | - Lorenzo Del Sorbo
- 1 University of Toronto Toronto, Ontario, Canada.,3 Toronto General Hospital Toronto, Ontario, Canada and
| | - Eddy Fan
- 1 University of Toronto Toronto, Ontario, Canada.,3 Toronto General Hospital Toronto, Ontario, Canada and
| | - Laurent Brochard
- 1 University of Toronto Toronto, Ontario, Canada.,2 St Michael's Hospital Toronto, Ontario, Canada.,4 Deputy Editor, AJRCCM
| |
Collapse
|
21
|
Koutsoukou A. Expiratory Flow Limitation and Airway Closure in Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 199:127-128. [PMID: 30256658 DOI: 10.1164/rccm.201807-1253le] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Koutsoukou A, Pecchiari M. Expiratory flow-limitation in mechanically ventilated patients: A risk for ventilator-induced lung injury? World J Crit Care Med 2019; 8:1-8. [PMID: 30697515 PMCID: PMC6347666 DOI: 10.5492/wjccm.v8.i1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Expiratory flow limitation (EFL), that is the inability of expiratory flow to increase in spite of an increase of the driving pressure, is a common and unrecognized occurrence during mechanical ventilation in a variety of intensive care unit conditions. Recent evidence suggests that the presence of EFL is associated with an increase in mortality, at least in acute respiratory distress syndrome (ARDS) patients, and in pulmonary complications in patients undergoing surgery. EFL is a major cause of intrinsic positive end-expiratory pressure (PEEPi), which in ARDS patients is heterogeneously distributed, with a consequent increase of ventilation/perfusion mismatch and reduction of arterial oxygenation. Airway collapse is frequently concomitant to the presence of EFL. When airways close and reopen during tidal ventilation, abnormally high stresses are generated that can damage the bronchiolar epithelium and uncouple small airways from the alveolar septa, possibly generating the small airways abnormalities detected at autopsy in ARDS. Finally, the high stresses and airway distortion generated downstream the choke points may contribute to parenchymal injury, but this possibility is still unproven. PEEP application can abolish EFL, decrease PEEPi heterogeneity, and limit recruitment/derecruitment. Whether increasing PEEP up to EFL disappearance is a useful criterion for PEEP titration can only be determined by future studies.
Collapse
Affiliation(s)
- Antonia Koutsoukou
- ICU, 1st Department of Respiratory Medicine, National and Kapodistrian University of Athens Medical School, Athens 11527, Greece
| | - Matteo Pecchiari
- Dipartimento di Fisiopatologia e dei Trapianti, Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
23
|
Mechanism of airway closure in acute respiratory distress syndrome: a possible role of surfactant depletion. Intensive Care Med 2018; 45:290-291. [PMID: 30560279 DOI: 10.1007/s00134-018-5501-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
|