1
|
Martín-González E, Hernández-Pérez JM, Pérez JAP, Pérez-García J, Herrera-Luis E, González-Pérez R, González-González O, Mederos-Luis E, Sánchez-Machín I, Poza-Guedes P, Sardón O, Corcuera P, Cruz MJ, González-Barcala FJ, Martínez-Rivera C, Mullol J, Muñoz X, Olaguibel JM, Plaza V, Quirce S, Valero A, Sastre J, Korta-Murua J, Del Pozo V, Lorenzo-Díaz F, Villar J, Pino-Yanes M, González-Carracedo MA. Alpha-1 antitrypsin deficiency and Pi*S and Pi*Z SERPINA1 variants are associated with asthma exacerbations. Pulmonology 2025; 31:2416870. [PMID: 37236906 DOI: 10.1016/j.pulmoe.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION AND OBJECTIVES Asthma is a chronic inflammatory disease of the airways. Asthma patients may experience potentially life-threatening episodic flare-ups, known as exacerbations, which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SERPINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been associated with asthma. The link between AAT deficiency and asthma might be represented by the elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown. Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels are associated with asthma exacerbations. MATERIALS AND METHODS In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, genomic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank, FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed with logistic regression models, including age, sex, and genotype principal components as covariates. RESULTS In the discovery, a significant association with asthma exacerbations was found for both Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40-4.04, p-value=0.001) and Pi*Z (OR=3.49, 95%CI=1.55-7.85, p-value=0.003)Likewise, AAT deficiency was associated with a higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58-16.92, p-value=0.007) as well as AAT protein levels (OR= 0.72, 95%CI=0.57-0.91, p-value=0.005). The Pi*Z association with exacerbations was replicated in samples from Spaniards with two generations of Canary Islander origin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was found in the Finnish population (OR=1.12, p-value=0.007). CONCLUSIONS AAT deficiency could be a potential therapeutic target for asthma exacerbations in specific populations.
Collapse
Affiliation(s)
- Elena Martín-González
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - José M Hernández-Pérez
- Department of Respiratory Medicine, Hospital Universitario de N.S de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Respiratory Medicine, Hospital Universitario de La Palma, 38713 Breña Alta, Santa Cruz de Tenerife, Spain
| | - José A Pérez Pérez
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Javier Pérez-García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | | | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
| | | | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Tenerife, Spain
- Severe Asthma Unit, Allergy Department, Hospital Universitario de Canarias, 38320 La Laguna, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - María J Cruz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J González-Barcala
- Department of Respiratory Medicine, Complejo Hospitalario Universitario de Santiago, Santiago de Compostela, La Coruña, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Rhinology Unit & Smell Clinic, ENT Department, Clinical and Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- Department of Respiratory Medicine, Hospital Vall d'Hebron, Barcelona, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José M Olaguibel
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario de Navarra, Pamplona, Navarra, Spain
| | - Vicente Plaza
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital de la Santa Creu i Sant Pau, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Santiago Quirce
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Allergy Unit & Severe Asthma Unit, Pneumonology and Allergy Department, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Allergy, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital Universitario Donostia, San Sebastián, Spain
| | - Victoria Del Pozo
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Instituto de Investigación Sanitaria Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Multidisciplinary Organ Dysfunction Evaluation Research Network (MODERN), Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), San Cristóbal de La Laguna, Tenerife, Spain
| | - Mario A González-Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Tenerife, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| |
Collapse
|
2
|
Patchen BK, Zhang J, Gaddis N, Bartz TM, Chen J, Debban C, Leonard H, Nguyen NQ, Seo J, Tern C, Allen R, DeMeo DL, Fornage M, Melbourne C, Minto M, Moll M, O'Connor G, Pottinger T, Psaty BM, Rich SS, Rotter JI, Silverman EK, Stratford J, Graham Barr R, Cho MH, Gharib SA, Manichaikul A, North K, Oelsner EC, Simonsick EM, Tobin MD, Yu B, Choi SH, Dupuis J, Cassano PA, Hancock DB. Multi-ancestry genome-wide association study reveals novel genetic signals for lung function decline. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.25.24317794. [PMID: 39649580 PMCID: PMC11623738 DOI: 10.1101/2024.11.25.24317794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Rationale Accelerated decline in lung function contributes to the development of chronic respiratory disease. Despite evidence for a genetic component, few genetic associations with lung function decline have been identified. Objectives To evaluate genome-wide associations and putative downstream functionality of genetic variants with lung function decline in diverse general population cohorts. Methods We conducted genome-wide association study (GWAS) analyses of decline in the forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and their ratio (FEV1/FVC) in participants across six cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. Genotypes were imputed to TOPMed (CHARGE cohorts) or Haplotype Reference Consortium (HRC) (UK Biobank) reference panels, and GWAS analyses used generalized estimating equation models with robust standard error. Models were stratified by cohort, ancestry, and sex, and adjusted for important lung function confounders and genotype principal components. Results were combined in cross-ancestry and ancestry-specific meta-analyses. Selected top variants were tested for replication in two independent COPD-enriched cohorts. Measurements and Main Results Our discovery analyses included 52,056 self-reported White (N=44,988), Black (N=5,788), Hispanic (N=550), and Chinese American (N=730) participants with a mean of 2.3 spirometry measurements and 8.6 years of follow-up. Functional mapping of GWAS meta-analysis results identified 361 distinct genome-wide significant (p<5E-08) variants in one or more of the FEV1, FVC, and FEV1/FVC decline phenotypes, which overlapped with previously reported genetic signals for several related pulmonary traits. Of these, 8 variants, or 20.5% of the variant set available for replication testing, were nominally associated (p<0.05) with at least one decline phenotype in COPD-enriched cohorts (White [N=4,778] and Black [N=1,118]). Using the GWAS results, gene-level analysis implicated 38 genes, including eight (XIRP2, GRIN2D, SATB1, MARCHF4, SIPA1L2, ANO5, H2BC10, and FAF2) with consistent associations across ancestries or decline phenotypes. Annotation class analysis revealed significant enrichment of several regulatory processes for corticosteroid biosynthesis and metabolism. Drug repurposing analysis identified 43 approved compounds targeting eight of the implicated 38 genes. Conclusions Our multi-ancestry GWAS meta-analyses identified numerous genetic loci associated with lung function decline. These findings contribute knowledge to the genetic architecture of lung function decline, provide evidence for a role of endogenous corticosteroids in the etiology of lung function decline, and identify drug targets that merit further study for potential repurposing to slow lung function decline and treat lung disease.
Collapse
Affiliation(s)
- Bonnie K Patchen
- Division of Nutritional Sciences, Cornell University
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jingwen Zhang
- Boston University School of Public Health, Boston, MA
| | | | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics, Medicine, Epidemiology, Health Systems and Population Health, University of Washington, Seattle, WA
| | - Jing Chen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Catherine Debban
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Hampton Leonard
- Laboratory of Neurogenetics, National Institute of Aging, National Institute of Health, Bethesda, MD
| | - Ngoc Quynh Nguyen
- School of Public Health, University of Texas Health Science Center, Houston, TX
| | - Jungkun Seo
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Courtney Tern
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
| | - Richard Allen
- College of Life Sciences, University of Leicester, Leicester, UK
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center, Houston, TX
| | - Carl Melbourne
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- UK Biobank, Ltd., Stockport, UK
| | | | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Tess Pottinger
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Biostatistics, Medicine, Epidemiology, Health Systems and Population Health, University of Washington, Seattle, WA
| | - Stephen S Rich
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - R Graham Barr
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA
| | - Ani Manichaikul
- Department of Genome Sciences, University of Virginia School of Medicine, Charlottesville, VA
| | - Kari North
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
| | - Elizabeth C Oelsner
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY
| | | | - Martin D Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Bing Yu
- School of Public Health, University of Texas Health Science Center, Houston, TX
| | | | - Josee Dupuis
- Boston University School of Public Health, Boston, MA
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montréal, Québec
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY
| | | |
Collapse
|
3
|
Clay S, Alladina J, Smith NP, Visness CM, Wood RA, O'Connor GT, Cohen RT, Khurana Hershey GK, Kercsmar CM, Gruchalla RS, Gill MA, Liu AH, Kim H, Kattan M, Bacharier LB, Rastogi D, Rivera-Spoljaric K, Robison RG, Gergen PJ, Busse WW, Villani AC, Cho JL, Medoff BD, Gern JE, Jackson DJ, Ober C, Dapas M. Gene-based association study of rare variants in children of diverse ancestries implicates TNFRSF21 in the development of allergic asthma. J Allergy Clin Immunol 2024; 153:809-820. [PMID: 37944567 PMCID: PMC10939893 DOI: 10.1016/j.jaci.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Most genetic studies of asthma and allergy have focused on common variation in individuals primarily of European ancestry. Studying the role of rare variation in quantitative phenotypes and in asthma phenotypes in populations of diverse ancestries can provide additional, important insights into the development of these traits. OBJECTIVE We sought to examine the contribution of rare variants to different asthma- or allergy-associated quantitative traits in children with diverse ancestries and explore their role in asthma phenotypes. METHODS We examined whole-genome sequencing data from children participants in longitudinal studies of asthma (n = 1035; parent-identified as 67% Black and 25% Hispanic) to identify rare variants (minor allele frequency < 0.01). We assigned variants to genes and tested for associations using an omnibus variant-set test between each of 24,902 genes and 8 asthma-associated quantitative traits. On combining our results with external data on predicted gene expression in humans and mouse knockout studies, we identified 3 candidate genes. A burden of rare variants in each gene and in a combined 3-gene score was tested for its associations with clinical phenotypes of asthma. Finally, published single-cell gene expression data in lower airway mucosal cells after allergen challenge were used to assess transcriptional responses to allergen. RESULTS Rare variants in USF1 were significantly associated with blood neutrophil count (P = 2.18 × 10-7); rare variants in TNFRSF21 with total IgE (P = 6.47 × 10-6) and PIK3R6 with eosinophil count (P = 4.10 × 10-5) reached suggestive significance. These 3 findings were supported by independent data from human and mouse studies. A burden of rare variants in TNFRSF21 and in a 3-gene score was associated with allergy-related phenotypes in cohorts of children with mild and severe asthma. Furthermore, TNFRSF21 was significantly upregulated in bronchial basal epithelial cells from adults with allergic asthma but not in adults with allergies (but not asthma) after allergen challenge. CONCLUSIONS We report novel associations between rare variants in genes and allergic and inflammatory phenotypes in children with diverse ancestries, highlighting TNFRSF21 as contributing to the development of allergic asthma.
Collapse
Affiliation(s)
- Selene Clay
- Department of Human Genetics, University of Chicago, Chicago, Ill.
| | - Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | | | - Robert A Wood
- Pediatric Allergy and Immunology Department, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md
| | - George T O'Connor
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | - Robyn T Cohen
- Department of Pediatrics, Boston University School of Medicine, Boston, Mass
| | | | - Carolyn M Kercsmar
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rebecca S Gruchalla
- Internal Medicine and Pediatrics, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Michelle A Gill
- Pediatric Infectious Diseases, St. Louis Children's Hospital, St Louis, Mo
| | - Andrew H Liu
- Breathing Institute, Children's Hospital Colorado, Aurora, Colo
| | - Haejin Kim
- Allergy and Immunology, Henry Ford Health, Detroit, Mich
| | - Meyer Kattan
- Department of Pediatrics, Columbia University Medical Center, New York, NY
| | - Leonard B Bacharier
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn
| | - Deepa Rastogi
- Division of Pulmonology and Sleep Medicine, Children's National Hospital, Washington, DC
| | - Katherine Rivera-Spoljaric
- Department of Pediatric Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine, St Louis, Mo
| | - Rachel G Robison
- Department of Pediatrics, Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tenn; Ann & Robert H. Lurie Children's Hospital, Chicago, Ill
| | - Peter J Gergen
- National Institute of Allergy and Infectious Diseases, Rockville, Md
| | - William W Busse
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Alexandra-Chloe Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Daniel J Jackson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Ill
| | - Matthew Dapas
- Department of Human Genetics, University of Chicago, Chicago, Ill
| |
Collapse
|
4
|
Annunziata A, Fiorentino G, Balestrino M, Rega R, Spinelli S, Atripaldi L, Sola A, Massaro F, Calabrese C. Alpha-1 Antitrypsin PI M Heterozygotes with Rare Variants: Do They Need a Clinical and Functional Follow-Up? J Clin Med 2024; 13:1084. [PMID: 38398397 PMCID: PMC10889345 DOI: 10.3390/jcm13041084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
(1) Background: Few data are available on the risk of airway dysfunction in protease inhibitor (PI*) M heterozygotes carrying rare null or deficient allelic variants of the gene SERPINA-1 (PI*MR). (2) Methods: In this observational study, in a cohort of PI*MR heterozygotes, we evaluated respiratory functional parameters at baseline and at one-year follow-up. Moreover, we compared such parameters with those of the PI*MZ and PI*MS patients. (3) Results: A total of 60 patients were recruited; 35 PI*MR, 11 PI*MZ and 14 PI*MS. At the annual follow-up, the PI*MR and PI*MZ patients demonstrated a significantly higher FEV1 decline than the PI*MS group (p = 0.04 and p = 0.018, respectively). The PI*MR patients showed a significant increase in DLCO annual decline in comparison with the PI*MS group (p = 0.02). At baseline, the PI*MR smoking patients, compared with nonsmokers, showed statistically significant lower values of FEV1, FEV1/FVC and DLCO (p = 0.0004, p < 0.0001, p = 0.007, respectively) and, at the one-year follow-up, they displayed a significantly higher FEV1 and DLCO decline (p = 0.0022, p = 0.011, respectively). PI*MR heterozygotes with COPD showed a significantly higher FEV1, FEV1/FVC and DLCO annual decline in comparison with healthy PI*MR (p = 0.0083, p = 0.043, p = 0.041). (4) Conclusions: These results suggest that PI*MR heterozygotes, particularly smokers with COPD, have a greater annual decline in respiratory functional parameters and need to be monitored.
Collapse
Affiliation(s)
- Anna Annunziata
- Department of Intensive Care, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Giuseppe Fiorentino
- Department of Intensive Care, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Marco Balestrino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Roberto Rega
- Department of Intensive Care, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Sara Spinelli
- Department of Intensive Care, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Lidia Atripaldi
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Alessio Sola
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Federica Massaro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| | - Cecilia Calabrese
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Naples, Italy
| |
Collapse
|
5
|
Laviña E, Lumbreras S, Bravo L, Soriano JB, Izquierdo JL, Rodríguez JM. Alpha-1 Antitrypsin Gene Variants in Patients without Severe Deficiency Diagnosed with Pulmonary Emphysema on Chest CT. Int J Chron Obstruct Pulmon Dis 2024; 19:353-361. [PMID: 38333775 PMCID: PMC10849915 DOI: 10.2147/copd.s448593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/14/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction Although pulmonary involvement due to alpha-1 antitrypsin (AAT) deficiency has been widely described, most studies focus on the genotypes causing severe deficiency (<60 mg/dL). Objective The aim of this study was to analyze the prevalence of the different AAT gene variants that do not cause severe deficiency in patients with pulmonary emphysema diagnosed by thoracic computed tomography (CT). Furthermore, we assessed the risk associated with a non-severe decrease in AAT values in the pathogenesis of emphysema. Methods Case-control study design that included patients who had a CT scan available of the entire thorax. In total, 176 patients with emphysema (cases) and 100 control subjects without emphysema were analyzed. Results The prevalence of variants was higher among cases (25.6%; 45/176) than controls (22%; 22/100), although the difference was not statistically significant (P=0.504) when analyzed globally. In the control group, all the variants detected were MS. Excluding this variant, statistically significant differences were observed in the remaining variants (MZ, SS and SZ). Only 18% of the controls (all MS) presented values below our limit of normality, and all had values very close to the reference value (90 mg/dL). In contrast, 76% of patients with the other variants presented pathological levels. In a logistic regression model, both smoking and a non-severe reduction in AAT (60 to 90 mg/dL) increased the probability of emphysema. Conclusion Our study confirms an association between certain variants in the alpha-1 antitrypsin gene that do not cause severe deficiency and the presence of pulmonary emphysema. This association with variants that are associated with reductions in serum AAT values is statistically significant and independent of smoking habit.
Collapse
Affiliation(s)
- Eduardo Laviña
- Servicio de Neumología, Hospital Universitario de Guadalajara, Guadalajara, Spain
- Escuela de Doctorado, Programa Doctoral en Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Sara Lumbreras
- Departamento de Organización Industrial, Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas – IIT, Madrid, Spain
| | - Lara Bravo
- Servicio de Neumología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Joan B Soriano
- Servicio de Neumología, Hospital Universitario de la Princesa; Facultad de Medicina, Universidad Autónoma de Madrid; and Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III; All in Madrid, Madrid, Spain
| | - José Luis Izquierdo
- Servicio de Neumología, Hospital Universitario de Guadalajara, Guadalajara, Spain
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jose Miguel Rodríguez
- Servicio de Neumología, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
- Departamento de Medicina y Especialidades Médicas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
6
|
Papiris SA, Veith M, Papaioannou AI, Apollonatou V, Ferrarotti I, Ottaviani S, Tzouvelekis A, Tzilas V, Rovina N, Stratakos G, Gerogianni I, Daniil Z, Kolilekas L, Dimakou K, Pitsidianakis G, Tzanakis N, Tryfon S, Fragopoulos F, Antonogiannaki EM, Lazaratou A, Fouka E, Papakosta D, Emmanouil P, Anagnostopoulos N, Karampitsakos T, Vlami K, Kallieri M, Lyberopoulos P, Loukides S, Bouros D, Bush A, Balduyck M, Lombard C, Cottin V, Mornex JF, Vogelmeier CF, Greulich T, Manali ED. Alpha1-antitrypsin deficiency in Greece: Focus on rare variants. Pulmonology 2024; 30:43-52. [PMID: 36797151 DOI: 10.1016/j.pulmoe.2022.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 02/16/2023] Open
Abstract
PURPOSE A1Antitrypsin deficiency (AATD) pathogenic mutations are expanding beyond the PI*Z and PI*S to a multitude of rare variants. AIM to investigate genotype and clinical profile of Greeks with AATD. METHODS Symptomatic adult-patients with early-emphysema defined by fixed airway obstruction and computerized-tomography scan and lower than normal serum AAT levels were enrolled from reference centers all over Greece. Samples were analyzed in the AAT Laboratory, University of Marburg-Germany. RESULTS Included are 45 adults, 38 homozygous or compound heterozygous for pathogenic variants and 7 heterozygous. Homozygous were 57.9% male, 65.8% ever-smokers, median (IQR) age 49.0(42.5-58.5) years, AAT-levels 0.20(0.08-0.26) g/L, FEV1(%predicted) 41.5(28.8-64.5). PI*Z, PI*Q0, and rare deficient allele's frequency was 51.3%, 32.9%,15.8%, respectively. PI*ZZ genotype was 36.8%, PI*Q0Q0 21.1%, PI*MdeficientMdeficient 7.9%, PI*ZQ0 18.4%, PI*Q0Mdeficient 5.3% and PI*Zrare-deficient 10.5%. Genotyping by Luminex detected: p.(Pro393Leu) associated with MHeerlen (M1Ala/M1Val); p.(Leu65Pro) with MProcida; p.(Lys241Ter) with Q0Bellingham; p.(Leu377Phefs*24) with Q0Mattawa (M1Val) and Q0Ourem (M3); p.(Phe76del) with MMalton (M2), MPalermo (M1Val), MNichinan (V) and Q0LaPalma (S); p.(Asp280Val) with PLowell (M1Val); PDuarte (M4), YBarcelona (p.Pro39His). Gene-sequencing (46.7%) detected Q0GraniteFalls, Q0Saint-Etienne, Q0Amersfoort(M1Ala), MWürzburg, NHartfordcity and one novel-variant (c.1A>G) named Q0Attikon.Heterozygous included PI*MQ0Amersfoort(M1Ala), PI*MMProcida, PI*Mp.(Asp280Val), PI*MOFeyzin. AAT-levels were significantly different between genotypes (p = 0.002). CONCLUSION Genotyping AATD in Greece, a multiplicity of rare variants and a diversity of rare combinations, including unique ones were observed in two thirds of patients, expanding knowledge regarding European geographical trend in rare variants. Gene sequencing was necessary for genetic diagnosis. In the future the detection of rare genotypes may add to personalize preventive and therapeutic measures.
Collapse
Affiliation(s)
- S A Papiris
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece.
| | - M Veith
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - A I Papaioannou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - V Apollonatou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - I Ferrarotti
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumonology Unit, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - S Ottaviani
- Center for Diagnosis of Inherited Alpha1-antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumonology Unit, Fondazione IRCCS Policlinico San Matteo, Università di Pavia, Pavia, Italy
| | - A Tzouvelekis
- Department of Respiratory Medicine, General Hospital of Patras, University of Patras, Greece
| | - V Tzilas
- 5th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - N Rovina
- 1st Department of Pulmonary Medicine and Intensive Care Unit, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | - G Stratakos
- 1st Respiratory Medicine Department of the National, Kapodistrian University of Athens, Athens, Greece
| | - I Gerogianni
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa Greece
| | - Z Daniil
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa Greece
| | - L Kolilekas
- 7thPulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - K Dimakou
- 5th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - G Pitsidianakis
- Department of Thoracic Medicine, University Hospital, University of Crete, Heraklion, Crete 71110, Greece
| | - N Tzanakis
- Department of Thoracic Medicine, University Hospital, University of Crete, Heraklion, Crete 71110, Greece
| | - S Tryfon
- General Hospital "G. Papanikolaou", Thessaloniki, Greece
| | - F Fragopoulos
- Pulmonary Department, General Hospital of Nicosia, Cyprus
| | - E M Antonogiannaki
- 4th Pulmonary Department, Athens Chest Hospital "Sotiria", Athens Greece
| | - A Lazaratou
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - E Fouka
- A Department of Pulmonary Medicine, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | - D Papakosta
- A Department of Pulmonary Medicine, Aristotle University of Thessaloniki, "G. Papanikolaou" Hospital, Exochi, Thessaloniki, Greece
| | | | - N Anagnostopoulos
- 1st Respiratory Medicine Department of the National, Kapodistrian University of Athens, Athens, Greece
| | - T Karampitsakos
- Department of Respiratory Medicine, General Hospital of Patras, University of Patras, Greece
| | - K Vlami
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - M Kallieri
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - P Lyberopoulos
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - S Loukides
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| | - D Bouros
- Iatriko Medical Center, Athens, Greece; School of Medicine, National and Kapodistrian University of Athens, Athens Greece
| | - A Bush
- Paediatrics and Paediatric Respirology, Imperial College, Imperial Centre for Paediatrics and Child Health, Royal Brompton Harefield NHS Foundation Trust, London, United Kingdom
| | - M Balduyck
- laboratoire de Biochimie et Biologie Moléculaire (HMNO), Centre de Biologie Pathologie, Faculté de pharmacie et EA 7364 RADEME, Laboratoire de Biochimie et Biologie Moléculaire, CHU de Lille, Université de Lille, Lille, France
| | - C Lombard
- Laboratoire d'Immunologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon and Université Claude Bernard-Lyon 1, Lyon, France
| | - V Cottin
- Service de pneumologie, Centre National Coordinateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR754 INRA, IVPC, Lyon, France
| | - J F Mornex
- Service de pneumologie, Centre National Coordinateur de Référence des Maladies Pulmonaires Rares, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR754 INRA, IVPC, Lyon, France
| | - C F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - T Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL), UKGM, Marburg, Germany
| | - E D Manali
- 2nd Pulmonary Medicine Department, Medical School, General University Hospital "Attikon", National and Kapodistrian University of Athens, Greece 1 Rimini Street, Haidari 12462, Greece
| |
Collapse
|
7
|
McElvaney OJ, Hagstrom J, Foreman MG, McElvaney NG. Undiagnosed Alpha-1 Antitrypsin Deficiency and the Perpetuation of Lung Health Inequity. Am J Respir Crit Care Med 2024; 209:3-5. [PMID: 37879066 PMCID: PMC10870886 DOI: 10.1164/rccm.202307-1171ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
| | | | | | - Noel G McElvaney
- Department of Medicine Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
8
|
Lafortune P, Zahid K, Ploszaj M, Awadalla E, Carroll TP, Geraghty P. Testing Alpha-1 Antitrypsin Deficiency in Black Populations. Adv Respir Med 2023; 92:1-12. [PMID: 38392031 PMCID: PMC10886060 DOI: 10.3390/arm92010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an under-recognized hereditary disorder and a significant cause of chronic obstructive pulmonary disease (COPD), a disease that contributes to global mortality. AAT is encoded by the SERPINA1 gene, and severe mutation variants of this gene increase the risk of developing COPD. AATD is more frequently screened for in non-Hispanic White populations. However, AATD is also observed in other ethnic groups and very few studies have documented the mutation frequency in these other ethnic populations. Here, we review the current literature on AATD and allele frequency primarily in Black populations and discuss the possible clinical outcomes of low screening rates in a population that experiences poor health outcomes and whether the low frequency of AATD is related to a lack of screening in this population or a truly low frequency of mutations causing AATD. This review also outlines the harmful SERPINA1 variants, the current epidemiology knowledge of AATD, health inequity in Black populations, AATD prevalence in Black populations, the clinical implications of low screening of AATD in this population, and the possible dangers of not diagnosing or treating AATD.
Collapse
Affiliation(s)
- Pascale Lafortune
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Kanza Zahid
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Magdalena Ploszaj
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Emilio Awadalla
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| | - Tomás P. Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA; (P.L.); (K.Z.); (M.P.); (E.A.)
| |
Collapse
|
9
|
Zhao R, Hadisurya M, Ndetan H, Xi NM, Adduri S, Konduru NV, Samten B, Tao WA, Singh KP, Ji HL. Regenerative Signatures in Bronchioalveolar Lavage of Acute Respiratory Distress Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566908. [PMID: 38014329 PMCID: PMC10680787 DOI: 10.1101/2023.11.13.566908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background In patients with severe acute respiratory distress syndrome (ARDS) associated with sepsis, lung recovery is considerably delayed, and mortality is much high. More insight into the process of lung regeneration in ARDS patients is needed. Exosomes are important cargos for intercellular communication by serving as autocrine and/or paracrine. Cutting-edge exomics (exosomal proteomics) makes it possible to study the mechanisms of re-alveolarization in ARDS lungs. Aims This study aimed to identify potential regenerative niches by characterizing differentially expressed proteins in the exosomes of bronchioalveolar lavage (BAL) in ARDS patients. Methods We purified exosomes from BAL samples collected from ARDS patients by NIH-supported ALTA and SPIROMICS trials. The abundance of exosomal proteins/peptides was quantified using liquid chromatography-mass spectrometry (LC-MS). Differentially expressed exosomal proteins between healthy controls and ARDS patients were profiled for functional annotations, cell origins, signaling pathways, networks, and clinical correlations. Results Our results show that more exosomal proteins were identified in the lungs of late-stage ARDS patients. Immune cells and lung epithelial stem cells were major contributors to BAL exosomes in addition to those from other organs. We enriched a wide range of functions, stem cell signals, growth factors, and immune niches in both mild and severe patients. The differentially expressed proteins that we identified were associated with key clinical variables. The severity-associated differences in protein-protein interaction, RNA crosstalk, and epigenetic network were observed between mild and severe groups. Moreover, alveolar type 2 epithelial cells could serve as both exosome donors and recipients via autocrine and paracrine mechanisms. Conclusions This study identifies novel exosomal proteins associated with diverse functions, signaling pathways, and cell origins in ARDS lavage samples. These differentiated proteins may serve as regenerative niches for re-alveolarization in injured lungs.
Collapse
Affiliation(s)
- Runzhen Zhao
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Harrison Ndetan
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sitaramaraju Adduri
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Nagarjun Venkata Konduru
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Buka Samten
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Karan P Singh
- Department of Epidemiology and Biostatistics, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
- Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| |
Collapse
|
10
|
Izquierdo M, Marion CR, Genese F, Newell JD, O'Neal WK, Li X, Hawkins GA, Barjaktarevic I, Barr RG, Christenson S, Cooper CB, Couper D, Curtis J, Han MK, Hansel NN, Kanner RE, Martinez FJ, Paine III R, Tejwani V, Woodruff PG, Zein JG, Hoffman EA, Peters SP, Meyers DA, Bleecker ER, Ortega VE. Impact of Bronchiectasis on COPD Severity and Alpha-1 Antitrypsin Deficiency as a Risk Factor in Individuals with a Heavy Smoking History. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2023; 10:199-210. [PMID: 37199731 PMCID: PMC10484491 DOI: 10.15326/jcopdf.2023.0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 07/29/2023]
Abstract
Rationale Bronchiectasis is common among those with heavy smoking histories, but risk factors for bronchiectasis, including alpha-1 antitrypsin deficiency, and its implications for COPD severity are uncharacterized in such individuals. Objectives To characterize the impact of bronchiectasis on COPD and explore alpha-1antitrypsin as a risk factor for bronchiectasis. Methods SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) participants (N=914; ages 40-80 years; ≥20-pack-year smoking) had high-resolution computed tomography (CT) scans interpreted visually for bronchiectasis, based on airway dilation without fibrosis or cicatrization. We performed regression-based models of bronchiectasis with clinical outcomes and quantitative CT measures. We deeply sequenced the gene encoding -alpha-1 antitrypsin, SERPINA1, in 835 participants to test for rare variants, focusing on the PiZ genotype (Glu366Lys, rs28929474). Measurements and Main Results We identified bronchiectasis in 365 (40%) participants, more frequently in women (45% versus 36%, p=0.0045), older participants (mean age=66[standard deviation (SD)=8.3] versus 64[SD=9.1] years, p=0.0083), and those with lower lung function (forced expiratory volume in 1 second [FEV1 ] percentage predicted=66%[SD=27] versus 77%[SD=25], p<0.0001; FEV1 to forced vital capacity [FVC] ratio=0.54[0.17] versus 0.63[SD=0.16], p<0.0001). Participants with bronchiectasis had greater emphysema (%voxels ≤-950 Hounsfield units, 11%[SD=12] versus 6.3%[SD=9], p<0.0001) and parametric response mapping functional small airways disease (26[SD=15] versus 19[SD=15], p<0.0001). Bronchiectasis was more frequent in the combined PiZZ and PiMZ genotype groups compared to those without PiZ, PiS, or other rare pathogenic variants (N=21 of 40 [52%] versus N=283 of 707[40%], odds ratio [OR]=1.97; 95% confidence interval [CI]=1.002, 3.90, p=0.049), an association attributed to White individuals (OR=1.98; 95%CI = 0.9956, 3.9; p=0.051). Conclusions Bronchiectasis was common in those with heavy smoking histories and was associated with detrimental clinical and radiographic outcomes. Our findings support alpha-1antitrypsin guideline recommendations to screen for alpha-1 antitrypsin deficiency in an appropriate bronchiectasis subgroup with a significant smoking history.
Collapse
Affiliation(s)
- Manuel Izquierdo
- Section on Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest School of Medicine, Wake Forest, North Carolina, United States
| | - Chad R. Marion
- Section on Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest School of Medicine, Wake Forest, North Carolina, United States
| | - Frank Genese
- Department of Pulmonary Disease, Rochester General Hospital, Rochester, New York, United States
| | - John D. Newell
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
| | - Wanda K. O'Neal
- Marisco Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Xingnan Li
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Gregory A. Hawkins
- Center for Precision Medicine, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States
| | - Igor Barjaktarevic
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California, United States
| | - R. Graham Barr
- Columbia University Medical Center, New York City, New York, United States
| | - Stephanie Christenson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Christopher B. Cooper
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California, United States
| | - David Couper
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Jeffrey Curtis
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Division of Pulmonary and Critical Care Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Meilan K. Han
- Division of Pulmonary and Critical Care Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Nadia N. Hansel
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Richard E. Kanner
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College of Cornell University, New York City, New York, United States
| | - Robert Paine III
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Vickram Tejwani
- Respiratory Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Prescott G. Woodruff
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Joe G. Zein
- Respiratory Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Eric A. Hoffman
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
| | - Stephen P. Peters
- Section on Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest School of Medicine, Wake Forest, North Carolina, United States
| | - Deborah A. Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Eugene R. Bleecker
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
| | - Victor E. Ortega
- Department of Internal Medicine, Division of Respiratory Diseases, Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - for the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) investigators.
- Section on Pulmonary, Critical Care, Allergy and Immunological Diseases, Wake Forest School of Medicine, Wake Forest, North Carolina, United States
- Department of Pulmonary Disease, Rochester General Hospital, Rochester, New York, United States
- Departments of Radiology, Medicine, and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Marisco Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Medicine, University of Arizona, Tucson, Arizona, United States
- Center for Precision Medicine, Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States
- Department of Medicine, David Geffen School of Medicine, Los Angeles, California, United States
- Columbia University Medical Center, New York City, New York, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California, United States
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, United States
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Division of Pulmonary and Critical Care Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medical College of Cornell University, New York City, New York, United States
- Respiratory Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Internal Medicine, Division of Respiratory Diseases, Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| |
Collapse
|
11
|
McElvaney OF, Fraughen DD, McElvaney OJ, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency: current therapy and emerging targets. Expert Rev Respir Med 2023; 17:191-202. [PMID: 36896570 DOI: 10.1080/17476348.2023.2174973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Alpha1 antitrypsin deficiency (AATD), a common hereditary disorder affecting mainly lungs, liver and skin has been the focus of some of the most exciting therapeutic approaches in medicine in the past 5 years. In this review, we discuss the therapies presently available for the different manifestations of AATD and new therapies in the pipeline. AREAS COVERED We review therapeutic options for the individual lung, liver and skin manifestations of AATD along with approaches which aim to treat all three. Along with this renewed interest in treating AATD come challenges. How is AAT best delivered to the lung? What is the desired level of AAT in the circulation and lungs which therapeutics should aim to provide? Will treating the liver disease increase the potential for lung disease? Are there treatments to target the underlying genetic defect with the potential to prevent all aspects of AATDrelated disease? EXPERT OPINION With a relatively small population able to participate in clinical studies, increased awareness and diagnosis of AATD is urgently needed. Better, more sensitive clinical parameters will assist in the generation of acceptable and robust evidence of therapeutic effect for current and emerging treatments.
Collapse
Affiliation(s)
- Oisín F McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Daniel D Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
12
|
Grayeski PJ, Weidmann CA, Kumar J, Lackey L, Mustoe A, Busan S, Laederach A, Weeks KM. Global 5'-UTR RNA structure regulates translation of a SERPINA1 mRNA. Nucleic Acids Res 2022; 50:9689-9704. [PMID: 36107773 PMCID: PMC9508835 DOI: 10.1093/nar/gkac739] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
SERPINA1 mRNAs encode the protease inhibitor α-1-antitrypsin and are regulated through post-transcriptional mechanisms. α-1-antitrypsin deficiency leads to chronic obstructive pulmonary disease (COPD) and liver cirrhosis, and specific variants in the 5'-untranslated region (5'-UTR) are associated with COPD. The NM_000295.4 transcript is well expressed and translated in lung and blood and features an extended 5'-UTR that does not contain a competing upstream open reading frame (uORF). We show that the 5'-UTR of NM_000295.4 folds into a well-defined multi-helix structural domain. We systematically destabilized mRNA structure across the NM_000295.4 5'-UTR, and measured changes in (SHAPE quantified) RNA structure and cap-dependent translation relative to a native-sequence reporter. Surprisingly, despite destabilizing local RNA structure, most mutations either had no effect on or decreased translation. Most structure-destabilizing mutations retained native, global 5'-UTR structure. However, those mutations that disrupted the helix that anchors the 5'-UTR domain yielded three groups of non-native structures. Two of these non-native structure groups refolded to create a stable helix near the translation initiation site that decreases translation. Thus, in contrast to the conventional model that RNA structure in 5'-UTRs primarily inhibits translation, complex folding of the NM_000295.4 5'-UTR creates a translation-optimized message by promoting accessibility at the translation initiation site.
Collapse
Affiliation(s)
- Philip J Grayeski
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Chase A Weidmann
- Department of Biological Chemistry, Center for RNA Biomedicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| | - Anthony M Mustoe
- Verna and Marrs McClean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, and Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
13
|
Stolz D, Mkorombindo T, Schumann DM, Agusti A, Ash SY, Bafadhel M, Bai C, Chalmers JD, Criner GJ, Dharmage SC, Franssen FME, Frey U, Han M, Hansel NN, Hawkins NM, Kalhan R, Konigshoff M, Ko FW, Parekh TM, Powell P, Rutten-van Mölken M, Simpson J, Sin DD, Song Y, Suki B, Troosters T, Washko GR, Welte T, Dransfield MT. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet 2022; 400:921-972. [PMID: 36075255 PMCID: PMC11260396 DOI: 10.1016/s0140-6736(22)01273-9] [Citation(s) in RCA: 258] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 05/23/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
Despite substantial progress in reducing the global impact of many non-communicable diseases, including heart disease and cancer, morbidity and mortality due to chronic respiratory disease continues to increase. This increase is driven primarily by the growing burden of chronic obstructive pulmonary disease (COPD), and has occurred despite the identification of cigarette smoking as the major risk factor for the disease more than 50 years ago. Many factors have contributed to what must now be considered a public health emergency: failure to limit the sale and consumption of tobacco products, unchecked exposure to environmental pollutants across the life course, and the ageing of the global population (partly as a result of improved outcomes for other conditions). Additionally, despite the heterogeneity of COPD, diagnostic approaches have not changed in decades and rely almost exclusively on post-bronchodilator spirometry, which is insensitive for early pathological changes, underused, often misinterpreted, and not predictive of symptoms. Furthermore, guidelines recommend only simplistic disease classification strategies, resulting in the same therapeutic approach for patients with widely differing conditions that are almost certainly driven by variable pathophysiological mechanisms. And, compared with other diseases with similar or less morbidity and mortality, the investment of financial and intellectual resources from both the public and private sector to advance understanding of COPD, reduce exposure to known risks, and develop new therapeutics has been woefully inadequate.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland; Department of Clinical Research, University Hospital Basel, Basel, Switzerland; Clinic of Respiratory Medicine and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takudzwa Mkorombindo
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Desiree M Schumann
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital Basel, Basel, Switzerland
| | - Alvar Agusti
- Respiratory Institute-Hospital Clinic, University of Barcelona IDIBAPS, CIBERES, Barcelona, Spain
| | - Samuel Y Ash
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chunxue Bai
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Dundee, UK
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Shyamali C Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global health, University of Melbourne, Melbourne, VIC, Australia
| | - Frits M E Franssen
- Department of Research and Education, CIRO, Horn, Netherlands; Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Urs Frey
- University Children's Hospital Basel, Basel, Switzerland
| | - MeiLan Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Nadia N Hansel
- Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nathaniel M Hawkins
- Centre for Cardiovascular Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Ravi Kalhan
- Department of Preventive Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Melanie Konigshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fanny W Ko
- The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Trisha M Parekh
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Maureen Rutten-van Mölken
- Erasmus School of Health Policy & Management and Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jodie Simpson
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Don D Sin
- Centre for Heart Lung Innovation and Division of Respiratory Medicine, Department of Medicine, University of British Columbia, St Paul's Hospital, Vancouver, BC, Canada
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Shanghai Respiratory Research Institute, Shanghai, China; Jinshan Hospital of Fudan University, Shanghai, China
| | - Bela Suki
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thierry Troosters
- Department of Rehabilitation Sciences, Research Group for Rehabilitation in Internal Disorders, KU Leuven, Leuven, Belgium
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | - Mark T Dransfield
- Lung Health Center, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
14
|
Mornex JF, Balduyck M, Bouchecareilh M, Cuvelier A, Epaud R, Kerjouan M, Le Rouzic O, Pison C, Plantier L, Pujazon MC, Reynaud-Gaubert M, Toutain A, Trumbic B, Willemin MC, Zysman M, Brun O, Campana M, Chabot F, Chamouard V, Dechomet M, Fauve J, Girerd B, Gnakamene C, Lefrançois S, Lombard JN, Maitre B, Maynié-François C, Moerman A, Payancé A, Reix P, Revel D, Revel MP, Schuers M, Terrioux P, Theron D, Willersinn F, Cottin V, Mal H. [French clinical practice guidelines for the diagnosis and management of lung disease with alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:633-656. [PMID: 35906149 DOI: 10.1016/j.rmr.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO, faculté de pharmacie, EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - M Bouchecareilh
- Université de Bordeaux, CNRS, Inserm U1053 BaRITon, Bordeaux, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen, France; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - R Epaud
- Centre de références des maladies respiratoires rares, site de Créteil, Créteil, France
| | - M Kerjouan
- Service de pneumologie, CHU Pontchaillou, Rennes, France
| | - O Le Rouzic
- CHU Lille, service de pneumologie et immuno-allergologie, Lille, France; Université de Lille, CNRS, Inserm, institut Pasteur de Lille, U1019, UMR 9017, CIIL, OpInfIELD team, Lille, France
| | - C Pison
- Service de pneumologie physiologie, pôle thorax et vaisseaux, CHU de Grenoble, Grenoble, France; Université Grenoble Alpes, Saint-Martin-d'Hères, France
| | - L Plantier
- Service de pneumologie et explorations fonctionnelles respiratoires, CHRU de Tours, Tours, France; Université de Tours, CEPR, Inserm UMR1100, Tours, France
| | - M-C Pujazon
- Service de pneumologie et allergologie, pôle clinique des voies respiratoires, hôpital Larrey, Toulouse, France
| | - M Reynaud-Gaubert
- Service de pneumologie, centre de compétence pour les maladies pulmonaires rares, AP-HM, CHU Nord, Marseille, France; Aix-Marseille université, IHU-Méditerranée infection, Marseille, France
| | - A Toutain
- Service de génétique, CHU de Tours, Tours, France; UMR 1253, iBrain, université de Tours, Inserm, Tours, France
| | | | - M-C Willemin
- Service de pneumologie et oncologie thoracique, CHU d'Angers, hôpital Larrey, Angers, France
| | - M Zysman
- Service de pneumologie, CHU Haut-Lévèque, Bordeaux, France; Université de Bordeaux, centre de recherche cardiothoracique, Inserm U1045, CIC 1401, Pessac, France
| | - O Brun
- Centre de pneumologie et d'allergologie respiratoire, Perpignan, France
| | - M Campana
- Service de pneumologie, CHR d'Orléans, Orléans, France
| | - F Chabot
- Département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France; Inserm U1116, université de Lorraine, Vandœuvre-lès-Nancy, France
| | - V Chamouard
- Service pharmaceutique, hôpital cardiologique, GHE, HCL, Bron, France
| | - M Dechomet
- Service d'immunologie biologique, centre de biologie sud, centre hospitalier Lyon Sud, HCL, Pierre-Bénite, France
| | - J Fauve
- Cabinet médical, Bollène, France
| | - B Girerd
- Université Paris-Saclay, faculté de médecine, Le Kremlin-Bicêtre, France; AP-HP, centre de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs respiratoires, hôpital Bicêtre, Le Kremlin-Bicêtre, France; Inserm UMR_S 999, hôpital Marie-Lannelongue, Le Plessis-Robinson, France
| | - C Gnakamene
- Service de pneumologie, CH de Montélimar, GH Portes de Provence, Montélimar, France
| | | | | | - B Maitre
- Service de pneumologie, centre hospitalier intercommunal, Créteil, France; Inserm U952, UFR de santé, université Paris-Est Créteil, Créteil, France
| | - C Maynié-François
- Université de Lyon, collège universitaire de médecine générale, Lyon, France; Université Claude-Bernard Lyon 1, laboratoire de biométrie et biologie évolutive, UMR5558, Villeurbanne, France
| | - A Moerman
- CHRU de Lille, hôpital Jeanne-de-Flandre, Lille, France; Cabinet de médecine générale, Lille, France
| | - A Payancé
- Service d'hépatologie, CHU Beaujon, AP-HP, Clichy, France; Filière de santé maladies rares du foie de l'adulte et de l'enfant (FilFoie), CHU Saint-Antoine, Paris, France
| | - P Reix
- Service de pneumologie pédiatrique, allergologie, mucoviscidose, hôpital Femme-Mère-Enfant, HCL, Bron, France; UMR 5558 CNRS équipe EMET, université Claude-Bernard Lyon 1, Villeurbanne, France
| | - D Revel
- Université Claude-Bernard Lyon 1, Lyon, France; Hospices civils de Lyon, Lyon, France
| | - M-P Revel
- Université Paris Descartes, Paris, France; Service de radiologie, hôpital Cochin, AP-HP, Paris, France
| | - M Schuers
- Université de Rouen Normandie, département de médecine générale, Rouen, France; Sorbonne université, LIMICS U1142, Paris, France
| | | | - D Theron
- Asten santé, Isneauville, France
| | | | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, 69007 Lyon, France; Centre de référence coordonnateur des maladies pulmonaires rares, hospices civils de Lyon, hôpital Louis-Pradel, service de pneumologie, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat-Claude-Bernard, AP-HP, Paris, France; Inserm U1152, université Paris Diderot, site Xavier Bichat, Paris, France
| |
Collapse
|
15
|
Mornex JF, Balduyck M, Cuvelier A, Cottin V, Mal H. [Alpha1-antitrypsin deficiency: French guidelines… at last !]. Rev Mal Respir 2022; 39:575-577. [PMID: 35792000 DOI: 10.1016/j.rmr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 ; Lyon, France ; Centre de référence coordonnateur des maladies pulmonaires rares; Hospices civils de Lyon, service de pneumologie, hôpital Louis Pradel, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO ; faculté de pharmacie et EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen ; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 ; Lyon, France ; Centre de référence coordonnateur des maladies pulmonaires rares; Hospices civils de Lyon, service de pneumologie, hôpital Louis Pradel, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat - Claude-Bernard, AP-HP Nord- Université Paris Cité ; Inserm U1152, Paris, France
| |
Collapse
|
16
|
Mornex JF. [Alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:698-707. [PMID: 35715315 DOI: 10.1016/j.rmr.2022.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary emphysema and liver disease are the clinical expressions of alpha 1-antitrypsin deficiency, an autosomal recessive genetic disease. STATE OF THE ART Alpha 1-antitrypsin deficiency is usually associated with the homozygous Z variant of the SERPINA1 gene. Its clinical expression always consists in a substantial reduction of alpha 1-antitrypsin serum concentration and its variants are analyzed by isoelectric focalization or molecular techniques. Assessed by CO transfer alteration and CT scan, risk of pulmonary emphysema is increased by tobacco consumption. Assessed by transient elastography and liver ultrasound, risk of liver disease is increased by alcohol consumption or obesity. Treatment of COPD-associated alpha 1-antitrypsin deficiency does not differ from that of other forms of COPD. In patients presenting with severe deficiency, augmentation therapy with plasma-derived alpha 1-antitrypsin reduces the progression of emphysema, as shown in terms of CT-based lung density metrics. Patients with alpha 1-antitrypsin deficiency with a ZZ genotype should refrain from alcohol or tobacco consumption, and watch their weight; so should their close relatives. PERSPECTIVES Modulation of alpha 1-antitrypsin liver production offers an interesting new therapeutic perspective. CONCLUSION Homozygous (Z) variants of the SERPINA1 gene confer an increased risk of pulmonary emphysema and liver disease, particularly among smokers, drinkers and obese persons.
Collapse
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, Lyon, France; Centre de référence des maladies respiratoires rares, Orphalung, RESPIFIL, 69500 Bron, Bron, France; Service de pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, 69500 Bron, France.
| |
Collapse
|
17
|
Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet 2022; 399:2227-2242. [PMID: 35533707 DOI: 10.1016/s0140-6736(22)00470-6] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity, mortality, and health-care use worldwide. COPD is caused by exposure to inhaled noxious particles, notably tobacco smoke and pollutants. However, the broad range of factors that increase the risk of development and progression of COPD throughout the life course are increasingly being recognised. Innovations in omics and imaging techniques have provided greater insight into disease pathobiology, which might result in advances in COPD prevention, diagnosis, and treatment. Although few novel treatments have been approved for COPD in the past 5 years, advances have been made in targeting existing therapies to specific subpopulations using new biomarker-based strategies. Additionally, COVID-19 has undeniably affected individuals with COPD, who are not only at higher risk for severe disease manifestations than healthy individuals but also negatively affected by interruptions in health-care delivery and social isolation. This Seminar reviews COPD with an emphasis on recent advances in epidemiology, pathophysiology, imaging, diagnosis, and treatment.
Collapse
Affiliation(s)
- Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin M Smith
- Department of Medicine, Columbia University Medical Center, New York, NY, USA; Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Mona Bafadhel
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK; Department of Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Izquierdo M, Rawal H, Armstrong M, Marion CR. Alpha-1 Asthma Overlap Syndrome: a Clinical Overview. Curr Allergy Asthma Rep 2022; 22:101-111. [PMID: 35596100 DOI: 10.1007/s11882-022-01036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Alpha-1 antitrypsin deficiency (AATD) is one of the most common genetic diseases that is associated with severe complications and yet remains underdiagnosed. The pulmonary symptoms of both AATD and asthma include cough, excessive sputum production, dyspnea, and wheezing. These symptoms overlap significantly leading to difficulty distinguishing between these two conditions and suspicion that there may be an overlap syndrome. We aim to discuss the pathophysiology, clinical manifestations, and treatment of both alpha-1 antitrypsin and asthma and how they may overlap. RECENT FINDINGS Recent literature suggests that there is an association between asthma and AATD. This association has been hypothesized to be secondary to an imbalance of elastase and anti-elastase leading to a pro-inflammatory state in patients with AATD. This review serves to overview the pathophysiology, clinical manifestations, and treatment of alpha-1 antitrypsin, asthma, and the increasingly recognized intersection of the two, AATD-asthma overlap syndrome.
Collapse
Affiliation(s)
- Manuel Izquierdo
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Himanshu Rawal
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Michael Armstrong
- Department of Internal Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Chad R Marion
- Department of Internal Medicine, Section On Pulmonary, Critical Care, Immunologic, and Asthma Medicine, Wake Forest Baptist Hospital, 1 Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Department On Internal Medicine, Section On Pulmonary, Critical Care and Sleep Medicine, W. G. (Bill) Hefner Veterans Affairs Medical Center, Salisbury, NC, USA.
| |
Collapse
|
19
|
Ghosh AJ, Hobbs BD. Recent advancements in understanding the genetic involvement of alpha-1 antitrypsin deficiency associated lung disease: a look at future precision medicine approaches. Expert Rev Respir Med 2022; 16:173-182. [PMID: 35025710 PMCID: PMC8983484 DOI: 10.1080/17476348.2022.2027755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Alpha-1 antitrypsin deficiency occurs in individuals with deleterious genetic mutations on both chromosomes (maternal and paternal) in SERPINA1, the gene encoding the alpha-1 antitrypsin protein. There has been substantial progress in understanding the genetic variation that underlies the heterogeneous penetrance of lung disease in alpha-1 antitrypsin deficiency. AREAS COVERED This review will cover SERPINA1 gene structure and genetic variation, population genetics, genome-wide genetic modifiers of lung disease, alternative mechanisms of disease, and emerging therapeutics - including gene and cell therapy - related to alpha-1 antitrypsin deficiency-associated lung disease. EXPERT OPINION There remains ample opportunity to employ precision medicine in the diagnosis, prognosis, and therapy of alpha-1 antitrypsin deficiency-associated lung disease. In particular, a genome-wide association study and subsequent polygenic risk score is an important first step in identifying genome-wide genetic modifiers contributing to the variability of lung disease in severe alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- Assistant Professor of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, 750 E. Adams St, Syracuse, NY, 13210
| | - Brian D. Hobbs
- Assistant Professor of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Ave, Boston, MA, 02115,Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital,Harvard Medical School
| |
Collapse
|
20
|
Ghosh AJ, Hobbs BD, Moll M, Saferali A, Boueiz A, Yun JH, Sciurba F, Barwick L, Limper AH, Flaherty K, Criner G, Brown KK, Wise R, Martinez FJ, Lomas D, Castaldi PJ, Carey VJ, DeMeo DL, Cho MH, Silverman EK, Hersh CP. Alpha-1 Antitrypsin MZ Heterozygosity Is an Endotype of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2022; 205:313-323. [PMID: 34762809 PMCID: PMC8886988 DOI: 10.1164/rccm.202106-1404oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Rationale: Multiple studies have demonstrated an increased risk of chronic obstructive pulmonary disease (COPD) in heterozygous carriers of the AAT (alpha-1 antitrypsin) Z allele. However, it is not known if MZ subjects with COPD are phenotypically different from noncarriers (MM genotype) with COPD. Objectives: To assess if MZ subjects with COPD have different clinical features compared with MM subjects with COPD. Methods: Genotypes of SERPINA1 were ascertained by using whole-genome sequencing data in three independent studies. We compared outcomes between MM subjects with COPD and MZ subjects with COPD in each study and combined the results in a meta-analysis. We performed longitudinal and survival analyses to compare outcomes in MM and MZ subjects with COPD over time. Measurements and Main Results: We included 290 MZ subjects with COPD and 6,184 MM subjects with COPD across the three studies. MZ subjects had a lower FEV1% predicted and greater quantitative emphysema on chest computed tomography scans compared with MM subjects. In a meta-analysis, the FEV1 was 3.9% lower (95% confidence interval [CI], -6.55% to -1.26%) and emphysema (the percentage of lung attenuation areas <-950 HU) was 4.14% greater (95% CI, 1.44% to 6.84%) in MZ subjects. We found one gene, PGF (placental growth factor), to be differentially expressed in lung tissue from one study between MZ subjects and MM subjects. Conclusions: Carriers of the AAT Z allele (those who were MZ heterozygous) with COPD had lower lung function and more emphysema than MM subjects with COPD. Taken with the subtle differences in gene expression between the two groups, our findings suggest that MZ subjects represent an endotype of COPD.
Collapse
Affiliation(s)
- Auyon J. Ghosh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Matthew Moll
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Adel Boueiz
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Jeong H. Yun
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Frank Sciurba
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Andrew H. Limper
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan
| | - Gerard Criner
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Kevin K. Brown
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Robert Wise
- Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - David Lomas
- University College London Respiratory Division of Medicine, University College London, London, United Kingdom
| | - Peter J. Castaldi
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Vincent J. Carey
- Channing Division of Network Medicine and
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dawn L. DeMeo
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
21
|
Lackey L, Coria A, Ghosh AJ, Grayeski P, Hatfield A, Shankar V, Platig J, Xu Z, Ramos SBV, Silverman EK, Ortega VE, Cho MH, Hersh CP, Hobbs BD, Castaldi P, Laederach A. Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease. PLoS Genet 2021; 17:e1009912. [PMID: 34784346 PMCID: PMC8631626 DOI: 10.1371/journal.pgen.1009912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/30/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
α1-anti-trypsin (A1AT), encoded by SERPINA1, is a neutrophil elastase inhibitor that controls the inflammatory response in the lung. Severe A1AT deficiency increases risk for Chronic Obstructive Pulmonary Disease (COPD), however, the role of A1AT in COPD in non-deficient individuals is not well known. We identify a 2.1-fold increase (p = 2.5x10-6) in the use of a distal poly-adenylation site in primary lung tissue RNA-seq in 82 COPD cases when compared to 64 controls and replicate this in an independent study of 376 COPD and 267 controls. This alternative polyadenylation event involves two sites, a proximal and distal site, 61 and 1683 nucleotides downstream of the A1AT stop codon. To characterize this event, we measured the distal ratio in human primary tissue short read RNA-seq data and corroborated our results with long read RNA-seq data. Integrating these results with 3' end RNA-seq and nanoluciferase reporter assay experiments we show that use of the distal site yields mRNA transcripts with over 50-fold decreased translation efficiency and A1AT expression. We identified seven RNA binding proteins using enhanced CrossLinking and ImmunoPrecipitation precipitation (eCLIP) with one or more binding sites in the SERPINA1 3' UTR. We combined these data with measurements of the distal ratio in shRNA knockdown experiments, nuclear and cytoplasmic fractionation, and chemical RNA structure probing. We identify Quaking Homolog (QKI) as a modulator of SERPINA1 mRNA translation and confirm the role of QKI in SERPINA1 translation with luciferase reporter assays. Analysis of single-cell RNA-seq showed differences in the distribution of the SERPINA1 distal ratio among hepatocytes, macrophages, αβ-Tcells and plasma cells in the liver. Alveolar Type 1,2, dendritic cells and macrophages also vary in their distal ratio in the lung. Our work reveals a complex post-transcriptional mechanism that regulates alternative polyadenylation and A1AT expression in COPD.
Collapse
Affiliation(s)
- Lela Lackey
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Aaztli Coria
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Auyon J. Ghosh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Phil Grayeski
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Abigail Hatfield
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - Vijay Shankar
- Department of Genetics and Biochemistry, Center for Human Genetics, Clemson University, Greenwood, South Carolina, United States of America
| | - John Platig
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Silvia B. V. Ramos
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Victor E. Ortega
- Department of Internal Medicine, Division of Respiratory Medicine, Center for Individualized Medicine, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Internal Medicine and Primary Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
22
|
Methodologies for the Determination of Blood Alpha1 Antitrypsin Levels: A Systematic Review. J Clin Med 2021; 10:jcm10215132. [PMID: 34768650 PMCID: PMC8584727 DOI: 10.3390/jcm10215132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background: The study of hematic concentrations of alpha1 antitrypsin (AAT) is currently one step in the diagnosis of AAT deficiency. To try to clarify the relevance of the laboratory techniques, we carried out a systematic review of the literature. Methods: Studies evaluating the quantification of AAT in peripheral blood were searched in PubMed in July 2021. The selection criteria included (1) any type of study design that included a quantification of AAT in peripheral blood; (2) studies written in English or Spanish; (3) studies evaluating human beings; and (4) studies involving adults. Results: Out of 207 studies, the most frequently used techniques were nephelometry (43.9%), followed by ELISA (19.8%) and turbidimetry (13.5%). Altogether, 182 (87.9%) cases expressed their results in units of gram, while 16 (7.7%) articles expressed them in units of mole. Only 2.9% articles referred to the standard used, 43.5% articles indicated the commercial kit used, and 36.2% indicated the analyzer used. Conclusions: The technical aspects of these determinations are not always reported in the literature. Journals should be attentive to these technical requirements and ensure that they are included in the works in which AAT is determined in order to ensure a correct interpretation of the study findings.
Collapse
|
23
|
Zhang Q, Li W, Ayidaerhan N, Han W, Chen Y, Song W, Yue Y. IP 3 R attenuates oxidative stress and inflammation damage in smoking-induced COPD by promoting autophagy. J Cell Mol Med 2021; 25:6174-6187. [PMID: 34060199 PMCID: PMC8256356 DOI: 10.1111/jcmm.16546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/14/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Tobacco smoking is one of the most important risk factors for chronic obstructive pulmonary disease (COPD). However, the most critical genes and proteins remain poorly understood. Therefore, we aimed to investigate these hub genes and proteins in tobacco smoke-induced COPD, together with the potential mechanism(s). Differentially expressed genes (DEGs) were analysed between smokers and patients with COPD. mRNA expression and protein expression of IP3 R were confirmed in patients with COPD and extracted smoke solution (ESS)-treated human bronchial epithelial (HBE) cells. Moreover, expression of oxidative stress, inflammatory cytokines and/or autophagy-related protein was tested when IP3 R was silenced or overexpressed in ESS-treated and/or 3-MA-treated cells. A total of 30 DEGs were obtained between patients with COPD and smoker samples. IP3 R was identified as one of the key targets in tobacco smoke-induced COPD. In addition, IP3 R was significantly decreased in patients with COPD and ESS-treated cells. Loss of IP3 R statistically increased expression of oxidative stress and inflammatory cytokines in ESS-treated HBE cells, and overexpression of IP3 R reversed the above functions. Furthermore, the autophagy-related proteins (Atg5, LC3 and Beclin1) were statistically decreased, and p62 was increased by silencing of IP3 R cells, while overexpression of IP3 R showed contrary results. Additionally, we detected that administration of 3-MA significantly reversed the protective effects of IP3 R overexpression on ESS-induced oxidative stress and inflammatory injury. Our results suggest that IP3 R might exert a protective role against ESS-induced oxidative stress and inflammation damage in HBE cells. These protective effects might be associated with promoting autophagy.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Pulmonary and Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Wei Li
- Key Laboratory of Intelligent Computing in Medical ImageMinistry of EducationNortheastern UniversityShenyangChina
| | - Nahemuguli Ayidaerhan
- Department of Pulmonary and Critical Care MedicineTarbagatay Prefecture People’s HospitalTachengChina
| | - Wuxin Han
- Department of Clinical LaboratoryTarbagatay Prefecture People’s HospitalTachengChina
| | - Yingying Chen
- Department of Pulmonary and Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Wei Song
- Department of Pulmonary and Critical Care MedicineShengjing Hospital of China Medical UniversityShenyangChina
| | - Yuanyi Yue
- Department of Gastroenterology MedicineShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
24
|
Franciosi AN, Fraughen D, Carroll TP, McElvaney NG. Alpha-1 antitrypsin deficiency: clarifying the role of the putative protective threshold. Eur Respir J 2021; 59:13993003.01410-2021. [PMID: 34172471 DOI: 10.1183/13993003.01410-2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 11/05/2022]
Abstract
AATD is the only readily identifiable monogenic cause of COPD. To date the only condition-specific treatment for AATD-associated COPD is weekly administration of intravenous purified pooled human AAT (IV-AAT). Uncertainties regarding which AATD genotypes should benefit from IV-AAT persist. IV-AAT is costly and involves weekly administration of a plasma product. Much of the risk stratification has been centred around the long-accepted hypothesis of a "putative protective threshold" of 11 µM (0.57 g·L-1) in serum. This hypothesis has become central to the paradigm of AATD care, though its derivation and accuracy for defining risk of disease remain unclear.We review the literature and examine the association between the 11 µM threshold and clinical outcomes to provide context and insight into the issues surrounding this topic.We found no data which demonstrates an increased risk of COPD dependent on the 11 µM threshold. Moreover, an abundance of recent clinical data examining this threshold refutes the hypothesis. Conversely, the use of 11 µM as a treatment target in appropriate ZZ individuals is supported by clinical evidence, although more refined dosing regimens are being explored.Continued use of the 11 µM threshold as a determinant of clinical risk is questionable, perpetuates inappropriate AAT-augmentation practices, may drive increased healthcare expenditure and should not be used as an indicator for commencing treatment.Genotype represents a more proven indicator of risk, with ZZ and rare ZZ-equivalent genotypes independently associated with COPD. New and better risk assessment models are needed to provide individuals diagnosed with AATD with reliable risk estimation and optimised treatment goals.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,University of British Columbia, Vancouver, BC, Canada.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Daniel Fraughen
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Share first authorship.,Performed the literature review and jointly prepared the manuscript
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland .,Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland.,Provided data from the Irish National Targeted Detection Programme, edited the manuscript, and is the corresponding author
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Senior author and edited the final manuscript
| |
Collapse
|
25
|
Ritchie AI, Baker JR, Parekh TM, Allinson JP, Bhatt SP, Donnelly LE, Donaldson GC. Update in Chronic Obstructive Pulmonary Disease 2020. Am J Respir Crit Care Med 2021; 204:14-22. [PMID: 33856972 DOI: 10.1164/rccm.202102-0253up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andy I Ritchie
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jonathon R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Trisha M Parekh
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - James P Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Royal Brompton Hospital, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Barjaktarevic I, Miravitlles M. Alpha-1 antitrypsin (AAT) augmentation therapy in individuals with the PI*MZ genotype: a pro/con debate on a working hypothesis. BMC Pulm Med 2021; 21:99. [PMID: 33757485 PMCID: PMC7989144 DOI: 10.1186/s12890-021-01466-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a significantly under-diagnosed genetic condition caused by reduced levels and/or functionality of alpha-1 antitrypsin (AAT), predisposing individuals to lung, liver or other systemic diseases. The management of individuals with the PI*MZ genotype, characterized by mild or moderate AAT deficiency, is less clear than of those with the most common severe deficiency genotype (PI*ZZ). Recent genetic data suggest that the PI*MZ genotype may be significantly more prevalent than currently thought. The only specific treatment for lung disease associated with severe AATD is the intravenous infusion of AAT augmentation therapy, which has been shown to slow disease progression in PI*ZZ individuals. There is no specific evidence for the clinical benefit of AAT therapy in PI*MZ individuals, and the risk of emphysema development in this group remains controversial. As such, current guidelines do not support the use of AAT augmentation in PI*MZ individuals. Here, we discuss the limited data on the PI*MZ genotype and offer pro and con perspectives on pursuing an AAT-specific therapeutic strategy in PI*MZ individuals with lung disease. Ultimately, further research to demonstrate the safety, risk/benefit balance and efficacy of AAT therapy in PI*MZ individuals is needed.
Collapse
Affiliation(s)
- Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall D'Hebron, Vall D'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
27
|
Franciosi AN, Alkhunaizi MA, Woodsmith A, Aldaihani L, Alkandari H, Lee SE, Fee LT, McElvaney NG, Carroll TP. Alpha-1 Antitrypsin Deficiency and Tobacco Smoking: Exploring Risk Factors and Smoking Cessation in a Registry Population. COPD 2021; 18:76-82. [PMID: 33557645 DOI: 10.1080/15412555.2020.1864725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ZZ genotype of alpha-1 antitrypsin deficiency (AATD) is strongly associated with COPD, even in never-smokers. Moderate AATD genotypes (MZ and SZ) have been shown to increase the severity of COPD in smokers. In this comparative study, we examine the association between AATD, genotypes, and smoking cessation. Two hundred and ninety-three Irish people with AATD [MZ (n = 91), SZ (n = 72), and ZZ/rare (n = 130)] completed a custom questionnaire assessing their social and smoking histories. The primary outcomes analyzed were the predictors of ever-smoking and effect of genotype on awareness of AATD and maintained smoking cessation, using logistic regression analyses. Parental smoking exposure was associated with ever-smoking status (OR 1.84 vs. no parental smoking, p = 0.018), higher cumulative tobacco consumption (23.47 vs. 14.87 pack-years, p = 0.005) and more quit attempts required to achieve cessation among former-smokers (2.97 vs. 5.60, p = 0.007). Awareness of genotype was 67.7% versus 56.3% versus 33% for ZZ, SZ, and MZ, respectively (p < 0.001). Among ever-smokers, current-smoking was uncommon (2.5% vs. 17% vs. 16% for ZZ, SZ, and MZ, respectively, p = 0.009) with ZZs significantly less likely to be current-smokers (OR 0.15 relative to MZ, p = 0.025). These results suggest that the genetic risk of COPD in AATD families is compounded by transmission of social risk factors (via parental smoking). Increasing severity of genotype is associated with lower current-smoking rates among ever-smokers. Whether this is attributable to greater awareness of risk is an area of interest. Achieving a change in smoking habits may also result in positive health behavior in subsequent generations.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Irish Centre for Genetic Lung Disease, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | - Laura T Fee
- Irish Centre for Genetic Lung Disease, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland.,Alpha-1 Foundation Ireland
| | - Noel G McElvaney
- Department of Medicine, Beaumont Hospital, Dublin, Ireland.,Irish Centre for Genetic Lung Disease, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland
| | - Tomás P Carroll
- Irish Centre for Genetic Lung Disease, RCSI Education and Research Centre, Beaumont Hospital, Dublin, Ireland.,Alpha-1 Foundation Ireland
| |
Collapse
|
28
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
29
|
Bellemare J, Gaudreault N, Valette K, Belmonte I, Nuñez A, Miravitlles M, Maltais F, Bossé Y. The Clinical Utility of Determining the Allelic Background of Mutations Causing Alpha-1 Antitrypsin Deficiency: The Case with the Null Variant Q0(Mattawa)/Q0(Ourém). CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2021; 8. [PMID: 33150777 DOI: 10.15326/jcopdf.8.1.2020.0168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) is caused by genetic variants in the SERPINA1 gene conferring risk of developing emphysema. The clinical expression of AATD-related emphysema mostly occurs in carriers of 2 deficient alleles. By DNA sequencing of SERPINA1, numerous rare variants have been identified. Clarifying whether 2 mutations observed in 1 patient are on the same or distinct alleles has obvious clinical implications. Methods We studied 7 carriers of a rare variant, Leu353Phe_fsTer24, known to lead to undetectable serum levels of AAT. Two of them were also carriers of the S or Z allele. We developed an allele-specific DNA sequencing method to characterize the allelic background of the Leu353Phe_fsTer24 variant. Results The Leu353Phe_fsTer24 variant was transmitted on the same allele as the M3 variant (E376D) in all patients. This mutation is thus named Q0Ourém on the conventional PI system. We demonstrated that individuals harboring the E264V (S) and E342K (Z) mutations had them on distinct alleles from Q0Ourém and are, thus, compound heterozygotes. The 7 Q0Ourém carriers had AAT levels ranging from 0.18g/l to 0.82g/l. The lowest AAT serum levels were observed in compound heterozygotes (S/Q0Ourém and Z/Q0Ourém) suggesting higher risk of developing emphysema. Conclusion For the 7 patients, Leu353Phe_fsTer24 is transmitted on the M3 background and they are, thus, carriers of the Q0Ourém allele. Allele-specific DNA sequencing was useful to distinguish 1 or 2 deficient alleles in carriers of 2 mutations. In rare cases, this method is important to understand the clinical significance of genetic variants found in SERPINA1.
Collapse
Affiliation(s)
- Judith Bellemare
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Kim Valette
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Irene Belmonte
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d´Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d´Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d´Hebron, Vall d´Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - François Maltais
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Québec, QC, Canada.,Department of Molecular Medicine, Laval University, Quebec City, Canada
| |
Collapse
|
30
|
Alter P, Baker JR, Dauletbaev N, Donnelly LE, Pistenmaa C, Schmeck B, Washko G, Vogelmeier CF. Update in Chronic Obstructive Pulmonary Disease 2019. Am J Respir Crit Care Med 2020; 202:348-355. [PMID: 32407642 PMCID: PMC8054880 DOI: 10.1164/rccm.202002-0370up] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| | - Jonathan R. Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nurlan Dauletbaev
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Department of Pediatrics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada,Faculty of Medicine and Healthcare, al-Farabi Kazakh National University, Almaty, Kazakhstan; and
| | - Louise E. Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carrie Pistenmaa
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL),Institute for Lung Research, Member of the DZL and of the German Center of Infection Research (DZIF), and,Center for Synthetic Microbiology (SYNMIKRO), Philipps University of Marburg, Marburg, Germany
| | - George Washko
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, Member of the German Center for Lung Research (DZL)
| |
Collapse
|
31
|
Franciosi AN, Hobbs BD, McElvaney OJ, Molloy K, Hersh C, Clarke L, Gunaratnam C, Silverman EK, Carroll TP, McElvaney NG. Clarifying the Risk of Lung Disease in SZ Alpha-1 Antitrypsin Deficiency. Am J Respir Crit Care Med 2020; 202:73-82. [PMID: 32197047 PMCID: PMC7530947 DOI: 10.1164/rccm.202002-0262oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: The ZZ genotype of alpha-1 antitrypsin deficiency (AATD) is associated with chronic obstructive pulmonary disease (COPD), even among never-smokers. The SZ genotype is also considered severe; yet, its effect on lung health remains unclear.Objectives: To determine the effect of SZ-AATD on spirometry compared with a normal-risk population and to determine the effect of smoking cessation in this genotype.Methods: We prospectively enrolled 166 related individuals, removing lung index cases to reduce bias, and compared spirometry between 70 SZ and 46 MM/MS individuals (control subjects). The effect of AAT concentrations on outcomes was assessed in 82 SZ individuals (including lung index cases). Subsequently, we analyzed retrospective SZ registry data to determine the effect of smoking cessation on spirometry decline (n = 60) and plasma anti-neutrophil elastase capacity (n = 20).Measurements and Main Results: No difference between SZ and control never-smokers was seen. Ever smoking was associated with a lower FEV1% predicted (-14.3%; P = 0.0092) and a lower FEV1/FVC ratio (-0.075; P = 0.0041) in SZ-AATD. No association was found between AAT concentration and outcomes for SZ-AATD. Longitudinal analysis of 60 SZ individuals demonstrated that COPD at baseline, but not former smoking or AAT concentrations, predicted greater spirometry decline. Finally, anti-neutrophil elastase capacity did not differ between former smokers and never-smokers (P = 0.67).Conclusions: SZ never-smokers demonstrated no increased risk of COPD, regardless of AAT concentration. Smoking interacts with SZ-AATD to significantly increase airflow obstruction. Former smoking alone is not associated with greater spirometry decline in SZ-AATD, suggesting that cessation attenuates the obstructive process. We found no evidence that the putative protective threshold or AAT concentrations predict risk within the SZ genotype, raising further doubts over the need for intravenous AAT augmentation in this cohort.
Collapse
Affiliation(s)
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Kevin Molloy
- Irish Centre for Genetic Lung Disease and
- Department of Medicine and
| | - Craig Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Louise Clarke
- Department of Pulmonary Physiology, Beaumont Hospital, Dublin, Ireland; and
| | | | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Tomás P. Carroll
- Irish Centre for Genetic Lung Disease and
- Alpha-1 Foundation Ireland, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | |
Collapse
|
32
|
Cortes-Lopez R, Barjaktarevic I. Alpha-1 Antitrypsin Deficiency: a Rare Disease? Curr Allergy Asthma Rep 2020; 20:51. [PMID: 32572624 DOI: 10.1007/s11882-020-00942-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Commonly categorized as a rare disease, alpha-1 antitrypsin deficiency (AATD) is neither rare, when compared to many other genetic disorders, nor an actual disease, but rather a predisposition toward a wide variety of diseases. It is one of the most common genetic disorders which can lead to a spectrum of clinical manifestations, ranging from no symptoms to progressively debilitating systemic disease, most commonly affecting the lung and liver. It is therefore imperative for clinicians to recognize and be familiar with the spectrum of presentations, methods of diagnosis, and clinical management of AATD. It is also imperative for scientists to recognize the potential for progress in the management of this disorder. RECENT FINDINGS This review focuses on the current state of knowledge of AATD, including the wide range of presentations, diagnosis, and clinical management. In addition to the clinical implications of severe AATD, we discuss the relevance of heterozygous state with mild or moderate AATD in the development of both lung and liver disease. While our understanding of the multiple roles of alpha-1 antitrypsin (AAT) is on the rise, with appreciation of its immunomodulatory, anti-infective, and anti-inflammatory properties, this knowledge has yet to impact our ability to predict outcomes. We discuss nuances of augmentation therapy and review novel therapeutic approaches currently under investigation. With the expanding knowledge about the complexities of AAT function and its clinical relevance, and with the increasing ability to diagnose early and intervene on AATD, it should be our goal to change the perception of AATD as a correctable inherited disorder rather than a fatal disease.
Collapse
Affiliation(s)
- Roxana Cortes-Lopez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS, Los Angeles, CA, 90095, USA
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, CHS, Los Angeles, CA, 90095, USA.
| |
Collapse
|
33
|
Gupta N, Gaudreault N, Thériault S, Li PZ, Henry C, Kirby M, Maltais F, Tan W, Bourbeau J, Bossé Y. Granularity of SERPINA1 alleles by DNA sequencing in CanCOLD. Eur Respir J 2020; 56:13993003.00958-2020. [PMID: 32482783 DOI: 10.1183/13993003.00958-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/20/2020] [Indexed: 11/05/2022]
Abstract
DNA sequencing of the SERPINA1 gene to detect α1-antitrypsin (AAT) deficiency (AATD) may provide a better appreciation of the individual and cumulative impact of genetic variants on AAT serum levels and COPD phenotypes.AAT serum level and DNA sequencing of the coding regions of SERPINA1 were performed in 1359 participants of the Canadian Cohort Obstructive Lung Disease (CanCOLD) study. Clinical assessment for COPD included questionnaires, pulmonary function testing and computed tomography (CT) imaging. Phenotypes were tested for association with SERPINA1 genotypes collated into four groups: normal (MM), mild (MS and MI), intermediate (heterozygote MZ, non-S/non-Z/non-I, compound IS, and homozygote SS) and severe (ZZ and SZ) deficiency. Smoking strata and MZ-only analyses were also performed.34 genetic variants were identified including 25 missense mutations. Overall, 8.1% of alleles in this Canadian cohort were deficient and 15.5% of 1359 individuals were carriers of at least one deficient allele. Four AATD subjects were identified and had statistically lower diffusion capacity and greater CT-based emphysema. No COPD phenotypes were associated with mild and intermediate AATD in the overall cohort or stratified by smoking status. MZ heterozygotes had similar CT-based emphysema, but lowered diffusion capacity compared with normal and mild deficiency.In this Canadian population-based cohort, comprehensive genetic testing for AATD reveals a variety of deficient alleles affecting 15.5% of subjects. COPD phenotype was demonstrated in severe deficiency and MZ heterozygotes. This study shows the feasibility of implementing a diagnostic test for AATD using DNA sequencing in a large cohort.
Collapse
Affiliation(s)
- Nisha Gupta
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill University, Montréal, QC, Canada
| | - Nathalie Gaudreault
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Pei Zhi Li
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Cyndi Henry
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | | | - François Maltais
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada
| | - Wan Tan
- University of British Columbia, Vancouver, BC, Canada
| | - Jean Bourbeau
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill University, Montréal, QC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada.,Dept of Molecular Medicine, Laval University, Québec, QC, Canada
| | | |
Collapse
|
34
|
Affiliation(s)
- Andrew J Sandford
- Centre for Heart Lung InnovationUniversity of British Columbia and St. Paul's HospitalVancouver, British Columbia, Canada
| |
Collapse
|