1
|
Li R, Liang Q, Yang Q, Dai W, Xiao Y, Pan H, Zhang Z, Liu L, Li X. Hexahydrocurcumin from Zingiberis rhizoma attenuates lipopolysaccharide-induced acute pneumonia through JAK1/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155141. [PMID: 37837898 DOI: 10.1016/j.phymed.2023.155141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Pneumonia is one of the major causes of death after pathogens infection. Zingiberis rhizoma (GAN JIANG) is a herb that used in combination with other Chinese medicines to treat pathogen such as virus induced pneumonia. However, the affect of hexahydrocurcumin (HHC), a component from Zingiberis rhizoma, on pneumonia remains unknown. PURPOSE This study aims to explore the effects of HHC on lipopolysaccharide (LPS)-induced acute pneumonia, and to clarify the underlying mechanism. METHODS The pneumonia model of C57BL/6 mice was established by intratracheal injection of LPS to evaluate the therapeutic effect of HHC on lung injury and inflammation in vivo. RAW264.7 macrophages were utilized to illustrate the cellular mechanism of HHC in vitro. RESULTS HHC alleviated lung injury, ROS and inflammatory cytokine IL-6 production in pneumonia mice in vivo. Molecular docking results disclosed the binding of HHC to JAK1 protein. The study further showed that HHC suppressed the inflammatory cytokines such as IL-6, TNF-α, IL-1β gene expression, inhibited the phosphorylation of JAK1 but not JAK3, and the subsequent STAT3 phosphorylation in LPS-activated macrophages. HHC exhibited no effects on the protein levels of JAK1 and STAT3 in vitro. Consistently, HHC also attenuated the JAK1, STAT3 phosphorylation in pneumonia mice in vivo. CONCLUSION The results reveal that HHC attenuates pneumonia by targeted inhibition of JAK1/STAT3 signaling pathway. It indicates the novel role of HHC to treat pneumonia, and its potential applications for JAK inhibitor-treated diseases.
Collapse
Affiliation(s)
- Ruopeng Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qinghe Liang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenqi Dai
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hudan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Xiaojuan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Mobley JA, Molyvdas A, Kojima K, Ahmad I, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 spike S1 protein induces global proteomic changes in ATII-like rat L2 cells that are attenuated by hyaluronan. Am J Physiol Lung Cell Mol Physiol 2023; 324:L413-L432. [PMID: 36719087 PMCID: PMC10042596 DOI: 10.1152/ajplung.00282.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants, COVID-19 has led to 651,918,402 confirmed cases and 6,656,601 deaths worldwide (as of December 27, 2022; https://covid19.who.int/). Despite advances in our understanding of COVID-19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in the proteome of alveolar type II (ATII)-like rat L2 cells that lack ACE2 receptors. Systems biology analysis revealed that the S1-induced proteomics changes were associated with three significant network hubs: E2F1, CREB1/RelA, and ROCK2/RhoA. We also found that pretreatment of L2 cells with high molecular weight hyaluronan (HMW-HA) greatly attenuated the S1 effects on the proteome. Western blotting analysis and cell cycle measurements confirmed the S1 upregulation of E2F1 and ROCK2/RhoA in L2 cells and the protective effects of HMW-HA. Taken as a whole, our studies revealed profound and novel biological changes that contribute to our current understanding of both S1 and hyaluronan biology. These data show that the S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV-2-induced cell injury.
Collapse
Affiliation(s)
- James A Mobley
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Adam Molyvdas
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kyoko Kojima
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Israr Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jian-Liang Li
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Stavros Garantziotis
- National Institute of Environmental Health Sciences, Durham, North Carolina, United States
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
3
|
Sauer A, Seeliger B, Jandl K, Erfinanda L, Wilhelm J, Alexopoulos I, Baal N, Birnhuber A, David S, Welte T, Barreto G, Gaertner U, Kwapiszewska G, Seeger W, Kuebler WM, Schaefer L, Wygrecka M. Circulating hyaluronic acid signature in CAP and ARDS - the role of pneumolysin in hyaluronic acid shedding. Matrix Biol 2022; 114:67-83. [PMID: 36456058 DOI: 10.1016/j.matbio.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Shedding of hyaluronan (HA), the component of endothelial cell (EC) glycocalyx, has been associated with acute lung injury. HA degradation allows plasma proteins and fluid to penetrate across the vascular wall leading to lung edema formation and leukocyte recruitment. Here, we analyzed sHA levels and size in patients with community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), correlated them to disease severity, and evaluated the impact of pneumolysin (PLY), the Streptococcus pneumoniae (S.p.) exotoxin, on HA shedding from human pulmonary microvascular EC (HPMVEC). sHA levels were elevated in CAP and ARDS and correlated with the CRB65 severity score and with markers of inflammation (interleukin-6), EC activation (E-selectin), and basement membrane destruction (collagen IV). Furthermore, sHA levels were associated with an increase in 28-day mortality. Small and large sHA fragments were detected in plasma of most severe CAP or ARDS patients, and the presence of large sHA fragments was accompanied by the elevated levels of circulating collagen IV. In vitro, PLY induced sHA release from HPMVEC. This effect was dependent on reactive oxygen species (ROS) production and was not associated with endothelial barrier dysfunction. Conversely, HA shedding was impaired following HPMVEC infection with a S.p. PLY-deficient mutant. Our study identifies association between the severity of CAP and ARDS and the levels and size of sHA in plasma. It links sHA levels with, inflammation, EC activation status and basement membrane disassembly in ARDS and provides insights into the mechanism of HA shedding during infection.
Collapse
Affiliation(s)
- Agnes Sauer
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Katharina Jandl
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Lasti Erfinanda
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
| | - Jochen Wilhelm
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Ioannis Alexopoulos
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany; Multiscale Imaging Platform, Institute for Lung Health (ILH), Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Sascha David
- Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; Nancy, France; Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ulrich Gaertner
- Institute of Anatomy and Cell Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria; Otto Loewi Research Center, Division of Physiology, Medical University of Graz, Graz, Austria
| | - Werner Seeger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, Giessen, Germany
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center, Giessen, Germany.
| | | |
Collapse
|
4
|
Mobley JA, Molyvdas A, Kojima K, Jilling T, Li JL, Garantziotis S, Matalon S. The SARS-CoV-2 Spike S1 Protein Induces Global Proteomic Changes in ATII-Like Rat L2 Cells that are Attenuated by Hyaluronan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.31.506023. [PMID: 36093347 PMCID: PMC9460966 DOI: 10.1101/2022.08.31.506023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants that have been characterized to date, COVID-19 has led to 571,198,904 confirmed cases, and 6,387,863 deaths worldwide (as of July 15 th , 2022). Despite tremendous advances in our understanding of COVID19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics applications combined with systems biology analysis identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in an ATII-like Rat L2 cells that include three significant network hubs: E2F1, CREB1/ RelA, and ROCK2/ RhoA. Separately, we found that pre-treatment with High Molecular Weight Hyaluronan (HMW-HA), greatly attenuated the S1 effects. Immuno-targeted studies carried out on E2F1 and Rock2/ RhoA induction and kinase-mediated activation, in addition to cell cycle measurements, validated these observations. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with standard immuno-targeted and cell cycle measurements revealed profound and novel biological changes that contribute to our current understanding of both Spike S1 and Hyaluronan biology. This data shows that the Spike S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV2 induced cell injury.
Collapse
|
5
|
Li S, Li B, Lang K, Gong Y, Cheng X, Deng S, Shi Q, Zhao H. LncRNA MALAT1 Participates in Protection of High-Molecular-Weight Hyaluronan against Smoke-Induced Acute Lung Injury by Upregulation of SOCS-1. Molecules 2022; 27:molecules27134128. [PMID: 35807375 PMCID: PMC9268129 DOI: 10.3390/molecules27134128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Smoke-induced acute lung injury (ALI) is a grievous disease with high mortality. Despite advances in medical intervention, no drug has yet been approved by the Food and Drug Administration (FDA) for ALI. In this study, we reported that pretreatment with high-molecular-weight hyaluronan (1600 kDa, HA1600) alleviated pulmonary inflammation and injury in mice exposed to smoke and also upregulated long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), as well as suppressor of cytokine signaling-1 (SOCS-1), in the lung tissues. Next, we overexpressed MALAT1 in the lungs by intratracheal administration of adenovirus cloned with MALAT1 cDNA and found that the survival of mice after smoke exposure was improved. Moreover, pulmonary overexpression of MALAT1 ameliorated smoke-induced ALI in mice and elevated the level of SOCS-1 in the lungs. In conclusion, the results pointed out that HA1600 exerted a protective effect against smoke-induced ALI through increasing the MALAT1 level and the subsequent SOCS-1 expression. Our study provides a potential therapeutic approach to smoke-induced ALI and a novel insight into the mechanism of action of HA1600.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiwen Shi
- Correspondence: (Q.S.); (H.Z.); Tel.: +86-0571-88320494 (Q.S. & H.Z.)
| | - Hang Zhao
- Correspondence: (Q.S.); (H.Z.); Tel.: +86-0571-88320494 (Q.S. & H.Z.)
| |
Collapse
|
6
|
Tolg C, Messam BJA, McCarthy JB, Nelson AC, Turley EA. Hyaluronan Functions in Wound Repair That Are Captured to Fuel Breast Cancer Progression. Biomolecules 2021; 11:1551. [PMID: 34827550 PMCID: PMC8615562 DOI: 10.3390/biom11111551] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Signaling from an actively remodeling extracellular matrix (ECM) has emerged as a critical factor in regulating both the repair of tissue injuries and the progression of diseases such as metastatic cancer. Hyaluronan (HA) is a major component of the ECM that normally functions in tissue injury to sequentially promote then suppress inflammation and fibrosis, a duality in which is featured, and regulated in, wound repair. These essential response-to-injury functions of HA in the microenvironment are hijacked by tumor cells for invasion and avoidance of immune detection. In this review, we first discuss the numerous size-dependent functions of HA and emphasize the multifunctional nature of two of its receptors (CD44 and RHAMM) in regulating the signaling duality of HA in excisional wound healing. This is followed by a discussion of how HA metabolism is de-regulated in malignant progression and how targeting HA might be used to better manage breast cancer progression.
Collapse
Affiliation(s)
- Cornelia Tolg
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada;
| | - Britney Jodi-Ann Messam
- Department Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - James Benjamin McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Andrew Cook Nelson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Eva Ann Turley
- London Regional Cancer Program, Lawson Health Research Institute, Department Oncology, Biochemistry and Surgery, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
7
|
Zhou L, Hao Q, Sugita S, Naito Y, He H, Yeh CC, Lee JW. Role of CD44 in increasing the potency of mesenchymal stem cell extracellular vesicles by hyaluronic acid in severe pneumonia. Stem Cell Res Ther 2021; 12:293. [PMID: 34016170 PMCID: PMC8136222 DOI: 10.1186/s13287-021-02329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although promising, clinical translation of human mesenchymal stem or stromal cell-derived extracellular vesicles (MSC EV) for acute lung injury is potentially limited by significant production costs. The current study was performed to determine whether pretreatment of MSC EV with high molecular weight hyaluronic acid (HMW HA) would increase the therapeutic potency of MSC EV in severe bacterial pneumonia. Methods In vitro experiments were performed to determine the binding affinity of HMW HA to MSC EV and its uptake by human monocytes, and whether HMW HA primed MSC EV would increase bacterial phagocytosis by the monocytes. In addition, the role of CD44 receptor on MSC EV in the therapeutic effects of HMW HA primed MSC EV were investigated. In Pseudomonas aeruginosa (PA) pneumonia in mice, MSC EV primed with or without HMW HA were instilled intravenously 4 h after injury. After 24 h, the bronchoalveolar lavage fluid, blood, and lungs were analyzed for levels of bacteria, inflammation, MSC EV trafficking, and lung pathology. Results MSC EV bound preferentially to HMW HA at a molecular weight of 1.0 MDa compared with HA with a molecular weight of 40 KDa or 1.5 MDa. HMW HA primed MSC EV further increased MSC EV uptake and bacterial phagocytosis by monocytes compared to treatment with MSC EV alone. In PA pneumonia in mice, instillation of HMW HA primed MSC EV further reduced inflammation and decreased the bacterial load by enhancing the trafficking of MSC EV to the injured alveolus. CD44 siRNA pretreatment of MSC EV prior to incubation with HMW HA eliminated its trafficking to the alveolus and therapeutic effects. Conclusions HMW HA primed MSC EV significantly increased the potency of MSC EV in PA pneumonia in part by enhancing the trafficking of MSC EV to the sites of inflammation via the CD44 receptor on MSC EV which was associated with increased antimicrobial activity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02329-2.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Qi Hao
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Shinji Sugita
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Yoshifumi Naito
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Hongli He
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Che-Chung Yeh
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA.
| |
Collapse
|
8
|
Arabi YM, Mallampalli R, Englert JA, Bosch NA, Walkey AJ, Al-Dorzi HM. Update in Critical Care 2019. Am J Respir Crit Care Med 2020; 201:1050-1057. [PMID: 32176850 DOI: 10.1164/rccm.202002-0285up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yaseen M Arabi
- Intensive Care Department, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Rama Mallampalli
- Division of Pulmonary, Critical Care, and Sleep Medicine, Ohio State Wexner Medical, Center, Columbus, Ohio; and
| | - Joshua A Englert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Ohio State Wexner Medical, Center, Columbus, Ohio; and
| | - Nicholas A Bosch
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Allan J Walkey
- Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts
| | - Hasan M Al-Dorzi
- Intensive Care Department, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|