1
|
Kunz JB, Tagliaferri L. Sickle Cell Disease. Transfus Med Hemother 2024; 51:332-344. [PMID: 39371249 PMCID: PMC11452173 DOI: 10.1159/000540149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/25/2024] [Indexed: 10/08/2024] Open
Abstract
Background Sickle cell disease (SCD) is among the most frequent hereditary disorders globally and its prevalence in Europe is increasing due to migration movements. Summary The basic pathophysiological event of SCD is polymerization of deoxygenated sickle hemoglobin, resulting in hemolysis, vasoocclusion, and multiorgan damage. While the pathophysiological cascade offers numerous targets for treatment, currently only two disease-modifying drugs have been approved in Europe and transfusion remains a mainstay of both preventing and treating severe complications of SCD. Allogeneic stem cell transplantation and gene therapy offer a curative option but are restricted to few patients due to costs and limited availability of donors. Key Message Further efforts are needed to grant patients access to approved treatments, to explore drug combinations and to establish new treatment options.
Collapse
Affiliation(s)
- Joachim B Kunz
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Laura Tagliaferri
- Department of Pediatric Oncology, Hematology and Immunology, Hopp-Children's Cancer Center (KiTZ) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Ahmed B, Arigliani M, Gupta A. Respiratory management of acute chest syndrome in children with sickle cell disease. Eur Respir Rev 2024; 33:240005. [PMID: 39293855 PMCID: PMC11409057 DOI: 10.1183/16000617.0005-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 09/20/2024] Open
Abstract
Acute chest syndrome (ACS) is a leading cause of respiratory distress and hospitalisation in children with sickle cell disease (SCD). The aetiology is multifactorial and includes fat embolism, venous thromboembolism, alveolar hypoventilation and respiratory infections, with the latter being particularly common in children. These triggers contribute to a vicious cycle of erythrocyte sickling, adhesion to the endothelium, haemolysis, vaso-occlusion and ventilation-perfusion mismatch in the lungs, resulting in the clinical manifestations of ACS. The clinical presentation includes fever, chest pain, dyspnoea, cough, wheeze and hypoxia, accompanied by a new pulmonary infiltrate on chest radiography. Respiratory symptoms may overlap with those of acute asthma, which may be difficult to distinguish. Patients with ACS may deteriorate rapidly; thus prevention, early recognition and aggressive, multidisciplinary team management is essential. In this narrative review, we highlight the current evidence regarding the epidemiology, pathophysiology, treatment and preventative strategies for ACS, focusing on the aspects of major interest for the paediatric pulmonologist and multidisciplinary team who manage children with SCD.
Collapse
Affiliation(s)
- Bushra Ahmed
- UCL GOS Institute of Child Health, University College London, London, UK
| | - Michele Arigliani
- UCL GOS Institute of Child Health, University College London, London, UK
| | - Atul Gupta
- King's College Hospital, King's College London, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
3
|
Korman R, Hatabah D, Brown LA, Harris F, Wilkinson H, Rees CA, Bakshi N, Archer DR, Dampier C, Morris CR. Impact of arginine therapy on kyotorphin in children with sickle cell disease and vaso-occlusive pain. Blood Adv 2024; 8:3267-3271. [PMID: 38527291 PMCID: PMC11226964 DOI: 10.1182/bloodadvances.2023012209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/12/2024] [Accepted: 02/25/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
- Rawan Korman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Dunia Hatabah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Lou Ann Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Frank Harris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | | | - Chris A. Rees
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Nitya Bakshi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - David R. Archer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Carlton Dampier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| | - Claudia R. Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Children’s Healthcare of Atlanta, Atlanta, GA
| |
Collapse
|
4
|
Gonçalves E, Smaoui S, Brito M, Oliveira JM, Arez AP, Tavares L. Sickle Cell Disease: Current Drug Treatments and Functional Foods with Therapeutic Potential. Curr Issues Mol Biol 2024; 46:5845-5865. [PMID: 38921020 PMCID: PMC11202234 DOI: 10.3390/cimb46060349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Sickle cell anemia (SCA), the most common form of sickle cell disease (SCD), is a genetic blood disorder. Red blood cells break down prematurely, causing anemia and often blocking blood vessels, leading to chronic pain, organ damage, and increased infection risk. SCD arises from a single-nucleotide mutation in the β-globin gene, substituting glutamic acid with valine in the β-globin chain. This review examines treatments evaluated through randomized controlled trials for managing SCD, analyzes the potential of functional foods (dietary components with health benefits) as a complementary strategy, and explores the use of bioactive compounds as functional food ingredients. While randomized trials show promise for certain drugs, functional foods enriched with bioactive compounds also hold therapeutic potential. Further research is needed to confirm clinical efficacy, optimal dosages, and specific effects of these compounds on SCD, potentially offering a cost-effective and accessible approach to managing the disease.
Collapse
Affiliation(s)
- Elisângela Gonçalves
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Slim Smaoui
- Laboratory of Microbial and Enzymes Biotechnology and Biomolecules (LBMEB), Centre of Biotechnology of Sfax (CBS), University of Sfax-Tunisia, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Miguel Brito
- Health Research Centre of Angola (CISA), Caxito, Angola;
- H&TRC—Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-092 Lisbon, Portugal
| | - J. M. Oliveira
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Paula Arez
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Institute of Hygiene and Tropical Medicine, (IHMT), NOVA University of Lisbon (UNL) 1349-008 Lisbon, Portugal; (E.G.); (A.P.A.)
| | - Loleny Tavares
- School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, Estrada do Cercal, 449, 3810-193 Oliveira de Azeméis, Portugal;
- EMaRT Group—Emerging Materials, Research, Technology, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO Aveiro—Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Bhatt S, Argueta DA, Gupta K, Kundu S. Red Blood Cells as Therapeutic Target to Treat Sickle Cell Disease. Antioxid Redox Signal 2024; 40:1025-1049. [PMID: 37975291 DOI: 10.1089/ars.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Kalpna Gupta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa, India
| |
Collapse
|
6
|
Bolarinwa AB, Oduwole O, Okebe J, Ogbenna AA, Otokiti OE, Olatinwo AT. Antioxidant supplementation for sickle cell disease. Cochrane Database Syst Rev 2024; 5:CD013590. [PMID: 38775255 PMCID: PMC11110109 DOI: 10.1002/14651858.cd013590.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Sickle cell disease (SCD) refers to a group of genetic disorders characterized by the presence of an abnormal haemoglobin molecule called haemoglobin S (HbS). When subjected to oxidative stress from low oxygen concentrations, HbS molecules form rigid polymers, giving the red cell the typical sickle shape. Antioxidants have been shown to reduce oxidative stress and improve outcomes in other diseases associated with oxidative stress. Therefore, it is important to review and synthesize the available evidence on the effect of antioxidants on the clinical outcomes of people with SCD. OBJECTIVES To assess the effectiveness and safety of antioxidant supplementation for improving health outcomes in people with SCD. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 15 August 2023. SELECTION CRITERIA We included randomized and quasi-randomized controlled trials comparing antioxidant supplementation to placebo, other antioxidants, or different doses of antioxidants, in people with SCD. DATA COLLECTION AND ANALYSIS Two authors independently extracted data, assessed the risk of bias and certainty of the evidence, and reported according to Cochrane methodological procedures. MAIN RESULTS The review included 1609 participants in 26 studies, with 17 comparisons. We rated 13 studies as having a high risk of bias overall, and 13 studies as having an unclear risk of bias overall due to study limitations. We used GRADE to rate the certainty of evidence. Only eight studies reported on our important outcomes at six months. Vitamin C (1400 mg) plus vitamin E (800 mg) versus placebo Based on evidence from one study in 83 participants, vitamin C (1400 mg) plus vitamin E (800 mg) may not be better than placebo at reducing the frequency of crisis (risk ratio (RR) 1.18, 95% confidence interval (CI) 0.64 to 2.18), the severity of pain (RR 1.33, 95% CI 0.40 to 4.37), or adverse effects (AE), of which the most common were headache, nausea, fatigue, diarrhoea, and epigastric pain (RR 0.56, 95% CI 0.31 to 1.00). Vitamin C plus vitamin E may increase the risk of SCD-related complications (acute chest syndrome: RR 2.66, 95% CI 0.77 to 9.13; 1 study, 83 participants), and increase haemoglobin level (median (interquartile range) 90 (81 to 96) g/L versus 93.5 (84 to 105) g/L) (1 study, 83 participants) compared to placebo. However, the evidence for all the above effects is very uncertain. The study did not report on quality of life (QoL) of participants and their caregivers, nor on frequency of hospitalization. Zinc versus placebo Zinc may not be better than placebo at reducing the frequency of crisis at six months (rate ratio 0.62, 95% CI 0.17 to 2.29; 1 study, 36 participants; low-certainty evidence). We are uncertain whether zinc is better than placebo at improving sickle cell-related complications (complete healing of leg ulcers at six months: RR 2.00, 95% CI 0.60 to 6.72; 1 study, 34 participants; very low-certainty evidence). Zinc may be better than placebo at increasing haemoglobin level (g/dL) (MD 1.26, 95% CI 0.44 to 1.26; 1 study, 36 participants; low-certainty evidence). The study did not report on severity of pain, QoL, AE, and frequency of hospitalization. N-acetylcysteine versus placebo N-acetylcysteine (NAC) 1200 mg may not be better than placebo at reducing the frequency of crisis in SCD, reported as pain days (rate ratio 0.99 days, 95% CI 0.53 to 1.84; 1 study, 96 participants; low-certainty evidence). Low-certainty evidence from one study (96 participants) suggests NAC (1200 mg) may not be better than placebo at reducing the severity of pain (MD 0.17, 95% CI -0.53 to 0.87). Compared to placebo, NAC (1200 mg) may not be better at improving physical QoL (MD -1.80, 95% CI -5.01 to 1.41) and mental QoL (MD 2.00, 95% CI -1.45 to 5.45; very low-certainty evidence), reducing the risk of adverse effects (gastrointestinal complaints, pruritus, or rash) (RR 0.92, 95% CI 0.75 to 1.14; low-certainty evidence), reducing the frequency of hospitalizations (rate ratio 0.98, 95% CI 0.41 to 2.38; low-certainty evidence), and sickle cell-related complications (RR 5.00, 95% CI 0.25 to 101.48; very low-certainty evidence), or increasing haemoglobin level (MD -0.18 g/dL, 95% CI -0.40 to 0.04; low-certainty evidence). L-arginine versus placebo L-arginine may not be better than placebo at reducing the frequency of crisis (monthly pain) (RR 0.71, 95% CI 0.26 to 1.95; 1 study, 50 participants; low-certainty evidence). However, L-arginine may be better than placebo at reducing the severity of pain (MD -1.41, 95% CI -1.65 to -1.18; 2 studies, 125 participants; low-certainty evidence). One participant allocated to L-arginine developed hives during infusion of L-arginine, another experienced acute clinical deterioration, and a participant in the placebo group had clinically relevant increases in liver function enzymes. The evidence is very uncertain whether L-arginine is better at reducing the mean number of days in hospital compared to placebo (MD -0.85 days, 95% CI -1.87 to 0.17; 2 studies, 125 participants; very low-certainty evidence). Also, L-arginine may not be better than placebo at increasing haemoglobin level (MD 0.4 g/dL, 95% CI -0.50 to 1.3; 2 studies, 106 participants; low-certainty evidence). No study in this comparison reported on QoL and sickle cell-related complications. Omega-3 versus placebo Very low-certainty evidence shows no evidence of a difference in the risk of adverse effects of omega-3 compared to placebo (RR 1.05, 95% CI 0.74 to 1.48; 1 study, 67 participants). Very low-certainty evidence suggests that omega-3 may not be better than placebo at increasing haemoglobin level (MD 0.36 g/L, 95% CI -0.21 to 0.93; 1 study, 67 participants). The study did not report on frequency of crisis, severity of pain, QoL, frequency of hospitalization, and sickle cell-related complications. AUTHORS' CONCLUSIONS There was inconsistent evidence on all outcomes to draw conclusions on the beneficial and harmful effects of antioxidants. However, L-arginine may be better than placebo at reducing the severity of pain at six months, and zinc may be better than placebo at increasing haemoglobin level. We are uncertain whether other antioxidants are beneficial for SCD. Larger studies conducted on each comparison would reduce the current uncertainties.
Collapse
Affiliation(s)
- Abiola B Bolarinwa
- Department of Haematology & Blood Transfusion Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Olabisi Oduwole
- Department of Medical Laboratory Science, Achievers University, Owo, Nigeria
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ann A Ogbenna
- Department of Haematology & Blood Transfusion Medicine, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Oluwakemi E Otokiti
- Department of Haematology & Blood Transfusion Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| | - Adejoke T Olatinwo
- Department of Haematology & Blood Transfusion Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
| |
Collapse
|
7
|
Gladwin MT, Gordeuk VR, Desai PC, Minniti C, Novelli EM, Morris CR, Ataga KI, De Castro L, Curtis SA, El Rassi F, Ford HJ, Harrington T, Klings ES, Lanzkron S, Liles D, Little J, Nero A, Smith W, Taylor JG, Baptiste A, Hagar W, Kanter J, Kinzie A, Martin T, Rafique A, Telen MJ, Lalama CM, Kato GJ, Abebe KZ. Riociguat in patients with sickle cell disease and hypertension or proteinuria (STERIO-SCD): a randomised, double-blind, placebo controlled, phase 1-2 trial. Lancet Haematol 2024; 11:e345-e357. [PMID: 38554715 DOI: 10.1016/s2352-3026(24)00045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Although nitric oxide based therapeutics have been shown in preclinical models to reduce vaso-occlusive events and improve cardiovascular function, a clinical trial of a phosphodiesterase 5 inhibitor increased rates of admission to hospital for pain. We aimed to examine if riociguat, a direct stimulator of the nitric oxide receptor soluble guanylate cyclase, causes similar increases in vaso-occlusive events. METHODS This was a phase 1-2, randomised, double blind, placebo-controlled trial. Eligible patients were 18 years or older, had confirmed sickle cell disease documented by haemoglobin electrophoresis or HPLC fractionation (haemoglobin SS, SC, Sβ-thalassemia, SD, or SO-Arab), and stage 1 hypertension or proteinuria. Participants were randomly assigned 1:1 to receive either riociguat or matching placebo via a web-based system to maintain allocation concealment. Both treatments were administered orally starting at 1·0 mg three times a day up to 2·5 mg three times a day (highest tolerated dose) for 12 weeks. Dose escalation by 0·5 mg was considered every 2 weeks if systolic blood pressure was greater than 95 mm Hg and the participant had no signs of hypotension; otherwise, the last dose was maintained. The primary outcome was the proportion of participants who had at least one adjudicated treatment-emergent serious adverse event. The analysis was performed by the intention-to-treat. This trial is registered with ClinicalTrials.gov (NCT02633397) and was completed. FINDINGS Between April 11, 2017, and Dec 31, 2021, 165 participants were screened and consented to be enrolled into the study. Of these, 130 participants were randomly assigned to either riociguat (n=66) or placebo (n=64). The proportion of participants with at least one treatment-emergent serious adverse event was 22·7% (n=15) in the riociguat group and 31·3% (n=20) in the placebo group (difference -8·5% [90% CI -21·4 to 4·5]; p=0·19). A similar pattern emerged in other key safety outcomes, sickle cell related vaso-occlusive events (16·7 [n=11] vs 21·9% [n=14]; difference -5·2% [-17·2 to 6·5]; p=0·42), mean pain severity (3·18 vs 3·32; adjusted mean difference -0·14 [-0·70 to 0·42]; p=0·69), and pain interference (3·15 vs 3·12; 0·04 [-0·62 to 0·69]; p=0·93) at 12 weeks were similar between groups. Regarding the key clinical efficacy endpoints, participants taking riociguat had a blood pressure of -8·20 mm Hg (-10·48 to -5·91) compared with -1·24 (-3·58 to 1·10) in those taking placebo (-6·96 mm Hg (90% CI -10·22 to -3·69; p<0·001). INTERPRETATION Riociguat was safe and had a significant haemodynamic effect on systemic blood pressure. The results of this study provide measures of effect and variability that will inform power calculations for future trials. FUNDING Bayer Pharmaceuticals.
Collapse
Affiliation(s)
- Mark T Gladwin
- University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Victor R Gordeuk
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Payal C Desai
- Levine Cancer Institute, Atrium Health, Wake Forest School of Medicine, Charlotte, NC, USA
| | | | - Enrico M Novelli
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia R Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatric Emergency Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kenneth I Ataga
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Laura De Castro
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Fuad El Rassi
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA; Georgia Comprehensive Sickle Cell Clinic at Grady Health System, Atlanta, GA, USA
| | - Hubert James Ford
- Pulmonary Hypertension Program, Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Harrington
- Division of Hematology, Department of Medicine, University of Miami, Miami, FL, USA
| | - Elizabeth S Klings
- The Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Sophie Lanzkron
- Sickle Cell Center for Adults, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Darla Liles
- Brody School of Medicine East Carolina University, Greenville, NC, USA
| | - Jane Little
- University of North Carolina Comprehensive Sickle Cell Disease Program and Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alecia Nero
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wally Smith
- Division of General Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - James G Taylor
- Center for Sickle Cell Disease, Departments of Medicine (Hematology and Oncology) and Microbiology and Immunology, Howard University College of Medicine, Washington, DC, USA; Department of Food and Human Nutrition Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ayanna Baptiste
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA
| | - Ward Hagar
- Internal Medicine, Department of Pediatrics, University of California San Francisco, Benioff Children's Hospital Oakland, Oakland, CA, USA
| | - Julie Kanter
- Hematology Oncology, Department of Internal Medicine, University of Alabama Birmingham, Birmingham, AL, USA
| | - Amy Kinzie
- Sickle Cell Center of Southern Louisiana, Tulane University School of Medicine, New Orleans, LA, USA
| | - Temeia Martin
- Medical University of South Carolina, Charleston, SC, USA
| | - Amina Rafique
- Sickle Cell Center of Southern Louisiana, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke University School of Medicine, and Duke Comprehensive Sickle Cell Center, Durham, NC, USA
| | - Christina M Lalama
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Clinical Trials & Data Coordination, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregory J Kato
- Department of Medicine, Division of Hematology and Oncology, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kaleab Z Abebe
- Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Center for Clinical Trials & Data Coordination, Division of General Internal Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Hatabah D, De Marco T, McGlothlin DP, Malloy M, Reyes LZ, Korman R, Kato GJ, Morris CR. Low global arginine bioavailability: a common phenomenon in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 326:L514-L515. [PMID: 38587550 DOI: 10.1152/ajplung.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Dunia Hatabah
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Teresa De Marco
- Division of Cardiology, Department of Medicine, University of California, San Francisco, California, United States
| | - Dana P McGlothlin
- Kaiser Permanente San Francisco, San Francisco, California, United States
| | - Mary Malloy
- Department of Medicine and Pediatrics, University of California, San Francisco, California, United States
- Cardiovascular Research Institute, University of California, San Francisco, California, United States
| | - Loretta Z Reyes
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| | - Rawan Korman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Gregory J Kato
- Blood Science Consulting, Tilghman, Maryland, United States
| | - Claudia R Morris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Children's Healthcare of Atlanta, Atlanta, Georgia, United States
| |
Collapse
|
9
|
Gupta P, Kumar R. Nitric oxide: A potential etiological agent for vaso-occlusive crises in sickle cell disease. Nitric Oxide 2024; 144:40-46. [PMID: 38316197 DOI: 10.1016/j.niox.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Nitric oxide (NO), a vasodilator contributes to the vaso-occlusive crisis associated with the sickle cell disease (SCD). Vascular nitric oxide helps in vasodilation, controlled platelet aggregation, and preventing adhesion of sickled red blood cells to the endothelium. It decreases the expression of pro-inflammatory genes responsible for atherogenesis associated with SCD. Haemolysis and activated endothelium in SCD patients reduce the bioavailability of NO which promotes the severity of sickle cell disease mainly causes vaso-occlusive crises. Additionally, NO depletion can also contribute to the formation of thrombus, which can cause serious complications such as stroke, pulmonary embolism etc. Understanding the multifaceted role of NO provides valuable insights into its therapeutic potential for managing SCD and preventing associated complications. Various clinical trials and studies suggested the importance of artificially induced nitric oxide and its supplements in the reduction of severity. Further research on the mechanisms of NO depletion in SCD is needed to develop more effective treatment strategies and improve the management of this debilitating disease.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, India.
| |
Collapse
|
10
|
Duke T. Randomised controlled trials in child and adolescent health in 2023. Arch Dis Child 2023; 108:709-714. [PMID: 37474280 DOI: 10.1136/archdischild-2023-326046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
In the year July 2022 to June 2023 there were 501 publications from randomised controlled trials (RCTs) in child and adolescent health in developing countries identified through a standardised search strategy that has been going for 20 years. This year, trials addressed the widest range of diseases and conditions that affect the health, development and well-being of children, newborns, adolescents and mothers. RCTs reflected old, neglected and new problems, the changing epidemiology of child health, social and economic circumstances in many countries, local and global priorities of low-income and middle-income countries, environmental causes of poor child health, and inequities. The RCTs tested new and refined treatments, diagnostics, vaccines, holistic management, and prevention approaches, and explored many outcomes, including mortality, nutrition, psychosocial measures, and neurodevelopment. The studies were conducted in numerous hospitals and healthcare clinics, schools, and communities, including among some of the world's most disadvantaged populations in humanitarian and refugee emergencies. Some studies are of the highest quality, and others fall short. Many RCTs will influence guidelines, practice and policies for years to come.
Collapse
Affiliation(s)
- Trevor Duke
- Department of Paediatrics, University of Melbourne, and Intensive Care Unit, The Royal Children's Hospital, Melbourne, Victoria, Australia
- Child Health, School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| |
Collapse
|
11
|
Rees CA, Brousseau DC, Cohen DM, Villella A, Dampier C, Brown K, Campbell A, Chumpitazi CE, Airewele G, Chang T, Denton C, Ellison A, Thompson A, Ahmad F, Bakshi N, Coleman KD, Leibovich S, Leake D, Hatabah D, Wilkinson H, Robinson M, Casper TC, Vichinsky E, Morris CR. Sickle Cell Disease Treatment with Arginine Therapy (STArT): study protocol for a phase 3 randomized controlled trial. Trials 2023; 24:538. [PMID: 37587492 PMCID: PMC10433602 DOI: 10.1186/s13063-023-07538-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Despite substantial illness burden and healthcare utilization conferred by pain from vaso-occlusive episodes (VOE) in children with sickle cell disease (SCD), disease-modifying therapies to effectively treat SCD-VOE are lacking. The aim of the Sickle Cell Disease Treatment with Arginine Therapy (STArT) Trial is to provide definitive evidence regarding the efficacy of intravenous arginine as a treatment for acute SCD-VOE among children, adolescents, and young adults. METHODS STArT is a double-blind, placebo-controlled, randomized, phase 3, multicenter trial of intravenous arginine therapy in 360 children, adolescents, and young adults who present with SCD-VOE. The STArT Trial is being conducted at 10 sites in the USA through the Pediatric Emergency Care Applied Research Network (PECARN). Enrollment began in 2021 and will continue for 5 years. Within 12 h of receiving their first dose of intravenous opioids, enrolled participants are randomized 1:1 to receive either (1) a one-time loading dose of L-arginine (200 mg/kg with a maximum of 20 g) administered intravenously followed by a standard dose of 100 mg/kg (maximum 10 g) three times a day or (2) a one-time placebo loading dose of normal saline followed by normal saline three times per day at equivalent volumes and duration as the study drug. Participants, research staff, and investigators are blinded to the participant's randomization. All clinical care is provided in accordance with the institution-specific standard of care for SCD-VOE based on the 2014 National Heart, Lung, and Blood Institute guidelines. The primary outcome is time to SCD-VOE pain crisis resolution, defined as the time (in hours) from study drug delivery to the last dose of parenteral opioid delivery. Secondary outcomes include total parental opioid use and patient-reported outcomes. In addition, the trial will characterize alterations in the arginine metabolome and mitochondrial function in children with SCD-VOE. DISCUSSION Building on the foundation of established relationships between emergency medicine providers and hematologists in a multicenter research network to ensure adequate participant accrual, the STArT Trial will provide definitive information about the efficacy of intravenous arginine for the treatment of SCD-VOE for children. TRIAL REGISTRATION The STArT Trial was registered in ClinicalTrials.gov on April 9, 2021, and enrollment began on June 21, 2021 (NCT04839354).
Collapse
Affiliation(s)
- Chris A Rees
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - David C Brousseau
- Department of Pediatrics, Nemours Children's Health Delaware and the Sidney Kimmel Medical College, Thomas Jefferson University, Wilmington, DE, USA
| | | | | | - Carlton Dampier
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathleen Brown
- Children's National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Andrew Campbell
- Children's National Hospital, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Gladstone Airewele
- Texas Children's Hospital and Baylor College of Medicine, Houston, TX, USA
| | - Todd Chang
- Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Christopher Denton
- Children's Hospital Los Angeles and Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Angela Ellison
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Fahd Ahmad
- Washington University in St. Louis, St. Louis, MO, USA
| | - Nitya Bakshi
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keli D Coleman
- Medical College of Wisconsin and Children's Wisconsin, Milwaukee, WI, USA
| | | | | | - Dunia Hatabah
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA
| | | | | | | | - Elliott Vichinsky
- Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA, USA
- Department of Pediatrics, UCSF-Benioff Children's Hospital-Oakland, Oakland, CA, USA
| | - Claudia R Morris
- Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory University School of Medicine, 1760 Haygood Drive NE, Atlanta, GA, W45830322, USA.
- Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
12
|
Reyes LZ, Winterberg PD, George RP, Kelleman M, Harris F, Jo H, Brown LAS, Morris CR. Arginine Dysregulation and Myocardial Dysfunction in a Mouse Model and Children with Chronic Kidney Disease. Nutrients 2023; 15:2162. [PMID: 37432321 PMCID: PMC10181438 DOI: 10.3390/nu15092162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in chronic kidney disease (CKD). Arginine, the endogenous precursor for nitric oxide synthesis, is produced in the kidneys. Arginine bioavailability contributes to endothelial and myocardial dysfunction in CKD. Plasma from 129X1/SvJ mice with and without CKD (5/6th nephrectomy), and banked plasma from children with and without CKD were analyzed for amino acids involved in arginine metabolism, ADMA, and arginase activity. Echocardiographic measures of myocardial function were compared with plasma analytes. In a separate experiment, a non-specific arginase inhibitor was administered to mice with and without CKD. Plasma citrulline and glutamine concentrations correlated with multiple measures of myocardial dysfunction. Plasma arginase activity was significantly increased in CKD mice at 16 weeks vs. 8 weeks (p = 0.002) and ventricular strain improved after arginase inhibition in mice with CKD (p = 0.03). In children on dialysis, arginase activity was significantly increased vs. healthy controls (p = 0.04). Increasing ADMA correlated with increasing RWT in children with CKD (r = 0.54; p = 0.003). In a mouse model, and children, with CKD, arginine dysregulation correlates with myocardial dysfunction.
Collapse
Affiliation(s)
- Loretta Z. Reyes
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Pamela D. Winterberg
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Roshan Punnoose George
- Division of Pediatric Nephrology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Michael Kelleman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Frank Harris
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hanjoong Jo
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Lou Ann S. Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Claudia R. Morris
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
- Division of Pediatric Emergency Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Sadeghi A, Taherifard E, Dehdari Ebrahimi N, Rafiei E, Hadianfard F, Taherifard E. Effects of l-arginine supplementation in patients with sickle cell disease: A systematic review and meta-analysis of clinical trials. Health Sci Rep 2023; 6:e1167. [PMID: 37064309 PMCID: PMC10090802 DOI: 10.1002/hsr2.1167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
Background and Aims Previous studies have shown that supplementation of some amino acids such as l-arginine or its precursors could exert beneficial effects in patients with sickle cell disease (SCD). The objective of this study is to systematically review the literature to assess the effect of arginine administration on the clinical and paraclinical parameters of patients with SCD. Methods Four online databases of PubMed, Web of Sciences, Scopus, and Embase were selected for systematic search. Eligible studies were clinical trials that evaluated the effect of arginine usage in patients with SCD. Effects sizes were calculated using weighted mean difference (WMD) and Hedge's g and they were pooled using random-effects modeling with Hartung-Knapp adjustment. Additional analyses were also conducted. Results Twelve studies containing detail of 399 patients with SCD were found to be eligible. The data synthesis showed that l-arginine significantly increased the level of NO metabolites (Hedge's g: 1.50, 0.48-1.82, I 2: 88%) and hemoglobin F (WMD: 1.69%, 0.86-2.52, I 2: 0%) and significantly decreased systolic blood pressure (WMD: -8.46 mmHg, -15.58 to -1.33, I 2: 53%) and aspartate transaminase (Hedge's g: -0.49, -0.73 to -0.26, I 2: 0%). However, there were no significant effects on hemoglobin, reticulocyte, malondialdehyde and diastolic blood pressure, and alanine transaminase. Conclusion Our meta-analysis showed that l-arginine use for SCD could be beneficial, increase hemoglobin F and exert blood pressure-lowering and hepatoprotective properties. However, for a firm conclusion and widespread use of l-arginine for these patients, more studies are needed.
Collapse
Affiliation(s)
- Alireza Sadeghi
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Ehsan Taherifard
- Internal Medicine DepartmentShiraz University of Medical SciencesShirazIran
| | | | - Elham Rafiei
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Farshad Hadianfard
- Student Research CommitteeShiraz University of Medical SciencesShirazIran
| | - Erfan Taherifard
- Internal Medicine DepartmentShiraz University of Medical SciencesShirazIran
| |
Collapse
|
14
|
Mitochondria: Emerging Consequential in Sickle Cell Disease. J Clin Med 2023; 12:jcm12030765. [PMID: 36769414 PMCID: PMC9917941 DOI: 10.3390/jcm12030765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Advanced mitochondrial multi-omics indicate a multi-facet involvement of mitochondria in the physiology of the cell, changing the perception of mitochondria from being just the energy-generating organelles to organelles that highly influence cell structure, function, signaling, and cell fate. This sets mitochondrial dysfunction in the centerstage of numerous acquired and genetic diseases. Sickle cell disease is also being increasingly associated with mitochondrial anomalies and the pathophysiology of sickle cell disease finds mitochondria at crucial intersections in the pathological cascade. Altered mitophagy, increased ROS, and mitochondrial DNA all contribute to the condition and its severity. Such mitochondrial aberrations lead to consequent mitochondrial retention in red blood cells in sickle cell diseases, increased oxidation in the cellular environment, inflammation, worsened vaso-occlusive crisis, etc. There are increasing studies indicating mitochondrial significance in sickle cell disease, consequently providing an opportunity to target it for improving the outcomes of treatment. Identification of the impaired mitochondrial attributes in sickle cell disease and their modulation by therapeutic interventions can impart a better management of the disease. This review aims to describe the mitochondria in the perspective of sicke cell disease so as to provide the reader an overview of the emerging mitochondrial stance in sickle cell disease.
Collapse
|
15
|
Hopper RK, Gladwin MT. Revisiting Arginine Therapy for Sickle Cell Acute Vasoocclusive Painful Crisis. Am J Respir Crit Care Med 2022; 206:6-7. [PMID: 35549664 PMCID: PMC9954330 DOI: 10.1164/rccm.202204-0673ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Rachel K. Hopper
- Department of Pediatrics (Cardiology)Stanford University School of MedicinePalo Alto, California
| | - Mark T. Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine InstituteUniversity of Pittsburgh School of MedicinePittsburgh, Pennsylvania
| |
Collapse
|