1
|
Martin P, Pardo-Pastor C, Jenkins RG, Rosenblatt J. Imperfect wound healing sets the stage for chronic diseases. Science 2024; 386:eadp2974. [PMID: 39636982 DOI: 10.1126/science.adp2974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Although the age of the genome gave us much insight about how our organs fail with disease, it also suggested that diseases do not arise from mutations alone; rather, they develop as we age. In this Review, we examine how wound healing might act to ignite disease. Wound healing works well when we are younger, repairing damage from accidents, environmental assaults, and battles with pathogens. Yet, with age and accumulation of mutations and tissue damage, the repair process can devolve, leading to inflammation, fibrosis, and neoplastic signaling. We discuss healthy wound responses and how our bodies might misappropriate these pathways in disease. Although we focus predominantly on epithelial-based (lung and skin) diseases, similar pathways might operate in cardiac, muscle, and neuronal diseases.
Collapse
Affiliation(s)
- Paul Martin
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Carlos Pardo-Pastor
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - R Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart & Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London, UK
| | - Jody Rosenblatt
- The Randall and Cancer Centres King's College London, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
2
|
Moodley Y. Contemporary Concise Review 2023: Interstitial lung disease. Respirology 2024; 29:1095-1100. [PMID: 39438044 DOI: 10.1111/resp.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
In this review, we have discussed several important developments in 2023 in Interstitial Lung Disease (ILD). The association of pollution with genetic predispositions increased the risk of Idiopathic Pulmonary Fibrosis (IPF). An interesting comorbidity of malnutrition was not adequately recognized in ILD. Novel genes have been identified in IPF involving predominantly short telomere length and surfactant protein production leading to alveolar epithelial cell dysfunction. Genetics also predicted progression in IPF. Crosstalk between vascular endothelial cells and fibroblasts in IPF mediated by bone morphogenic protein signalling may be important for remodelling of the lung. A novel modality for monitoring of disease included the 4-min gait speed. New treatment modalities include inhaled pirfenidone, efzofitimod, for sarcoidosis, and earlier use of immunosuppression in connective tissue disease-ILD.
Collapse
Affiliation(s)
- Yuben Moodley
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Department of Respiratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
- Centre for Research Excellence in Pulmonary Fibrosis, Australia
| |
Collapse
|
3
|
Karampitsakos T, Tourki B, Herazo-Maya JD. The Dawn of Precision Medicine in Fibrotic Interstitial Lung Disease. Chest 2024:S0012-3692(24)05452-7. [PMID: 39521375 DOI: 10.1016/j.chest.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
TOPIC IMPORTANCE Interstitial lung diseases (ILDs) represent a broad group of heterogeneous parenchymal lung diseases. Some ILDs progress, causing architectural distortion and pulmonary fibrosis, and thus are called fibrotic ILDs. Recent studies have shown a beneficial effect of antifibrotic therapy in fibrotic ILDs other than idiopathic pulmonary fibrosis (IPF) that manifest progressive pulmonary fibrosis (PPF). However, it remains challenging to predict which patients with fibrotic ILDs will demonstrate PPF. Precision medicine approaches could identify patients at risk for progression and guide treatment in patients with IPF or PPF. REVIEW FINDINGS Multiple biomarkers able to highlight disease susceptibility risk, to provide an accurate diagnosis, and to prognosticate or assess treatment response have been identified. Advances in precision medicine led to the identification of endotypes that could discriminate patients with different fibrotic ILDs or patients with different disease courses. Importantly, recent studies have shown that particular compounds were efficacious only in particular endotypes. The aforementioned findings are promising. However, implementation in clinical practice remains an unmet need. SUMMARY Substantial progress has been observed in the context of precision medicine approaches in fibrotic ILDs in recent years. Nonetheless, infrastructure, financial, regulatory, and ethical challenges remain before precision medicine in clinical practice can be implemented. Overcoming such barriers and moving from a one-size-fits-all approach to patient-centered care could improve patient quality of life and survival substantially.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Bochra Tourki
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL.
| |
Collapse
|
4
|
Alonso-Gonzalez A, Jáspez D, Lorenzo-Salazar JM, Ma SF, Strickland E, Mychaleckyj J, Kim JS, Huang Y, Adegunsoye A, Oldham JM, Steward I, Molyneaux PL, Maher TM, Wain LV, Allen RJ, Jenkins RG, Kropski JA, Yaspan B, Blackwell TS, Zhang D, Garcia CK, Martinez FJ, Noth I, Flores C. Rare variants and survival of patients with idiopathic pulmonary fibrosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.12.24315151. [PMID: 39484282 PMCID: PMC11527076 DOI: 10.1101/2024.10.12.24315151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background The clinical course of idiopathic pulmonary fibrosis (IPF) is highly variable and unpredictable, with multiple genetic variants influencing IPF outcomes. Notably, rare pathogenic variants in telomere-related genes are associated with poorer clinical outcomes in these patients. Here we assessed whether rare qualifying variants (QVs) in monogenic adult-onset pulmonary fibrosis (PF) genes are associated with IPF survival. Using polygenic risk scores (PRS), we also evaluated the influence of common IPF risk variants in individuals carrying these QVs. Methods We identified QVs in telomere and non-telomere genes linked to monogenic PF forms using whole-genome sequences (WGS) from 888 Pulmonary Fibrosis Foundation Patient Registry (PFFPR) individuals. We also derived a PRS for IPF (PRS-IPF) from 19 previously published common sentinel IPF variants. Using regression models, we then examined the mutual relationships of QVs and PRS-IPF and their association with survival. Validation of results was sought in WGS from an independent IPF study (PROFILE, n=472), and results from the two cohorts were meta-analyzed. Results Carriers of QVs in monogenic adult-onset PF genes, representing nearly 1 out of 6 IPF patients, were associated with lower PRS-IPF (Odds Ratio [OR]: 1.79; 95% Confidence Interval [CI]: 1.15-2.81; p=0.010) and shorter survival (Hazard Ratio [HR]: 1.53; 95% CI: 1.12-2.10; p=7.3×10-3). Notably, carriers of pathogenic variants at telomere genes showed the strongest association with survival (HR: 1.76; 95% CI: 1.13-2.76; p=0.013). The meta-analysis of the results showed a consistent direction of effect across both cohorts. Conclusions We revealed the opposite effects of QVs and PRS-IPF on IPF survival. Thus, a distinct IPF molecular subtype might be defined by QVs in monogenic adult-onset PF genes. Assessing the carrier status for QVs and modelling PRS-IPF promises to further contribute to predicting disease progression among IPF patients.
Collapse
Affiliation(s)
- Aitana Alonso-Gonzalez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA USA
| | - Emma Strickland
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA USA
| | - Josyf Mychaleckyj
- Center for Public Health Genomics; University of Virginia, Charlottesville, VA, USA
| | - John S Kim
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA USA
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA USA
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL USA
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI USA
| | - Iain Steward
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, CA USA
| | - Louise V Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Richard J Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - R Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jonathan A Kropski
- Department of Cell and Developmental Biology, Vanderbilt University
- Department of Veterans Affairs Medical Center, Nashville, TN
- Division of Pulmonary and Critical Care Medicine, Vanderbilt University, Nashville, TN USA
| | | | | | - David Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Christine Kim Garcia
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Columbia Precision Medicine Initiative , Columbia University Irving Medical Center, New York, NY, USA
| | | | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA USA
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2024:S2531-0437(24)00092-8. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I.
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department; Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
McCall AS, Kropski JA. Biomarker-defined endotypes of pulmonary fibrosis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:657-659. [PMID: 39025090 PMCID: PMC11646342 DOI: 10.1016/s2213-2600(24)00169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Affiliation(s)
- A Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Jonathan A Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Hu X, Kim JS, Saferali A, Huang Y, Ma SF, Bingham GC, Bonham CA, Flores C, Castaldi P, Hersh CP, Cho MH, Noth I, Manichaikul A. Transcriptome-Wide Association Study of Idiopathic Pulmonary Fibrosis Survival Identifies PTPN9 and SNRPB2. Am J Respir Crit Care Med 2024; 210:683-686. [PMID: 38626378 PMCID: PMC11389572 DOI: 10.1164/rccm.202310-1741le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/15/2024] [Indexed: 04/18/2024] Open
Affiliation(s)
| | - John S. Kim
- Division of Pulmonary and Critical Care Medicine, and
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Yong Huang
- Division of Pulmonary and Critical Care Medicine, and
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, and
| | - Grace C. Bingham
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - IPF Survival GWAS Consortium
- Center for Public Health Genomics
- Division of Pulmonary and Critical Care Medicine, and
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; and
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, and
| | | |
Collapse
|
8
|
Adegunsoye A, Kropski JA, Behr J, Blackwell TS, Corte TJ, Cottin V, Glanville AR, Glassberg MK, Griese M, Hunninghake GM, Johannson KA, Keane MP, Kim JS, Kolb M, Maher TM, Oldham JM, Podolanczuk AJ, Rosas IO, Martinez FJ, Noth I, Schwartz DA. Genetics and Genomics of Pulmonary Fibrosis: Charting the Molecular Landscape and Shaping Precision Medicine. Am J Respir Crit Care Med 2024; 210:401-423. [PMID: 38573068 PMCID: PMC11351799 DOI: 10.1164/rccm.202401-0238so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024] Open
Abstract
Recent genetic and genomic advancements have elucidated the complex etiology of idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung diseases (ILDs), emphasizing the contribution of heritable factors. This state-of-the-art review synthesizes evidence on significant genetic contributors to pulmonary fibrosis (PF), including rare genetic variants and common SNPs. The MUC5B promoter variant is unusual, a common SNP that markedly elevates the risk of early and established PF. We address the utility of genetic variation in enhancing understanding of disease pathogenesis and clinical phenotypes, improving disease definitions, and informing prognosis and treatment response. Critical research gaps are highlighted, particularly the underrepresentation of non-European ancestries in PF genetic studies and the exploration of PF phenotypes beyond usual interstitial pneumonia/IPF. We discuss the role of telomere length, often critically short in PF, and its link to progression and mortality, underscoring the genetic complexity involving telomere biology genes (TERT, TERC) and others like SFTPC and MUC5B. In addition, we address the potential of gene-by-environment interactions to modulate disease manifestation, advocating for precision medicine in PF. Insights from gene expression profiling studies and multiomic analyses highlight the promise for understanding disease pathogenesis and offer new approaches to clinical care, therapeutic drug development, and biomarker discovery. Finally, we discuss the ethical, legal, and social implications of genomic research and therapies in PF, stressing the need for sound practices and informed clinical genetic discussions. Looking forward, we advocate for comprehensive genetic testing panels and polygenic risk scores to improve the management of PF and related ILDs across diverse populations.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Pulmonary/Critical Care, and
- Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Juergen Behr
- Department of Medicine V, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Comprehensive Pneumology Center Munich, member of the German Center for Lung Research (DZL), Munich, Germany
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Tamera J. Corte
- Centre of Research Excellence in Pulmonary Fibrosis, Camperdown, New South Wales, Australia
- Department of Respiratory and Sleep Medicine, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases (OrphaLung), Louis Pradel Hospital, Hospices Civils de Lyon, ERN-LUNG (European Reference Network on Rare Respiratory Diseases), Lyon, France
- Claude Bernard University Lyon, Lyon, France
| | - Allan R. Glanville
- Lung Transplant Unit, St. Vincent’s Hospital Sydney, Sydney, New South Wales, Australia
| | - Marilyn K. Glassberg
- Department of Medicine, Loyola Chicago Stritch School of Medicine, Chicago, Illinois
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children’s Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Gary M. Hunninghake
- Harvard Medical School, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Michael P. Keane
- Department of Respiratory Medicine, St. Vincent’s University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
| | - John S. Kim
- Department of Medicine, School of Medicine, and
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Toby M. Maher
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | | | | | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - David A. Schwartz
- Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado
| |
Collapse
|
9
|
Sayers I, John C, Chen J, Hall IP. Genetics of chronic respiratory disease. Nat Rev Genet 2024; 25:534-547. [PMID: 38448562 DOI: 10.1038/s41576-024-00695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/08/2024]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and interstitial lung diseases are frequently occurring disorders with a polygenic basis that account for a large global burden of morbidity and mortality. Recent large-scale genetic epidemiology studies have identified associations between genetic variation and individual respiratory diseases and linked specific genetic variants to quantitative traits related to lung function. These associations have improved our understanding of the genetic basis and mechanisms underlying common lung diseases. Moreover, examining the overlap between genetic associations of different respiratory conditions, along with evidence for gene-environment interactions, has yielded additional biological insights into affected molecular pathways. This genetic information could inform the assessment of respiratory disease risk and contribute to stratified treatment approaches.
Collapse
Affiliation(s)
- Ian Sayers
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Catherine John
- University of Leicester, Leicester, UK
- University Hospitals of Leicester, Leicester, UK
| | - Jing Chen
- University of Leicester, Leicester, UK
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, University of Nottingham, University Park, Nottingham, UK.
- Biodiscovery Institute, School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
10
|
Pugashetti JV, Kim JS, Combs MP, Ma SF, Adegunsoye A, Linderholm AL, Strek ME, Chen CH, Dilling DF, Whelan TPM, Flaherty KR, Martinez FJ, Noth I, Oldham JM. A multidimensional classifier to support lung transplant referral in patients with pulmonary fibrosis. J Heart Lung Transplant 2024; 43:1174-1182. [PMID: 38556070 PMCID: PMC11451110 DOI: 10.1016/j.healun.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Lung transplantation remains the sole curative option for patients with idiopathic pulmonary fibrosis (IPF), but donor organs remain scarce, and many eligible patients die before transplant. Tools to optimize the timing of transplant referrals are urgently needed. METHODS Least absolute shrinkage and selection operator was applied to clinical and proteomic data generated as part of a prospective cohort study of interstitial lung disease (ILD) to derive clinical, proteomic, and multidimensional logit models of near-term death or lung transplant within 18 months of blood draw. Model-fitted values were dichotomized at the point of maximal sensitivity and specificity, and decision curve analysis was used to select the best-performing classifier. We then applied this classifier to independent IPF and non-IPF ILD cohorts to determine test performance characteristics. Cohorts were restricted to patients aged ≤72 years with body mass index 18 to 32 to increase the likelihood of transplant eligibility. RESULTS IPF derivation, IPF validation, and non-IPF ILD validation cohorts consisted of 314, 105, and 295 patients, respectively. A multidimensional model comprising 2 clinical variables and 20 proteins outperformed stand-alone clinical and proteomic models. Following dichotomization, the multidimensional classifier predicted near-term outcome with 70% sensitivity and 92% specificity in the IPF validation cohort and 70% sensitivity and 80% specificity in the non-IPF ILD validation cohort. CONCLUSIONS A multidimensional classifier of near-term outcomes accurately discriminated this end-point with good test performance across independent IPF and non-IPF ILD cohorts. These findings support refinement and prospective validation of this classifier in transplant-eligible individuals.
Collapse
Affiliation(s)
- Janelle Vu Pugashetti
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - John S Kim
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Michael P Combs
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Shwu-Fan Ma
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Ayodeji Adegunsoye
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Angela L Linderholm
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Ching-Hsien Chen
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care Medicine, Loyola University Chicago, Stritch School of Medicine, Chicago, Illinois
| | - Timothy P M Whelan
- Division of Pulmonary and Critical Care, Medical University of South Carolina, Charleston, South Carolina; Pulmonary Fibrosis Foundation, Chicago, Illinois
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan; Pulmonary Fibrosis Foundation, Chicago, Illinois
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care, Weill Cornell Medical Center, New York, New York
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| | - Justin M Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan; Department of Epidemiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
11
|
Affiliation(s)
- Ian Hall
- School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| |
Collapse
|
12
|
Guillen-Guio B, Paynton ML, Allen RJ, Chin DP, Donoghue LJ, Stockwell A, Leavy OC, Hernandez-Beeftink T, Reynolds C, Cullinan P, Martinez F, Booth HL, Fahy WA, Hall IP, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Sayers I, Tobin MD, Whyte MK, Adegunsoye A, Kaminski N, Ma SF, Strek ME, Zhang Y, Fingerlin TE, Molina-Molina M, Neighbors M, Sheng XR, Oldham JM, Maher TM, Molyneaux PL, Flores C, Noth I, Schwartz DA, Yaspan BL, Jenkins RG, Wain LV, Hollox EJ. Association study of human leukocyte antigen variants and idiopathic pulmonary fibrosis. ERJ Open Res 2024; 10:00553-2023. [PMID: 38375425 PMCID: PMC10875457 DOI: 10.1183/23120541.00553-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 02/21/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.
Collapse
Affiliation(s)
- Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Joint first authors
| | - Megan L. Paynton
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- Joint first authors
| | - Richard J. Allen
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Daniel P.W. Chin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | | | | | - Olivia C. Leavy
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Carl Reynolds
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Paul Cullinan
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Helen L. Booth
- University College Hospital, University College London, London, UK
| | | | - Ian P. Hall
- School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, UK
| | - Simon P. Hart
- Hull York Medical School, University of Hull, Hull, UK
| | - Mike R. Hill
- MRC Population Health Unit, University of Oxford, Oxford, UK
| | - Nik Hirani
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Richard B. Hubbard
- School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham, UK
| | | | - Ann B. Millar
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Vidya Navaratnam
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, QLD, Australia
| | | | - Helen Parfrey
- Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Gauri Saini
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Ian Sayers
- Centre for Respiratory Research, NIHR Nottingham Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Martin D. Tobin
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Moira K.B. Whyte
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Shwu-Fan Ma
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary E. Strek
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tasha E. Fingerlin
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| | - Maria Molina-Molina
- Servei de Pneumologia, Laboratori de Pneumologia Experimental, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, Spain
- Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Toby M. Maher
- National Heart and Lung Institute, Imperial College London, London, UK
- Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, USA
| | - Philip L. Molyneaux
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy's and St Thomas’ NHS Foundation Trust, London, UK
| | - Carlos Flores
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnologico y de Energias Renovables, Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Imre Noth
- Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise V. Wain
- Department of Population Health Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
- Joint senior authors
| | - Edward J. Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- Joint senior authors
| |
Collapse
|
13
|
Sun D, Ye Q. Mendelian randomization analysis suggests no causal influence of gastroesophageal reflux disease on the susceptibility and prognosis of idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:517. [PMID: 38129814 PMCID: PMC10740234 DOI: 10.1186/s12890-023-02788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The relationship between gastroesophageal reflux disease (GERD) and the susceptibility as well as the prognosis of idiopathic pulmonary fibrosis (IPF) has been previously suggested, with the potential confounding factor of smoking not adequately addressed. In light of this, we conducted a Mendelian randomization (MR) study to investigate the causal effects of GERD on the susceptibility and prognosis of IPF while excluding smoking. METHODS We chose GERD as the exposure variable and employed genome-wide association data to examine its association with susceptibility, forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLco), and transplant-free survival (TFS) in patients with IPF as the outcome variables. MR analyses were performed using the inverse variance weighted (IVW) method, and sensitivity analyses were conducted using the MR-PRESSO outlier test, Cochran's Q test, MR-Egger intercept test, and leave-one-out sensitivity analysis. Additionally, to mitigate the potential effects of smoking on our MR estimates, we conducted a multivariable MR (MVMR) analysis by adjusting for smoking. RESULTS The univariable MR analysis demonstrated no causal effect of GERD on FVC (βIVW = 26.63, SE = 48.23, P = 0.581), DLco (βIVW = 0.12, SE = 0.12, P = 0.319), and TFS (HRIVW = 0.87, 95% CI = 0.56 to 1.35, P = 0.533) in patients with IPF. Furthermore, sensitivity analysis revealed no evidence of heterogeneity, horizontal pleiotropy, or outlier single nucleotide polymorphisms. The MVMR analysis showed no causal effect of GERD on susceptibility to IPF after adjusting for smoking (ORIVW = 1.30, 95% CI = 0.93 to 1.68, P = 0.071). These findings were consistent in the replication cohort. CONCLUSIONS The link between GERD and its potential impact on susceptibility to IPF may not be of a direct causal nature and could be influenced by factors such as smoking. Our findings did not reveal any evidence of a causal relationship between GERD and the FVC, DLco, and TFS of patients with IPF.
Collapse
Affiliation(s)
- Di Sun
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiao Ye
- Department of Occupational Medicine and Toxicology, Clinical Center for Interstitial Lung Diseases, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
14
|
Cai S, Allen RJ, Wain LV, Dudbridge F. Reassessing the association of MUC5B with survival in idiopathic pulmonary fibrosis. Ann Hum Genet 2023; 87:248-253. [PMID: 37537942 PMCID: PMC10952500 DOI: 10.1111/ahg.12522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
A variant in the mucin 5B gene (MUC5B) is strongly associated with the risk of idiopathic pulmonary fibrosis. However, the same variant is associated with increased survival time. Previous work suggested that this may be explained by index event bias, with the true effect being to decrease survival. Here, we reassessed this claim using more recent methods and datasets. We found that the statistical assumptions of the previous analysis did not hold, and instead, we applied recent methods of corrected weighted least squares, MR-RAPS and Slope-hunter to both the previous data and an updated consortium meta-analysis. However, these analyses did not yield robust evidence for increased or decreased survival. In simulations of a true effect of decreased survival, we did not observe any realistic scenario in which index event bias led to an observed effect of increased survival. We therefore regard as unsafe the claim that MUC5B has a true effect of decreased survival. Alternative explanations should be sought to explain the observed association with increased survival.
Collapse
Affiliation(s)
- Siyang Cai
- Department of Population Health SciencesUniversity of LeicesterLeicesterUK
| | - Richard J. Allen
- Department of Population Health SciencesUniversity of LeicesterLeicesterUK
| | - Louise V. Wain
- Department of Population Health SciencesUniversity of LeicesterLeicesterUK
| | - Frank Dudbridge
- Department of Population Health SciencesUniversity of LeicesterLeicesterUK
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Genetics contributes substantially to the susceptibility to idiopathic pulmonary fibrosis (IPF). Genetic studies in sporadic and familial disease have identified several IPF-associated variants, mainly in telomere-related and surfactant protein genes.Here, we review the most recent literature on genetics of IPF and discuss how it may contribute to disease pathogenesis. RECENT FINDINGS Recent studies implicate genes involved in telomere maintenance, host defence, cell growth, mammalian target of rapamycin signalling, cell-cell adhesion, regulation of TGF-β signalling and spindle assembly as biological processes involved in the pathogenesis of IPF. Both common and rare genetic variants contribute to the overall risk of IPF; however, while common variants (i.e. polymorphisms) account for most of the heritability of sporadic disease, rare variants (i.e. mutations), mainly in telomere-related genes, are the main contributors to the heritability of familial disease. Genetic factors are likely to also influence disease behaviour and prognosis. Finally, recent data suggest that IPF shares genetic associations - and probably some pathogenetic mechanisms - with other fibrotic lung diseases. SUMMARY Common and rare genetic variants are associated with susceptibility and prognosis of IPF. However, many of the reported variants fall in noncoding regions of the genome and their relevance to disease pathobiology remains to be elucidated.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Joyce S Lee
- University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
16
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
17
|
Spek CA, Duitman J. PCSK6: The Endogenous PAR-1 Agonist Driving Pulmonary Fibrosis? Am J Respir Crit Care Med 2023; 207:1643-1644. [PMID: 36927336 PMCID: PMC10273102 DOI: 10.1164/rccm.202303-0355le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- C. Arnold Spek
- Center for Experimental and Molecular Medicine
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, the Netherlands; and
| | - JanWillem Duitman
- Department of Pulmonary Medicine, and
- Department of Experimental Immunology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Infection & Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| |
Collapse
|
18
|
Oldham JM, Allen RJ, Lorenzo-Salazar JM, Flores C, Wain LV, Noth I. Reply to Spek and Duitman. Am J Respir Crit Care Med 2023; 207:1644-1645. [PMID: 36927480 PMCID: PMC10273109 DOI: 10.1164/rccm.202303-0402le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Affiliation(s)
- Justin M. Oldham
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Richard J. Allen
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jose M. Lorenzo-Salazar
- División Genómica, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, España, Spain
| | - Carlos Flores
- División Genómica, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, España, Spain
- Unidad de investigación, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, España, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, España, Spain
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom; and
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|