1
|
Alysandratos KD, Garcia-de-Alba C, Yao C, Pessina P, Huang J, Villacorta-Martin C, Hix OT, Minakin K, Burgess CL, Bawa P, Murthy A, Konda B, Beers MF, Stripp BR, Kim CF, Kotton DN. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023; 8:e158937. [PMID: 36454643 PMCID: PMC9870086 DOI: 10.1172/jci.insight.158937] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Changfu Yao
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Patrizia Pessina
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Olivia T. Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Claire L. Burgess
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bindu Konda
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Barry R. Stripp
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Mock JR, Garibaldi BT, Aggarwal NR, Jenkins J, Limjunyawong N, Singer BD, Chau E, Rabold R, Files DC, Sidhaye V, Mitzner W, Wagner EM, King LS, D’Alessio FR. Foxp3+ regulatory T cells promote lung epithelial proliferation. Mucosal Immunol 2014; 7:1440-51. [PMID: 24850425 PMCID: PMC4205163 DOI: 10.1038/mi.2014.33] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/06/2014] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality each year. There is a paucity of information regarding the mechanisms necessary for ARDS resolution. Foxp3(+) regulatory T cells (Foxp3(+) T(reg) cells) have been shown to be an important determinant of resolution in an experimental model of lung injury. We demonstrate that intratracheal delivery of endotoxin (lipopolysaccharide) elicits alveolar epithelial damage from which the epithelium undergoes proliferation and repair. Epithelial proliferation coincided with an increase in Foxp3(+) T(reg) cells in the lung during the course of resolution. To dissect the role that Foxp3(+) T(reg) cells exert on epithelial proliferation, we depleted Foxp3(+) T(reg) cells, which led to decreased alveolar epithelial proliferation and delayed lung injury recovery. Furthermore, antibody-mediated blockade of CD103, an integrin, which binds to epithelial expressed E-cadherin decreased Foxp3(+) T(reg) numbers and decreased rates of epithelial proliferation after injury. In a non-inflammatory model of regenerative alveologenesis, left lung pneumonectomy, we found that Foxp3(+) T(reg) cells enhanced epithelial proliferation. Moreover, Foxp3(+) T(reg) cells co-cultured with primary type II alveolar cells (AT2) directly increased AT2 cell proliferation in a CD103-dependent manner. These studies provide evidence of a new and integral role for Foxp3(+) T(reg) cells in repair of the lung epithelium.
Collapse
Affiliation(s)
- Jason R. Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian T. Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neil R. Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John Jenkins
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nathachit Limjunyawong
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard Rabold
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel C. Files
- Division of Pulmonary, Critical Care, Allergy, and Immunology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Venkataramana Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne Mitzner
- Department of Medicine and Department of Environmental Health Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M. Wagner
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Landon S. King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Lee JH, Kim J, Gludish D, Roach RR, Saunders AH, Barrios J, Woo AJ, Chen H, Conner DA, Fujiwara Y, Stripp BR, Kim CF. Surfactant protein-C chromatin-bound green fluorescence protein reporter mice reveal heterogeneity of surfactant protein C-expressing lung cells. Am J Respir Cell Mol Biol 2013; 48. [PMID: 23204392 PMCID: PMC3604082 DOI: 10.1165/rcmb.2011-0403oc] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein-C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP(+) cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP(+) population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP(+) cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations.
Collapse
Affiliation(s)
- Joo-Hyeon Lee
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Jonghwan Kim
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - David Gludish
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Rebecca R. Roach
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Arven H. Saunders
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Juliana Barrios
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| | - Andrew Jonghan Woo
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Huaiyong Chen
- Department of Medicine and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - David A. Conner
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Yuko Fujiwara
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Barry R. Stripp
- Department of Medicine and Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Carla F. Kim
- Stem Cell Program and
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts; and
| |
Collapse
|
4
|
Johnson C, Jahid S, Voelker DR, Fan H. Enhanced proliferation of primary rat type II pneumocytes by Jaagsiekte sheep retrovirus envelope protein. Virology 2011; 412:349-56. [PMID: 21316726 DOI: 10.1016/j.virol.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/24/2010] [Accepted: 01/14/2011] [Indexed: 01/05/2023]
Abstract
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of a contagious lung cancer in sheep. The envelope protein (Env) is the oncogene, as it can transform cell lines in culture and induce tumors in animals, although the mechanisms for transformation are not yet clear because a system to perform transformation assays in differentiated type II pneumocytes does not exist. In this study we report culture of primary rat type II pneumocytes in conditions that favor prolonged expression of markers for type II pneumocytes. Env-expressing cultures formed more colonies that were larger in size and were viable for longer periods of time compared to vector control samples. The cells that remained in culture longer were confirmed to be derived from type II pneumocytes because they expressed surfactant protein C, cytokeratin, displayed alkaline phosphatase activity and were positive for Nile red. This system will be useful to study JSRV Env in the targets of transformation.
Collapse
Affiliation(s)
- Chassidy Johnson
- Department of Molecular Biology and Biochemistry and Cancer Research Institute, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
5
|
Gonzalez RF, Allen L, Dobbs LG. Rat alveolar type I cells proliferate, express OCT-4, and exhibit phenotypic plasticity in vitro. Am J Physiol Lung Cell Mol Physiol 2009; 297:L1045-55. [PMID: 19717550 DOI: 10.1152/ajplung.90389.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Alveolar type I (TI) cells are large, squamous cells that cover 95-99% of the internal surface area of the lung. Although TI cells are believed to be terminally differentiated, incapable of either proliferation or phenotypic plasticity, TI cells in vitro both proliferate and express phenotypic markers of other differentiated cell types. Rat TI cells isolated in purities of >99% proliferate in culture, with a sixfold increase in cell number before the cells reach confluence; >50% of the cultured TI cells are Ki67+. At cell densities of 1-2 cells/well, approximately 50% of the cells had the capacity to form colonies. Under the same conditions, type II cells do not proliferate. Cultured TI cells express RTI40 and aquaporin 5, phenotypic markers of the TI cell phenotype. By immunofluorescence, Western blotting, and Q-PCR, TI cells express OCT-4A (POU5F1), a transcription factor associated with maintenance of the pluripotent state in stem cells. Based on the expression patterns of various marker proteins, TI cells are distinct from either of two recently described putative pulmonary multipotent cell populations, the bronchoalveolar stem cell or the OCT-4+ stem/progenitor cell. Although TI cells in adult rat lung tissue do not express either surfactant protein C (SP-C) or CC10, respective markers of the TII and Clara cell phenotypes, in culture TI cells can be induced to express both SP-C and CC10. Together, the findings that TI cells proliferate and exhibit phenotypic plasticity in vitro raise the possibility that TI cells may have similar properties in vivo.
Collapse
Affiliation(s)
- Robert F Gonzalez
- Cardiovascular Research Institute, University of California San Francisco, 94118, USA
| | | | | |
Collapse
|
6
|
Marsh LM, Cakarova L, Kwapiszewska G, von Wulffen W, Herold S, Seeger W, Lohmeyer J. Surface expression of CD74 by type II alveolar epithelial cells: a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair. Am J Physiol Lung Cell Mol Physiol 2009; 296:L442-52. [PMID: 19136583 DOI: 10.1152/ajplung.00525.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory cytokine involved in acute lung injury and other processes such as wound repair and tumor growth. MIF exerts pro-proliferative effects on a variety of cell types including monocytes/macrophages, B cells, and gastric epithelial cell lines through binding to the major histocompatibility complex type II-associated invariant chain, CD74. In acute lung injury, inflammatory damage of the alveolar epithelium leads to loss of type I alveolar epithelial cells (AEC-I), which are replaced by proliferation and differentiation of type II alveolar epithelial cells (AEC-II). In this study we have investigated the potential of MIF to contribute to alveolar repair by stimulating alveolar epithelial cell proliferation. We show that murine AEC-II, but not AEC-I, express high surface levels of CD74 in vivo. Culture of AEC-II in vitro resulted in decreased mRNA levels for CD74 and loss of surface CD74 expression, which correlated with a transition of AEC-II to an AEC-I-like phenotype. MIF stimulation of AEC-II induced rapid and prolonged phosphorylation of ERK1/2 and Akt, increased expression of cyclins D1 and E, as well as AEC-II proliferation. Corresponding MIF signaling and enhanced thymidine incorporation was observed after MIF stimulation of MLE-12 cells transfected to overexpress CD74. In contrast, MIF did not induce MAPK activation, gene transcription, or increased proliferation in differentiated AEC-I-like cells that lack CD74. These data suggest a previously unidentified role of MIF-CD74 interaction by inducing proliferation of AEC-II, which may contribute to alveolar repair.
Collapse
Affiliation(s)
- Leigh M Marsh
- Department of Internal Medicine, Giessen and Marburg University, University Giessen Lung Centre, Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Galambos C, Demello DE. Regulation of alveologenesis: clinical implications of impaired growth. Pathology 2008; 40:124-40. [PMID: 18203035 DOI: 10.1080/00313020701818981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
During its development that begins in intrauterine life, the lung is transformed from a simple epithelial lined sac that emerges from the foregut into a complex arrangement of blood vessels, airways, and alveoli that make up the mature lung structure. This remarkable transformation that continues for several years postnatally, is achieved by the influence of several genes, transcription factors, growth factors and hormones upon the cells and proteins of the lung bud. A seminal event in this process is the formation of the air-blood barrier within the alveolar wall, an evolutionary modification that permits independent air-breathing existence in mammals. Molecular biological techniques have enabled elucidation of the mechanistic pathways contributing to alveologenesis and have provided probable molecular bases for examples of impaired alveologenesis encountered by the paediatric pathologist.
Collapse
Affiliation(s)
- Csaba Galambos
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
8
|
Hansen T, Blickwede M, Borlak J. Primary rat alveolar epithelial cells for use in biotransformation and toxicity studies. Toxicol In Vitro 2005; 20:757-66. [PMID: 16326067 DOI: 10.1016/j.tiv.2005.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 10/07/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
The alveolar epithelium may function as a barrier for airborne xenobiotics, and in vitro models mimicking this barrier are useful for metabolism and toxicity studies. To gain insight into the metabolic competence of alveolar epithelial cells (AECs), we investigated transcript expression of 10 different cytochrome P450 monooxygenases as well as expression of surfactant proteins A to D. We also investigated gene expression of the transcription factors PCNA, TTF-1, HNF3beta , GATA-6, C/EBPalpha and C/EBPdelta which drive, at least in part, development and differentiation of alveolar epithelium. We further studied the metabolism of testosterone, a substrate for cytochrome P450 (CYP) monooxygenases, in cultures of AECs. Essentially, medium supplementation with 5% rat serum, as opposed to 10% FCS, promoted a high level of differentiation, as judged by the mRNA expression of CYP monooxygenases, e.g. 1A1, 1A2, 2B1 and 2J3, the expression of the surfactant proteins A, B, and C, the immunohistochemical staining for surfactant protein C, and staining for alkaline phosphatase activity. Further, AECs, when cultured in the presence of 5% rat serum, promoted metabolic competence, as evidenced by the fingerprinting of individual testosterone metabolites. We thus characterized AECs in culture and found these respiratory epithelial cells to express an array of differentiation markers and showed these cultures to be metabolically competent under optimized culture conditions.
Collapse
Affiliation(s)
- Tanja Hansen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Drug Research and Medical Biotechnology, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | | | | |
Collapse
|
9
|
Portnoy J, Curran-Everett D, Mason RJ. Keratinocyte Growth Factor Stimulates Alveolar Type II Cell Proliferation through the Extracellular Signal–Regulated Kinase and Phosphatidylinositol 3-OH Kinase Pathways. Am J Respir Cell Mol Biol 2004; 30:901-7. [PMID: 14742297 DOI: 10.1165/rcmb.2003-0406oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Keratinocyte growth factor (KGF or FGF-7) stimulates alveolar type II cell proliferation, but little is known about the signaling pathways involved. We investigated the role of the ERK (p42/44 mitogen activated protein [MAP] kinase) and phosphatidylinositol 3-OH kinase (PI3 kinase) pathways on alveolar type II cell proliferation and differentiation. Rat type II cells were cultured on tissue culture plastic and Matrigel in the presence or absence of KGF and specific chemical inhibitors PD98059, LY294002, and rapamycin at various concentrations. Proliferation was measured by thymidine incorporation and DNA quantitation, and differentiation was measured by expression of surfactant protein A and alkaline phosphatase. We demonstrate that KGF activates distal effectors of the PI3 kinase pathway, PKB/Akt, and p70S6 kinase, as well as p42/44 MAP kinase proteins. Inhibition of these pathways with PD98059, LY294002, or rapamycin inhibited type II cell proliferation but had no significant effect on differentiation. KGF did not activate the c-Jun kinase or p38 MAP kinase pathways. We conclude that the p42/44 MAP kinase and PI3 kinase pathways are important in regulating alveolar type II cell proliferation in response to KGF.
Collapse
Affiliation(s)
- Joshua Portnoy
- Department of Medicine and Division of Biostatistics, National Jewish Hospital, 1400 Jackson St., Denver, CO 80206, USA.
| | | | | |
Collapse
|
10
|
Abstract
Classically, the stem/progenitor cells of the pulmonary epithelium are considered to be the basal and mucous cells of the proximal airways, Clara cells in the bronchioles and type II pneumocytes in the alveoli. Recent data suggest that there is a variant of Clara cells, lying in pulmonary neuroendocrine bodies, that meets several stem cell criteria and that type II pneumocytes exist in at least two populations, one of which is more resistant to injury. However, a complete revision of our understanding of pulmonary stem cell biology is underway as a result of the discovery of pulmonary epithelium derived from blood-borne cells. In addition, the existence in the lung of a 'universal' pluripotent cell has long been speculated upon and now some initial evidence has emerged with the identification of a spore-like cell that can differentiate in vitro to bronchiolar tissue.
Collapse
Affiliation(s)
- A E Bishop
- Tissue Engineering and Regenerative Medicine Centre, Faculty of Medicine Imperial College, London, UK.
| |
Collapse
|
11
|
Charbeneau RP, Christensen PJ, Chrisman CJ, Paine R, Toews GB, Peters-Golden M, Moore BB. Impaired synthesis of prostaglandin E2 by lung fibroblasts and alveolar epithelial cells from GM-CSF-/- mice: implications for fibroproliferation. Am J Physiol Lung Cell Mol Physiol 2003; 284:L1103-11. [PMID: 12598228 DOI: 10.1152/ajplung.00350.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is a potent suppressor of fibroblast activity. We previously reported that bleomycin-induced pulmonary fibrosis was exaggerated in granulocyte-macrophage colony-stimulating factor knockout (GM-CSF(-/-)) mice compared with wild-type (GM-CSF(+/+)) mice and that increased fibrosis was associated with decreased PGE(2) levels in lung homogenates and alveolar macrophage cultures. Pulmonary fibroblasts and alveolar epithelial cells (AECs) represent additional cellular sources of PGE(2) within the lung. Therefore, we examined fibroblasts and AECs from GM-CSF(-/-) mice, and we found that they elaborated significantly less PGE(2) than did cells from GM-CSF(+/+) mice. This defect was associated with reduced expression of cyclooxygenase-1 and -2 (COX-1 and COX-2), key enzymes in the biosynthesis of PGE(2). Additionally, proliferation of GM-CSF(-/-) fibroblasts was greater than that of GM-CSF(+/+) fibroblasts, and GM-CSF(-/-) AECs were impaired in their ability to inhibit fibroblast proliferation in coculture. The addition of GM-CSF to fibroblasts from GM-CSF(-/-) mice increased PGE(2) production and decreased proliferation. Similarly, AECs isolated from GM-CSF(-/-) mice with transgenic expression of GM-CSF under the surfactant protein C promoter (SpC-GM mice) produced more PGE(2) than did AEC from control mice. Finally, SpC-GM mice were protected from fluorescein isothiocyanate-induced pulmonary fibrosis. In conclusion, these data demonstrate that GM-CSF regulates PGE(2) production in pulmonary fibroblasts and AECs and thus plays an important role in limiting fibroproliferation.
Collapse
Affiliation(s)
- Ryan P Charbeneau
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor 48109, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Radisavljevic ZM, González-Flecha B, Manasija-Radisavljevic Z. Signaling through Cdk2, importin-alpha and NuMA is required for H2O2-induced mitosis in primary type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:163-70. [PMID: 12729926 DOI: 10.1016/s0167-4889(03)00044-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proliferation of alveolar type II pneumocytes, the multipotent stem cells of the alveoli, has been implicated in the development of lung adenocarcinoma. Hydrogen peroxide (H(2)O(2)), a potent promoter of signaling cascades, can mediate the transmission of many intracellular signals including those involved in cell proliferation. In this study using rat primary type II pneumocytes, we demonstrate that H(2)O(2) significantly increases mitosis through a pathway that includes cyclin-dependent kinase 2 (Cdk2); importin-alpha, a nuclear trafficking regulator; and nuclear mitotic apparatus protein (NuMA), an essential component in mitotic spindle pole formation. Upon H(2)O(2) treatment, Cdk2 is phosphorylated at position thr-160 leading to increases in importin-alpha and NuMA protein levels and resulting in a significant increase of G(2)/M phase in a roscovatine-dependent manner. Type II pneumocytes transfected with NuMA cDNA also show significant increases in G(2)/M phase, NuMA, Cdk2 thr-160 and importin-alpha expression. These effects were prevented by catalase. These results demonstrate that H(2)O(2) orchestrates a complex signaling network regulating S phase entry, nuclear trafficking and spindle pole formation through activation of Cdk2, importin-alpha, and NuMA. This pathway is essential for H(2)O(2)-induced mitosis in type II pneumocytes.
Collapse
Affiliation(s)
- Ziv Manasija Radisavljevic
- Department of Environmental Health, Physiology Program, Harvard University, School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | | | |
Collapse
|
13
|
Moore BB, Peters-Golden M, Christensen PJ, Lama V, Kuziel WA, Paine R, Toews GB. Alveolar epithelial cell inhibition of fibroblast proliferation is regulated by MCP-1/CCR2 and mediated by PGE2. Am J Physiol Lung Cell Mol Physiol 2003; 284:L342-9. [PMID: 12388376 DOI: 10.1152/ajplung.00168.2002] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CC chemokine receptor 2 (CCR2) -/- mice are protected from experimental pulmonary fibrosis, a disease increasingly recognized as being mediated by dysfunctional interactions between epithelial cells and fibroblasts. We have sought to investigate the interactions between alveolar epithelial cells (AECs) and fibroblasts in these fibrosis-resistant (CCR2 -/-) and fibrosis-sensitive (CCR2 +/+) mice. AECs from CCR2 -/- mice suppress fibroblast proliferation more than AECs from CCR2 +/+ mice (77 vs. 43%). Exogenous administration of the CCR2 ligand monocyte chemoattractant protein-1 (MCP-1) to the fibroblast-AEC cocultures reverses the suppression mediated by CCR2 +/+ AECs but has no effect with CCR2 -/- AECs. MCP-1 regulates AEC function but not fibroblast function. AEC inhibition of fibroblast proliferation was mediated by a soluble, aspirin-sensitive factor. Accordingly, AECs from CCR2 -/- mice produce greater quantities of PGE(2) than do AECs from CCR2 +/+ mice, and MCP-1 inhibits AEC-derived PGE(2) synthesis. Diminished PGE(2) production by AECs results in enhanced fibroproliferation. Thus an important profibrotic mechanism of MCP-1/CCR2 interactions is to limit PGE(2) production in AECs after injury, thus promoting fibrogenesis.
Collapse
Affiliation(s)
- Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Lama V, Moore BB, Christensen P, Toews GB, Peters-Golden M. Prostaglandin E2 synthesis and suppression of fibroblast proliferation by alveolar epithelial cells is cyclooxygenase-2-dependent. Am J Respir Cell Mol Biol 2002; 27:752-8. [PMID: 12444036 DOI: 10.1165/rcmb.4857] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar epithelial cells (AECs) may influence neighboring fibroblasts by the elaboration of prostaglandin E(2) (PGE(2)). This prostanoid can be synthesized via "constitutive" cyclooxygenase (COX)-1 and "inducible" COX-2 enzyme isoforms. We compared AECs isolated from wild-type (WT), COX-1 knockout (KO), and COX-2 KO mice to determine the contribution of COX isoforms to AEC PGE(2) synthesis and capacity for suppression of fibroblast proliferation in co-cultures. WT AECs constitutively expressed both COX-1 and COX-2 isoforms by immunoblot analysis. COX-1 KO cells and WT cells comparably augmented PGE(2) synthesis following incubation with lipopolysaccharide or interleukin-1, whereas COX-2 KO cells were unable to do so. Surprisingly, however, constitutive generation of PGE(2) was also dramatically reduced only in COX-2 KO cells. When co-cultured with WT murine lung fibroblasts, AECs from WT and COX-1 KO animals suppressed serum-induced fibroblast proliferation, whereas COX-2-deficient AECs caused a modest enhancement in fibroblast proliferation. These results indicate that PGE(2) synthetic capacity in AECs is predominantly COX-2-dependent under both basal and stimulated conditions. They also demonstrate conclusively that AECs can modulate fibroblast function by the elaboration of suppressive prostanoids. These alterations in AEC phenotype likely contribute to the propensity for pulmonary fibrosis observed in COX-2-deficient mice.
Collapse
Affiliation(s)
- Vibha Lama
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor 48109-0642, USA
| | | | | | | | | |
Collapse
|
15
|
Isakson BE, Seedorf GJ, Lubman RL, Boitano S. Heterocellular cultures of pulmonary alveolar epithelial cells grown on laminin-5 supplemented matrix. In Vitro Cell Dev Biol Anim 2002; 38:443-9. [PMID: 12605538 DOI: 10.1290/1071-2690(2002)038<0443:hcopae>2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pulmonary alveolar epithelium consists of alveolar type I (AT1) and alveolar type II (AT2) cells. Interactions between these two cell types are necessary for alveolar homeostasis and remodeling. These interactions have been difficult to study in vitro because current cell culture models of the alveolar epithelium do not provide a heterocellular population of AT1 and AT2 cells for an extended period of time in culture. In this study, a new method for obtaining heterocellular cultures of AT1- and AT2-like alveolar epithelial cells maintained for 7 d on a rat tail collagen-fibronectin matrix supplemented with laminin-5 is described. These cultures contain cells that appear by their morphology to be either AT1 cells (larger flattened cells without lamellar bodies) or AT2 cells (smaller cuboidal cells with lamellar bodies). AT1-like cells stain for the type I cell marker aquaporin-5, whereas AT2-like cells stain for the type II cell markers surfactant protein C or prosurfactant protein C. AT1/AT2 cell ratios, cell morphology, and cell phenotype-specific staining patterns seen in 7-d-old heterocellular cultures are similar to those seen in alveoli in situ. This culture system, in which a mixed population of phenotypically distinct alveolar epithelial cells are maintained, may facilitate in vitro studies that are more representative of AT1-AT2 cell interactions that occur in vivo.
Collapse
Affiliation(s)
- Brant E Isakson
- Department of Zoology and Physiology, University of Wyoming, 16th and Gibbon Streets, Laramie 82071-3166, USA
| | | | | | | |
Collapse
|
16
|
Mason RJ, Lewis MC, Edeen KE, McCormick-Shannon K, Nielsen LD, Shannon JM. Maintenance of surfactant protein A and D secretion by rat alveolar type II cells in vitro. Am J Physiol Lung Cell Mol Physiol 2002; 282:L249-58. [PMID: 11792629 DOI: 10.1152/ajplung.00027.2001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretion of surfactant proteins A and D (SP-A and SP-D) has been difficult to study in vitro because a culture system for maintaining surfactant secretion has been difficult to establish. We evaluated several growth factors, corticosteroids, rat serum, and a fibroblast feeder layer for the ability to produce and maintain a polarized epithelium of type II cells that secretes SP-A and SP-D into the apical medium. Type II cells were plated on a filter insert coated with an extracellular matrix and were cultured at an air-liquid interface. Keratinocyte growth factor (KGF) stimulated type II cell proliferation and secretion of SP-A and SP-D more than fibroblast growth factor-10 (FGF-10), hepatocyte growth factor (HGF), or heparin-binding epidermal-like growth factor (HB-EGF). Cells cultured in the presence of KGF and rat serum with or without fibroblasts had high surfactant protein mRNA levels and exhibited a high level of SP-A and SP-D secretion. Dexamethasone inhibited type II cell proliferation but increased expression of SP-B. In the presence of KGF, rat serum, and dexamethasone, the mRNAs for the surfactant proteins were maintained at high levels. Secretion of SP-A and SP-D was found to be independent of phospholipid secretion.
Collapse
Affiliation(s)
- Robert J Mason
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Warshamana GS, Corti M, Brody AR. TNF-alpha, PDGF, and TGF-beta(1) expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: tnf-alpha induces TGF-beta(1). Exp Mol Pathol 2001; 71:13-33. [PMID: 11502094 DOI: 10.1006/exmp.2001.2376] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bronchiolar-alveolar epithelium (BAE) is a primary target site for inhaled agents that cause lung injury. These cells, consequently, release a broad range of mediators that influence other cell populations, including interstitial lung fibroblasts that are central to the development of interstitial pulmonary fibrosis (IPF). A number of peptide growth factors (GF) have been postulated to be essential in the pathogenesis of IPF. We demonstrate here that primary populations of mouse BAE and mesenchymal cells, maintained in culture, synthesize four potent GF. These are platelet-derived growth factor isoforms (PDGF) A and B, transforming growth factor beta-1 (TGF-beta(1)), and tumor necrosis factor alpha (TNF-alpha). A mouse lung epithelial cell isolation technique pioneered in this laboratory has been used to purify the BAE cells to greater than 85% (80 +/- 5.6% alveolar type II and 9 +/- 2.3% Clara cells) in culture. Northern analysis, RNase protection assay, and immunocytochemistry (ICC) were used to establish mRNA and protein expression of the GF over time in the cultured BAE and mesenchymal cells. We show for the first time in these primary mouse lung cells that treatment of both cell types with TNF-alpha upregulates expression of TGF-beta(1). The four GF are produced by both epithelial and mesenchymal cells but with different temporal patterns. TGF-beta(1) is expressed constitutively by BAE and mesenchymal cells, whereas TNF-alpha expression wanes over time. The findings by ICC were consistent with levels of mRNA expression in both cell types. As genetically defined and altered mouse strains are becoming increasingly valuable for modeling lung disease, studying the gene expression patterns of target cells from these animals in vitro would be useful in sorting out the complex responses by individual cell types of the lung and the interactions among the multitude of mediators that are released during lung cell injury.
Collapse
Affiliation(s)
- G S Warshamana
- Lung Biology Program, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
18
|
Asnicar MA, Henegariu O, Shaw MM, Goheen MP, Bartlett MS, Smith JW, Lee CH. Alteration in expression of the rat mitochondrial ATPase 6 gene during Pneumocystis carinii infection. BMC Microbiol 2001; 1:8. [PMID: 11446902 PMCID: PMC34520 DOI: 10.1186/1471-2180-1-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2001] [Accepted: 06/29/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumocystis carinii causes pneumonia in immunocompromised patients with a high morbidity and mortality rate, but the interaction between this organism and the host cell is not well understood. The purpose of this research was to study the response of host cells to P. carinii infection on a molecular level. RESULTS The technique of mRNA differential display was used to detect genes whose expression may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B) to the same cells by two-color fluorescent in situ hybridization. CONCLUSIONS The ATPase 6 gene is over expressed during P. carinii infection, and type II pneumocytes and Clara cells are the cell types responsible for this over-expression.
Collapse
Affiliation(s)
- Mark A Asnicar
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Octavian Henegariu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Margaret M Shaw
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P Goheen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marilyn S Bartlett
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - James W Smith
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chao-Hung Lee
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
19
|
Morimoto K, Amano H, Sonoda F, Baba M, Senba M, Yoshimine H, Yamamoto H, Ii T, Oishi K, Nagatake T. Alveolar Macrophages that Phagocytose Apoptotic Neutrophils Produce Hepatocyte Growth Factor during Bacterial Pneumonia in Mice. Am J Respir Cell Mol Biol 2001; 24:608-15. [PMID: 11350831 DOI: 10.1165/ajrcmb.24.5.4292] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte growth factor (HGF) is postulated to play an important role in the repair of pulmonary epithelium in acute lung injury. To evaluate the role of HGF in bacterial pneumonia, the kinetics of HGF production and the cellular sources of HGF have been examined in the lungs of mice that had been intratracheally challenged with Pseudomonas aeruginosa. Neutrophil accumulation in the airway occurred immediately, reached a peak at 36 h, and then progressively declined by 14 d after infection. We found a biphasic pattern of HGF messenger RNA expression and protein synthesis in the lung after bacterial infection. The first peak for HGF production was found at 6 h after infection, and the primary source of HGF was shown to be bronchial epithelial cells. Interestingly, the second peak for HGF production, which was found around 48 to 72 h after infection, was closely associated with the increase in the percentage of alveolar macrophages (AMs) that became positive for myeloperoxidase, indicating phagocytosis of apoptotic neutrophils. The cellular source of the second peak was found to be AMs. Further, murine AMs which phagocytosed apoptotic neutrophils induced higher levels of HGF production in vitro. These results strongly indicate a novel mechanism of HGF production by AMs, which are phagocytosing apoptotic neutrophils, and the pivotal role of AMs in the healing and repair of damaged pulmonary epithelium through the production of HGF.
Collapse
Affiliation(s)
- K Morimoto
- Department of Respiratory Medicine, Nijigaoka Hospital, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schaller-Bals S, Bates SR, Notarfrancesco K, Tao JQ, Fisher AB, Shuman H. Surface-expressed lamellar body membrane is recycled to lamellar bodies. Am J Physiol Lung Cell Mol Physiol 2000; 279:L631-40. [PMID: 11000122 DOI: 10.1152/ajplung.2000.279.4.l631] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoclonal antibody (MAb) 3C9, an antibody generated to the lamellar body of rat lung type II pneumocytes, specifically labels the luminal face of the lamellar body membrane. To follow the retrieval of lamellar body membrane from the cell surface in these cells, MAb 3C9 was instilled into rat lungs. In vivo, it was endocytosed by type II cells but not by other lung cells. In type II cells that were isolated from rat lungs by elastase digestion and cultured on plastic for 24 h, MAb 3C9 first bound to the cell surface, then was found in endosomes, vesicular structures, and multivesicular bodies and, finally, clustered on the luminal face of lamellar body membranes. The amount internalized reached a plateau after 1.5 h of incubation and was stimulated with the secretagogue ATP. In double-labeling experiments, internalized MAb 3C9 did not completely colocalize with NBD-PC liposomes or the nonspecific endocytic marker TMA-DPH, suggesting that lamellar body membrane is retrieved back to existing lamellar bodies by a pathway different from that of bulk membrane and may be one pathway for surfactant endocytosis. The lamellar body membrane components are retrieved as subunits that are redistributed among the preexisting lamellar bodies in the cell.
Collapse
Affiliation(s)
- S Schaller-Bals
- Institute for Environmental Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6068, USA
| | | | | | | | | | | |
Collapse
|
21
|
Mamchaoui K, Saumon G. A method for measuring the oxygen consumption of intact cell monolayers. Am J Physiol Lung Cell Mol Physiol 2000; 278:L858-63. [PMID: 10749764 DOI: 10.1152/ajplung.2000.278.4.l858] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This report describes an open-air method for measuring the O(2) consumption (QO(2)) of intact monolayers of cultured cells. This method is based on Fick's second law of diffusion. It requires only a micromanipulator and a miniature O(2) electrode to measure the PO(2) gradient in the culture medium in the well. It was compared with the conventional oxygraph chamber method. Both methods gave the same value for QO(2) in freshly isolated rat type II cells: 166 +/- 15.3 nmol. h(-1). 10(6) cells(-1) for the open-air method and 151 +/- 11.6 nmol. h(-1). 10(6) cells(-1) for the oxygraph chamber method (n = 11 experiments). But the open-air method gave significantly larger values for QO(2) in cells cultured for 2 days (236 +/- 8.8 nmol. h(-1). 10(6) cells(-1)) than the oxygraph method (71 +/- 15.2 nmol. h(-1). 10(6) cells(-1); P < 0.001; n = 12 experiments). This suggests that the way cells are detached from their substratum to be placed in the oxygraph chamber affects their QO(2). The open-air method may be useful for studies on the metabolic properties of monolayers because the cells do not risk being damaged.
Collapse
Affiliation(s)
- K Mamchaoui
- Institut National de la Santé et de la Recherche Médicale Unité 82, Faculté Xavier Bichat, 75018 Paris, France
| | | |
Collapse
|
22
|
deMello DE, Mahmoud S, Padfield PJ, Hoffmann JW. Generation of an immortal differentiated lung type-II epithelial cell line from the adult H-2K(b)tsA58 transgenic mouse. In Vitro Cell Dev Biol Anim 2000; 36:374-82. [PMID: 10949996 PMCID: PMC7101677 DOI: 10.1290/1071-2690(2000)036<0374:goaidl>2.0.co;2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper describes a new fully differentiated Type-II alveolar epithelial cell line designated T7, derived from transgenic H-2K(b)-tsA58 mice, capable of being passaged as an immortalized cloned cell line in culture. H-2K(b)-tsA58 mice harbor a temperature-sensitive (ts) mutant of the simian virus 40 (SV40) large tumor antigen (T antigen) under the control of the gamma-interferon (INF)-inducible mouse major histocompatibility complex H-2Kb promoter. When cultured under permissive conditions (33 degrees C and in the presence of gamma-INF) cells isolated from H-2Kb-tsA58 mice express the large T antigen, which drives the cells to proliferate. However, upon withdrawal of the gamma-INF and transfer of the cells to a higher temperature (39 degrees C), T antigen expression is turned off, the cells stop proliferating and differentiate. The T7 cell line is a clonal cell line originally derived from a Type-II cell-rich fraction isolated from lungs of H-2Kb-tsA58 mice. The T7 cells form confluent monolayers, and have a polarized epithelial cell morphology with tight junctions and apical microvilli. In addition, the T7 cells have distinct cytoplasmic lamellar bodies, which become more numerous and pronounced when the cells are grown under nonpermissive conditions. The T7 cells synthesize and secrete phosphatidylcholine and the three surfactant proteins, SP-A, SP-B, and SP-C. The T7 cell line is unique in that it is the first non-tumor-derived Type-II cell line capable of synthesizing and secreting the major components of surfactant. Based on the criteria studied, the T7 cell line is phenotypically very similar to normal Type-II cells. The T7 cell line, therefore, should prove a valuable experimental system to advance the study of the cell biology/physiology of surfactant metabolism and secretion as well as serve as a model for other studies of Type-II cell physiology.
Collapse
Affiliation(s)
- D E deMello
- Department of Pathology, Cardinal Glennon Children's Hospital, St. Louis University Health Sciences Center, Missouri 63104, USA.
| | | | | | | |
Collapse
|
23
|
Liu M, Tanswell AK, Post M. Mechanical force-induced signal transduction in lung cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L667-83. [PMID: 10516207 DOI: 10.1152/ajplung.1999.277.4.l667] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lung is a unique organ in that it is exposed to physical forces derived from breathing, blood flow, and surface tension throughout life. Over the past decade, significant progress has been made at the cellular and molecular levels regarding the mechanisms by which physical forces affect lung morphogenesis, function, and metabolism. With the use of newly developed devices, mechanical forces have been applied to a variety of lung cells including fetal lung cells, adult alveolar epithelial cells, fibroblasts, airway epithelial and smooth muscle cells, pulmonary endothelial and smooth muscle cells, and mesothelial cells. These studies have led to new insights into how cells sense mechanical stimulation, transmit signals intra- and intercellularly, and regulate gene expression at the transcriptional and posttranscriptional levels. These advances have significantly increased our understanding of the process of mechanotransduction in lung cells. Further investigation in this exciting research field will facilitate our understanding of pulmonary physiology and pathophysiology at the cellular and molecular levels.
Collapse
Affiliation(s)
- M Liu
- Thoracic Surgery Research Laboratory, Toronto General Hospital, University Health Network, Toronto M5G 2C4, Ontario, Canada M5G 1X8.
| | | | | |
Collapse
|
24
|
Awonusonu F, Srinivasan S, Strange J, Al-Jumaily W, Bruce MC. Developmental shift in the relative percentages of lung fibroblast subsets: role of apoptosis postseptation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L848-59. [PMID: 10516228 DOI: 10.1152/ajplung.1999.277.4.l848] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used the lipophilic, fluorescent dye Nile red and flow cytometry to identify and isolate two rat lung fibroblast subsets, lipid-containing interstitial cells (LICs) and non-LICs (NLICs) and to quantitate developmental changes in the relative percentages of these subsets. A significant decrease was observed in the percentage of LICs (from 79.0 +/- 3.8% on postnatal day 4 to 28.6 +/- 4.2% on day 30; P < 0.0001). To determine whether one or both subsets undergo apoptosis postseptation, fibroblasts from 16- to 18-day rats were treated with BODIPY-conjugated dUTP to label DNA strand breaks, which were then quantitated by flow cytometry. Apoptotic cells were judged to be predominantly LICs based on flow cytometric estimates of cell size and granularity and on light-microscopic colocalization of intracellular lipid and Hoechst-positive apoptotic bodies. Cell proliferation was compared in LICs and NLICs with both an in vitro [(3)H]thymidine incorporation assay and cell cycle analysis of propidium iodide-stained cells. Results of both assays indicated that on days 4-5, LICs proliferated more rapidly than NLICs. Tropoelastin and fibronectin mRNA expression, evaluated by RT-PCR, indicated that although tropoelastin mRNA levels did not differ, fibronectin mRNA levels were approximately ninefold greater in LICs. These results demonstrate the feasibility of a flow cytometric assay for the analysis of size, granularity, and intracellular lipid content of neonatal rat lung fibroblast subsets. Subsets differed substantially with respect to proliferative capacity, fibronectin mRNA expression, and incidence of apoptosis postseptation. Together with the observed changes in relative percentages of fibroblast subsets with age, these data suggest that the ratio of LICs to NLICs could be a critical determinant of fibroblast function during lung development.
Collapse
Affiliation(s)
- F Awonusonu
- Department of Pediatrics, University of Kentucky Medical School, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
25
|
Shannon JM, Gebb SA, Nielsen LD. Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 1999; 126:1675-88. [PMID: 10079230 DOI: 10.1242/dev.126.8.1675] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that fetal lung mesenchyme can reprogram embryonic rat tracheal epithelium to express a distal lung phenotype. We have also demonstrated that embryonic rat lung epithelium can be induced to proliferate and differentiate in the absence of lung mesenchyme. In the present study we used a complex growth medium to induce proliferation and distal lung epithelial differentiation in embryonic tracheal epithelium. Day-13 embryonic rat tracheal epithelium was separated from its mesenchyme, enrobed in growth factor-reduced Matrigel, and cultured for up to 7 days in medium containing charcoal-stripped serum, insulin, epidermal growth factor, hepatocyte growth factor, cholera toxin, fibroblast growth factor 1 (FGF1), and keratinocyte growth factor (FGF7). The tracheal epithelial cells proliferated extensively in this medium, forming lobulated structures within the extracellular matrix. Many of the cells differentiated to express a type II epithelial cell phenotype, as evidenced by expression of SP-C and osmiophilic lamellar bodies. Deletion studies showed that serum, insulin, cholera toxin, and FGF7 were necessary for maximum growth. While no single deletion abrogated expression of SP-C, deleting both FGF7 and FGF1 inhibited growth and prevented SP-C expression. FGF7 or FGF1 as single additions to the medium, however, were unable to induce SP-C expression, which required the additional presence of serum or cholera toxin. FGF10, which binds the same receptor as FGF7, did not support transdifferentiation when used in place of FGF7. These data indicate that FGF7 is necessary, but not sufficient by itself, to induce the distal rat lung epithelial phenotype, and that FGF7 and FGF10 play distinct roles in lung development.
Collapse
Affiliation(s)
- J M Shannon
- Department of Medicine, National Jewish Medical and Research Center, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| | | | | |
Collapse
|
26
|
Danto SI, Borok Z, Zhang XL, Lopez MZ, Patel P, Crandall ED, Lubman RL. Mechanisms of EGF-induced stimulation of sodium reabsorption by alveolar epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C82-92. [PMID: 9688838 DOI: 10.1152/ajpcell.1998.275.1.c82] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) alpha-, beta-, and gamma-subunits and Na+ pump alpha1- and beta1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both alpha1 and beta1 Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump alpha1- and beta1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump alpha1- and beta1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+ transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.
Collapse
Affiliation(s)
- S I Danto
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- R J Mason
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | |
Collapse
|
28
|
Xu X, McCormick-Shannon K, Voelker DR, Mason RJ. KGF increases SP-A and SP-D mRNA levels and secretion in cultured rat alveolar type II cells. Am J Respir Cell Mol Biol 1998; 18:168-78. [PMID: 9476903 DOI: 10.1165/ajrcmb.18.2.2824] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies of secretion of surfactant proteins by alveolar type II cells have been limited because the expression of the genes for these proteins decreases rapidly in primary culture. We developed a culture system to investigate the regulation of lipid and protein secretion by alveolar type II cells and the genes involved in these processes. Rat type II cells were plated on membrane inserts coated with rat-tail collagen in medium containing 10% fetal bovine serum (FBS) for 1 d before being changed to medium containing 5 ng/ml keratinocyte growth factor (KGF) and 2% serum for 3 d and to medium with 5% Engelbreth-Holm-Swarm tumor matrix (EHS) but without serum for 2 d. From this time forward, the cells were placed on a rocking platform and cultured with 0.4 ml medium on the apical surface at the air-liquid interface (A/L) in four different, serum-free media: basal Dulbecco's modified Eagle's medium (DMEM)/F12 medium (DF12), basal medium plus EHS (DF12/EHS), basal medium plus KGF (DF12/KGF), and basal medium plus EHS and KGF (DF12/EHS/KGF). Cells cultured in DF12 and DF12/EHS assumed an attenuated, flattened morphology, whereas those in DF12/KGF and DF12/EHS/KGF were more cuboidal, contained numerous lamellar bodies, and had apical microvilli. Cells cultured in DF12 and DF12/EHS produced a relatively weak signal for the surfactant protein mRNAs (surfactant proteins [SP]-A, SP-B, SP-C, and SP-D, respectively), and secretion of SP-A and SP-D remained low. In contrast, cells maintained for 3 d at A/L and cultured in the presence of KGF showed strong signals for SP-A, SP-B, and SP-D mRNAs, and secreted SP-A, SP-D, and lysozyme into the apical medium. The combination of 12-O-tetradecanoyl-phorbol-11-acetate (TPA) and terbutaline stimulated secretion of [3H]phosphatidylcholine ([3H]PC), SP-A, and lysozyme, but not SP-D. This primary culture system should prove useful for mechanistic studies of the secretion of SP-A, SP-D, and surfactant lipids.
Collapse
Affiliation(s)
- X Xu
- Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | |
Collapse
|
29
|
Yaekashiwa M, Nakayama S, Ohnuma K, Sakai T, Abe T, Satoh K, Matsumoto K, Nakamura T, Takahashi T, Nukiwa T. Simultaneous or delayed administration of hepatocyte growth factor equally represses the fibrotic changes in murine lung injury induced by bleomycin. A morphologic study. Am J Respir Crit Care Med 1997; 156:1937-44. [PMID: 9412578 DOI: 10.1164/ajrccm.156.6.9611057] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hepatocyte growth factor (HGF) is a humoral mediator of epithelial-mesenchymal interactions, acting on a variety of epithelial cells as mitogen, motogen, and morphogen. Exogenous HGF acts as a hepatotrophic factor and a renotrophic factor during experimental injury. To investigate whether HGF has a pulmotrophic function, human recombinant HGF was administered to C57BL/6 mice with severe lung injury by bleomycin (BLM). Low dose simultaneous and continuous administration of HGF (50 micrograms/mouse/7 d) with BLM (100 mg/mouse/7 d) repressed fibrotic morphological changes at 2 and 4 wk. Ashcroft score showed a significant difference in lung fibrosis with and without HGF at 4 wk (3.7 +/- 0.4 versus 4.9 +/- 0.3, p < 0.05). Furthermore, either simultaneous or delayed administration of high dose HGF (280 micrograms/mouse/14 d) equally repressed fibrotic changes by BLM when examined at 4 wk (Ashcroft score: 2.6 +/- 0.4 and 2.4 +/- 0.2 versus 4.1 +/- 0.2, p < 0.01). Hydroxyproline content in the lungs was significantly lower in mice with either simultaneous or delayed administration of high dose HGF as compared to those administered BLM alone (121.8 +/- 8.1% and 113.2 +/- 6.2% versus 162.7 +/- 4.6%, p < 0.001). These findings indicate that exogenous HGF acts as a pulmotrophic factor in vivo and prevents the progression of BLM-induced lung injury when administered in either a simultaneous or delayed fashion. HGF may be a potent candidate to prevent or treat lung fibrosis.
Collapse
Affiliation(s)
- M Yaekashiwa
- Department of Respiratory Oncology and Molecular Medicine, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Malkinson AM, Dwyer-Nield LD, Rice PL, Dinsdale D. Mouse lung epithelial cell lines--tools for the study of differentiation and the neoplastic phenotype. Toxicology 1997; 123:53-100. [PMID: 9347924 DOI: 10.1016/s0300-483x(97)00108-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several dozen lung epithelial cell lines have been established in culture over the past 20 years from normal lung explants and their spontaneous transformants, and from lung tumors that arose spontaneously or were induced with chemicals, viruses, or oncogenic transgenes. To provide information from which to choose appropriate lines for investigating problems in lung cell biology and pulmonary neoplasia, this review describes the origins of these lines and some of their characteristics. These include growth, morphology, tumorigenicity, ability to metastasize, xenobiotic metabolism, mutational status, signal transducing activities, cytogenetics, ability to form domes, and electric conductance. In addition to collecting this information in a single place for the first time, we describe previously unpublished apoptosis features of some of these lines. An increasing number of investigations are beginning to use these lines and this review contains references into 1997.
Collapse
Affiliation(s)
- A M Malkinson
- Department of Pharmaceutical Sciences, Colorado Cancer Center, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | |
Collapse
|
31
|
Sato N, Takahashi H. Hepatocyte growth factor promotes growth and lumen formation of fetal lung epithelial cells in primary culture. Respirology 1997; 2:185-91. [PMID: 9400680 DOI: 10.1111/j.1440-1843.1997.tb00077.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mesenchyme-epithelium interactions are generally considered critical for fetal lung development. Hepatocyte growth factor (HGF), a mesenchyme-derived mitogen active on a variety of epithelial cells, appears to be involved in the morphogenesis of fetal liver and kidney. During lung development, HGF and its receptor, c-Met, are expressed in close proximity in mesenchymal cells and epithelial cells, respectively. To examine the role of HGF in fetal lung development, we investigated the effects of HGF on lung epithelial cells derived from a 15-day-old mouse fetus. First, HGF induces a 45% increase in [3H]thymidine incorporation and a 65% increase in cell number by crystal violet analysis at 10 ng/mL concentration, and the increase is dose dependent. Second, HGF facilitates the formation of an organotypic arrangement of the fetal epithelial cells on a basement membrane extract (Matrigel) that resembles alveolar structures in vivo, and the maximum increase is about twice the control level at 10 ng/mL. These results suggest that HGF may be implicated in fetal lung development through the regulation of mesenchyme-epithelium interactions.
Collapse
Affiliation(s)
- N Sato
- Department of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
32
|
Mathias NR, Yamashita F, Lee VH. Respiratory epithelial cell culture models for evaluation of ion and drug transport. Adv Drug Deliv Rev 1996. [DOI: 10.1016/s0169-409x(96)00420-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Låg M, Becher R, Samuelsen JT, Wiger R, Refsnes M, Huitfeldt HS, Schwarze PE. Expression of CYP2B1 in freshly isolated and proliferating cultures of epithelial rat lung cells. Exp Lung Res 1996; 22:627-49. [PMID: 8979047 DOI: 10.3109/01902149609070034] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bronchiolar Clara cells and alveolar type 2 cells of the lung are known to express relatively high levels of P450 enzymes compared to other pulmonary cells. Populations of enriched type 2 cells and Clara cells were isolated from rat lung by a procedure including lung perfusion, protease digestion, centrifugal elutriation, and differential attachment. Alveolar macrophages were removed by lavage. The purity of the type 2 cell-enriched population was approximately 90%, and the purity of the Clara cell-enriched population was 40-50%. Both type 2 cells and the cells of the Clara cell-enriched population proliferated in culture. CYP2B1 mRNA was expressed approximately to the same level in type 2 cells and the Clara cell-enriched population. The mRNA levels remained roughly constant for both cell types throughout the culture period, except for an early transient reduction. The apoenzyme level of CYP2B1 was 2-3 times higher in freshly isolated cells of the Clara cell-enriched population than in the type 2 cells. Both epithelial cell types showed decreased level of CYP2B1 apoenzyme in culture. The differences in the CYP2B1 mRNA and apoenzyme expression levels in freshly isolated cells and cultured cells suggest the existence of a post-transcriptional regulatory mechanism for CYP2B1 expression in lung cells. The characterization of specific functions of lung cells in culture, such as P450 gene expression, provides necessary information for the use of the cells in in vitro pulmonary toxicology.
Collapse
Affiliation(s)
- M Låg
- Department of Environmental Medicine, National Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
34
|
Liu M, Xu J, Souza P, Tanswell B, Tanswell AK, Post M. The effect of mechanical strain on fetal rat lung cell proliferation: comparison of two- and three-dimensional culture systems. In Vitro Cell Dev Biol Anim 1995; 31:858-66. [PMID: 8826090 DOI: 10.1007/bf02634570] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Normal growth of the fetal lung is dependent on fetal breathing movements. We have previously reported that an intermittent strain, which simulates normal fetal breathing movements, stimulates DNA synthesis and cell division of mixed fetal rat lung cells maintained in organotypic culture. To examine which cell type is responding to mechanical strain and to investigate whether the effects of strain on cell proliferation and mechanotransduction are affected by tissue architecture, we isolated fetal lung cells and subjected them to intermittent strain either as two-dimensional monolayer cultures or as three-dimensional organotypic cultures. Strain enhanced DNA synthesis of mixed cells, epithelial cells, and fibroblasts when cultured in a three-dimensional configuration. In contrast, no stimulatory effect on cell proliferation was observed when cells were strained as monolayer cultures. Intracellular signals, induced by strain, and cell morphology also varied depending on the culture conditions. These results suggest that mechanical strain stimulates the proliferation of both epithelial cells and fibroblasts and that the response of fetal lung cells to mechanical strain in vitro depends on cellular architecture.
Collapse
Affiliation(s)
- M Liu
- Department of Paediatrics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Deterding RR, Shannon JM. Proliferation and differentiation of fetal rat pulmonary epithelium in the absence of mesenchyme. J Clin Invest 1995; 95:2963-72. [PMID: 7769139 PMCID: PMC295985 DOI: 10.1172/jci118004] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that pulmonary mesenchyme is required to maintain epithelial viability and to support branching morphogenesis and cytodifferentiation. We have examined whether pulmonary mesenchyme can be replaced by a medium containing a combination of soluble factors. Day 13-14 fetal rat distal lung epithelium was enzymatically separated from its mesenchyme, enrobed in EHS tumor matrix, and cultured for 5 d in medium containing concentrated bronchoalveolar lavage, EGF, acidic fibroblast growth factor, cholera toxin, insulin, and FBS (TGM), or in control medium containing only FBS. After 5 d in culture, marked growth and morphological changes occurred in epithelial rudiments cultured in TGM, whereas no changes were seen in controls. [3H]Thymidine incorporation and nuclear labeling indices during the last 24 h of culture confirmed that epithelial rudiments cultured in TGM had significant proliferative capacities. Evaluation of surfactant protein gene expression by Northern analysis, in situ hybridization, and immunocytochemistry demonstrated that distal lung epithelial differentiation progressed in TGM. Ultrastructural analysis demonstrated that fetal distal lung epithelium cultured in TGM contained lamellar bodies and deposited a basal lamina. These results are the first demonstration that sustained proliferation and differentiation of glandular stage distal pulmonary epithelium can proceed in the absence of mesenchyme.
Collapse
Affiliation(s)
- R R Deterding
- Department of Pediatrics, University of Colorado, Children's Hospital, Denver 80218, USA
| | | |
Collapse
|
36
|
Belinsky SA, Lechner JF, Johnson NF. An improved method for the isolation of type II and Clara cells from mice. In Vitro Cell Dev Biol Anim 1995; 31:361-6. [PMID: 7543342 DOI: 10.1007/bf02634285] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Identifying the causal events and temporal aspects of lung cancer development requires the ability to isolate target and nontarget cells for comparative analyses. Current methodology can either isolate only one pure specific cell population from a lung or multiple cell types at lower purity. Previous studies in our laboratory have identified the alveolar type II cell as the progenitor cell for tumor development in the A/J mouse. The purpose of this study was to develop new protocols for the isolation and culture of type II and Clara cells from the mouse lung. Both type II and Clara cells were obtained in high purity using a sequential centrifugal elutriation protocol. In the first elutriation, cell fractions were collected using a Standard chamber. The type II and Clara cell fractions were then elutriated separately (two different separations) using a Sanderson chamber. The final purity of the type II and Clara cell preparations was 73% and 76%, respectively. Colonies of 4 to 20 Clara cells exhibiting epithelial morphology were evident 1 wk after plating in low serum medium. The growth of type II cells required the addition of bronchioalveolar lavage fluid and acidic fibroblast growth factor to the medium. The isolation of viable mouse type II and Clara cells in high purity should facilitate the identification of cell-specific changes in gene expressions or in enzymatic pathways following in vivo or in vitro exposure to environmental carcinogens.
Collapse
Affiliation(s)
- S A Belinsky
- Inhalation Toxicology Research Institute, Albuquerque, New Mexico 87185, USA
| | | | | |
Collapse
|
37
|
Kumar RK, Li W, O'Grady R. Maintenance of differentiated phenotype by mouse type 2 pneumocytes in serum-free primary culture. Exp Lung Res 1995; 21:79-94. [PMID: 7729380 DOI: 10.3109/01902149509031746] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An improved method has been developed for separation of an enriched population of mouse type 2 pneumocytes, based on differential adherence and size fractionation of cells dissociated with trypsin. These cells were successfully maintained in primary culture in serum-free medium MCDB 201 supplemented with albumin, transferrin, and lipids. Whereas type 2 pneumocytes in serum-supplemented culture undergo phenotypic transformation into adherent flattened cells that resemble type 1 pneumocytes, this did not occur in serum-free culture. Both the morphology of the type 2 pneumocytes and their expression of surfactant protein A were maintained for at least 6 days in vitro. However, rapid loss of differentiated characteristics was induced by exposure of the cells to normal mouse serum. This was accompanied by a striking decrease in spontaneous DNA synthesis as assessed by incorporation of tritiated thymidine. When cultured in serum-free medium, the behavior of the type 2 pneumocytes on various extracellular matrix components was different from that reported for serum-supplemented culture. Serum-free culture of type 2 pneumocytes may offer significant advantages for evaluation of the secretory activities of these cells in vitro.
Collapse
Affiliation(s)
- R K Kumar
- School of Pathology, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|