1
|
Ahmad D, Linares I, Pietropaoli A, Waugh RE, McGrath JL. Sided Stimulation of Endothelial Cells Modulates Neutrophil Trafficking in an In Vitro Sepsis Model. Adv Healthc Mater 2024; 13:e2304338. [PMID: 38547536 PMCID: PMC11338706 DOI: 10.1002/adhm.202304338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/22/2024] [Indexed: 04/09/2024]
Abstract
While the role of dysregulated polymorphonuclear leukocyte (PMN) transmigration in septic mediated tissue damage is well documented, strategies to mitigate aberrant transmigration across endothelium have yet to yield viable therapeutics. Recently, microphysiological systems (MPS) have emerged as novel in vitro mimetics that facilitate the development of human models of disease. With this advancement, aspects of endothelial physiology that are difficult to assess with other models can be directly probed. In this study, the role of endothelial cell (EC) apicobasal polarity on leukocyte trafficking response is evaluated with the µSiM-MVM (microphysiological system enabled by a silicon membrane - microvascular mimetic). Here, ECs are stimulated either apically or basally with a cytokine cocktail to model a septic-like challenge before introducing healthy donor PMNs into the device. Basally oriented stimulation generated a stronger PMN transmigratory response versus apical stimulation. Importantly, healthy PMNs are unable to migrate towards a bacterial peptide chemoattractant when ECs are apically stimulated, which mimics the attenuated PMN chemotaxis seen in sepsis. Escalating the apical inflammatory stimulus by a factor of five is necessary to elicit high PMN transmigration levels across endothelium. These results demonstrate that EC apicobasal polarity modulates PMN transmigratory behavior and provides insight into the mechanisms underlying sepsis.
Collapse
Affiliation(s)
- Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Isabelle Linares
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Anthony Pietropaoli
- Department of Medicine, Pulmonary Diseases and Critical Care at the University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
2
|
Bruserud Ø, Mosevoll KA, Bruserud Ø, Reikvam H, Wendelbo Ø. The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients. Cells 2023; 12:cells12071003. [PMID: 37048076 PMCID: PMC10093057 DOI: 10.3390/cells12071003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Collapse
Affiliation(s)
- Øystein Bruserud
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Correspondence:
| | - Knut Anders Mosevoll
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Section for Infectious Diseases, Department of Clinical Research, University of Bergen, 5021 Bergen, Norway
| | - Øyvind Bruserud
- Department for Anesthesiology and Intensive Care, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Reikvam
- Leukemia Research Group, Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Øystein Wendelbo
- Section for Infectious Diseases, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
- Faculty of Health, VID Specialized University, Ulriksdal 10, 5009 Bergen, Norway
| |
Collapse
|
3
|
Tsukasaki Y, Toth PT, Davoodi-Bojd E, Rehman J, Malik AB. Quantitative Pulmonary Neutrophil Dynamics Using Computer-Vision Stabilized Intravital Imaging. Am J Respir Cell Mol Biol 2022; 66:12-22. [PMID: 34555309 PMCID: PMC8803365 DOI: 10.1165/rcmb.2021-0318ma] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
In vivo intravital imaging in animal models in the lung remains challenging owing to respiratory motion artifacts. Here we describe a novel intravital imaging approach based on the computer-vision stabilization algorithm, Computer-Vision Stabilized Intravital Imaging. This method corrects lung movements and deformations at submicron precision in respiring mouse lungs. The precision enables high-throughput quantitative analysis of intravital pulmonary polymorphonuclear neutrophil (PMN) dynamics in lungs. We quantified real-time PMN patrolling dynamics of microvessels in the basal state and PMN recruitment resulting from sequestration in a model of endotoxemia in mice. We focused on determining the marginated pool of PMNs in the lung. Direct visualization of marginated PMNs revealed that they are not static but highly dynamic and undergo repeated cycles of "catch and release." PMNs briefly arrest in larger diameter capillary junction (∼10 μm) and then squeeze into narrower, approximately 5-μm diameter vessels through PMN deformation. We also observed that the sequestered PMNs in lung microvessels lost their migratory capabilities in association with cell morphological change following prolonged endotoxemia. These observations underscore the value of direct visualization and quantitative analysis of PMN dynamics in lungs to study PMN physiology and pathophysiology and role in inflammatory lung injury.
Collapse
Affiliation(s)
- Yoshikazu Tsukasaki
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology
| | - Peter T. Toth
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology
- Research Resources Center Fluorescence Imaging Core, and
| | - Esmaeil Davoodi-Bojd
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology
- Division of Cardiology, Department of Medicine, College of Medicine, the University of Illinois, Chicago, Illinois
| | - Asrar B. Malik
- Department of Pharmacology and Regenerative Medicine and The Center for Lung and Vascular Biology
| |
Collapse
|
4
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Abstract
Pneumonia and infection-induced sepsis are worldwide public health concerns. Both pathologies elicit systemic inflammation and induce a robust acute-phase response (APR). Although APR activation is well regarded as a hallmark of infection, the direct contributions of liver activation to pulmonary defense during sepsis remain unclear. By targeting STAT3-dependent acute-phase changes in the liver, we evaluated the role of liver STAT3 activity in promoting host defense in the context of sepsis and pneumonia. We employed a two-hit endotoxemia/pneumonia model, whereby administration of 18 h of intraperitoneal lipopolysaccharide (LPS; 5 mg/kg of body weight) was followed by intratracheal Escherichia coli (10(6) CFU) in wild-type mice or those lacking hepatocyte STAT3 (hepSTAT3(-/-)). Pneumonia alone (without endotoxemia) was effectively controlled in the absence of liver STAT3. Following endotoxemia and pneumonia, however, hepSTAT3(-/-) mice, with significantly reduced levels of circulating and airspace acute-phase proteins, exhibited significantly elevated lung and blood bacterial burdens and mortality. These data suggested that STAT3-dependent liver responses are necessary to promote host defense. While neither recruited airspace neutrophils nor lung injury was altered in endotoxemic hepSTAT3(-/-) mice, alveolar macrophage reactive oxygen species generation was significantly decreased. Additionally, bronchoalveolar lavage fluid from this group of hepSTAT3(-/-) mice allowed greater bacterial growth ex vivo. These results suggest that hepatic STAT3 activation promotes both cellular and humoral lung defenses. Taken together, induction of liver STAT3-dependent gene expression programs is essential to countering the deleterious consequences of sepsis on pneumonia susceptibility.
Collapse
|
6
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
7
|
Esquinas P, Botero L, Patiño MDP, Gallego C, Iregui C. Ultrastructural Comparison of the Nasal Epithelia of Healthy and Naturally Affected Rabbits with Pasteurella multocida A. Vet Med Int 2013; 2013:321390. [PMID: 23577280 PMCID: PMC3612493 DOI: 10.1155/2013/321390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 02/04/2023] Open
Abstract
An ultrastructural comparison between the nasal cavities of healthy rabbits and those suffering from two forms of spontaneous infection with Pasteurella multocida was undertaken. Twelve commercially produced rabbits of different ages and respiratory health status were divided into four groups: healthy from 0 to 21 days (G1, n = 2); healthy from 23 to 49 days (G2, n = 2); healthy from 51 to 69 days (G3, n = 2); diseased rabbits with septicemia and the rhinitic form of P. multocida infection (G4, n = 3). The main ultrastructural changes observed were a widening of the interepithelial spaces, increased activity and number of goblet cells, the formation of two types of vacuoles in epithelial cells, the degranulation and migration of heterophils between the epithelial cells, and the association of this migration with some of the other changes. No bacteria were observed adhering to the epithelium, and very few were observed free in the mucus. Scant inter-epithelial spaces were found in healthy rabbits, but they were not as large and numerous as those found in diseased animals. We discuss the origin and meaning of these changes but, we focus on the significance of the inter-epithelial spaces and goblet cells for the defense of the upper respiratory airways against the bacterium and its lipopolysaccharide.
Collapse
Affiliation(s)
- Paula Esquinas
- Departamento de Patología, Hospital Universitario Fundación Santafé de Bogotá, Bogotá, Colombia
| | | | | | | | | |
Collapse
|
8
|
Sayed SM, Abou El-Ella GA, Wahba NM, El Nisr NA, Raddad K, Abd El Rahman MF, Abd El Hafeez MM, Abd El Fattah Aamer A. Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection. J Med Food 2009; 12:569-75. [PMID: 19627205 DOI: 10.1089/jmf.2008.0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this work was to evaluate the potency of bee product-immunized rats to overcome an induced Staphylococcus aureus infection. Forty rats were divided to eight groups: T1, T3, and T5 received, respectively, fennel honey, ethanol, and aqueous propolis extracts orally, and T2, T4, and T6 were administered the respective materials intraperitoneally; T7 received bee venom by the bee sting technique; and T8 was the control group. All groups were challenged by a bovine clinical mastitis isolate of S. aureus. Each rat received 2 mL of broth inoculated with 1 x 10(5) colony-forming units/mL intraperitoneally. Two weeks post-induced infection all rats were sacrificed and eviscerated for postmortem inspection and histopathological study. Three rats from T8 and one rat from T7 died before sacrifice. Another two rats, one each in T4 and T5, had morbidity manifestations. The remaining experimental animals showed apparently healthy conditions until time of sacrifice. Postmortem inspection revealed that all T8 rats showed different degrees of skeletal muscle and internal organ paleness with scattered focal pus nodules mainly on lungs and livers. All rats of the treated groups showed normal postmortem features except three rats. A dead rat in group T7 showed focal pus nodules on the lung surface only, whereas the affected two rats in groups T4 and T5 appeared normal except with some pus nodules, but much smaller than in the control, scattered on the hepatic surface and mesentery. Histopathological studies revealed that T8 rats had typical suppurative bronchopneumonia and or severe degenerative and necrobiotic changes in hepatic tissues. Three affected rats of the treated groups showed slight bronchopneumonia or degenerative hepatic changes only. The other animals of the treated groups showed completely normal parenchymatous organs with stimulated lymphatic tissues. It was concluded that all tested previously bee product-immunized rats could significantly challenge the induced S. aureus infection (P < .01). The effects were more pronounced in rats that had received fennel honey solution.
Collapse
Affiliation(s)
- S M Sayed
- Animal Health Research, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shimizu M, Hasegawa N, Nishimura T, Endo Y, Shiraishi Y, Yamasawa W, Koh H, Tasaka S, Shimada H, Nakano Y, Fujishima S, Yamaguchi K, Ishizaka A. Effects of TNF-alpha-converting enzyme inhibition on acute lung injury induced by endotoxin in the rat. Shock 2009; 32:535-40. [PMID: 19295482 DOI: 10.1097/shk.0b013e3181a2adb7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We studied the effects of TNF-converting enzyme inhibition with Y-41654, which down-regulates the production of soluble TNF-alpha (sTNF-alpha), on acute lung injury induced by intratracheal administration of LPS. We first verified in vitro that pretreatment of isolated alveolar macrophages from Sprague-Dawley male rats with 20 microL of 0.1-mM Y-41654, decreased significantly (P < 0.05) the concentration of sTNF-alpha in cell supernatants induced by 10 microg/mL of LPS. We then studied four groups of rats (each n = 10) including 1) a control group, 2) an LPS group (300 microg /kg, instilled intratracheally), 3) a Y-41654 group, and 4) a treatment group treated with Y-41654 after LPS instillation. Y-41654, 10 mg/kg in 0.7 mL of phosphate-buffered saline, was administered (i.v.), 15 min before and 0.5, 1.5, 2.5, and 3.5 h after saline or LPS instillation. The animals were observed for 4 h. In the animals treated with Y-41654, the concentrations of sTNF-alpha and protein in bronchoalveolar lavage fluid, and the number of neutrophils in lung tissue and bronchoalveolar lavage fluid were significantly lower at 4 h than in the LPS group (P < 0.05). In conclusion, sTNF-alpha plays an important role in the development of acute lung injury induced by intratracheal administration of LPS, in part modulating neutrophil kinetics.
Collapse
Affiliation(s)
- Mie Shimizu
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang Z, Rui T, Yang M, Valiyeva F, Kvietys PR. Alveolar Macrophages from Septic Mice Promote Polymorphonuclear Leukocyte Transendothelial Migration via an Endothelial Cell Src Kinase/NADPH Oxidase Pathway. THE JOURNAL OF IMMUNOLOGY 2008; 181:8735-44. [DOI: 10.4049/jimmunol.181.12.8735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Effects of extracellular ATP on bovine lung endothelial and epithelial cell monolayer morphologies, apoptoses, and permeabilities. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:43-8. [PMID: 18987163 DOI: 10.1128/cvi.00282-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pneumonia in cattle is an important disease both economically and in terms of animal welfare. Recent evidence in other species has shown ATP to be an important modulator of inflammation in the lung, where it is released by activated alveolar macrophages and damaged lung cells. Whether ATP serves a similar process during infection in the bovine lung is unknown. In the present study, we examined the effects of ATP treatment on the morphology, apoptosis, and permeability of bovine pulmonary epithelial (BPE) cells and bovine pulmonary microvascular endothelial cells (BPMEC). Monolayers of BPE cells underwent striking morphological changes when exposed to ATP that included separation of the cells. Neither BPE cells nor BPMEC exhibited increased apoptosis in response to ATP. BPE cell and BPMEC monolayers displayed virtually identical increases in permeability when exposed to ATP, with a 50% change occurring within the first hour of exposure. Both cell types contained mRNA for the P2X(7) receptor, a known receptor for ATP. In BPE cells, but not BPMEC, the change in permeability in response to ATP was reversed by the addition of a P2X(7) receptor antagonist. If similar permeability changes occur in vivo, they could be a factor in vascular leakage into lung airspaces during pneumonia.
Collapse
|
12
|
Gaida MM, Günther F, Wagner C, Friess H, Giese NA, Schmidt J, Hänsch GM, Wente MN. Expression of the CXCR6 on polymorphonuclear neutrophils in pancreatic carcinoma and in acute, localized bacterial infections. Clin Exp Immunol 2008; 154:216-23. [PMID: 18778363 DOI: 10.1111/j.1365-2249.2008.03745.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The chemokine receptor CXCR6 has been described on lymphoid cells and is thought to participate in the homing of activated T-cells to non-lymphoid tissue. We now provide evidence that the chemokine receptor CXCR6 is also expressed by activated polymorphonuclear neutrophils (PMN) in vivo: Examination of biopsies derived from patients with pancreatic carcinoma by confocal laser scan microscopy revealed a massive infiltration of PMN that expressed CXCR6, while PMN of the peripheral blood of these patients did not. To answer the question whether CXCR6 expression is a property of infiltrated and activated PMN, leucocytes were collected from patients with localized soft tissue infections in the course of the wound debridement. By cytofluorometry, the majority of these cells were identified as PMN. Up to 50% of these PMN were also positive for CXCR6. Again, PMN from the peripheral blood of these patients were nearly negative for CXCR6, as were PMN of healthy donors. In a series of in vitro experiments, up-regulation of CXCR6 on PMN of healthy donors by a variety of cytokines was tested. So far, a minor, although reproducible, effect of tumour necrosis factor (TNFalpha) was seen: brief exposure with low-dose TNFalpha induced expression of CXCR6 on the surface of PMN. Furthermore, we could show an increased migration of PMN induced by the axis CXCL16 and CXCR6. In summary, our data provide evidence that CXCR6 is not constitutively expressed on PMN, but is up-regulated under inflammatory conditions and mediates migration of CXCR6-positive PMN.
Collapse
Affiliation(s)
- M M Gaida
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Steinmüller M, Srivastava M, Kuziel WA, Christman JW, Seeger W, Welte T, Lohmeyer J, Maus UA. Endotoxin induced peritonitis elicits monocyte immigration into the lung: implications on alveolar space inflammatory responsiveness. Respir Res 2006; 7:30. [PMID: 16503998 PMCID: PMC1388208 DOI: 10.1186/1465-9921-7-30] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 02/18/2006] [Indexed: 11/20/2022] Open
Abstract
Background Acute peritonitis developing in response to gram-negative bacterial infection is known to act as a trigger for the development of acute lung injury which is often complicated by the development of nosocomial pneumonia. We hypothesized that endotoxin-induced peritonitis provokes recruitment of monocytes into the lungs, which amplifies lung inflammatory responses to a second hit intra-alveolar challenge with endotoxin. Methods Serum and lavage cytokines as well as bronchoalveolar lavage fluid cells were analyzed at different time points after intraperitoneal or intratracheal application of LPS. Results We observed that mice challenged with intraperitoneal endotoxin developed rapidly increasing serum and bronchoalveolar lavage fluid (BALF) cytokine and chemokine levels (TNFα, MIP-2, CCL2) and a nearly two-fold expansion of the alveolar macrophage population by 96 h, but this was not associated with the development of neutrophilic alveolitis. In contrast, expansion of the alveolar macrophage pool was not observed in CCR2-deficient mice and in wild-type mice systemically pretreated with the anti-CD18 antibody GAME-46. An intentional two-fold expansion of alveolar macrophage numbers by intratracheal CCL2 following intraperitoneal endotoxin did not exacerbate the development of acute lung inflammation in response to intratracheal endotoxin compared to mice challenged only with intratracheal endotoxin. Conclusion These data, taken together, show that intraperitoneal endotoxin triggers a CCR2-dependent de novo recruitment of monocytes into the lungs of mice but this does not result in an accentuation of neutrophilic lung inflammation. This finding represents a previously unrecognized novel inflammatory component of lung inflammation that results from endotoxin-induced peritonitis.
Collapse
Affiliation(s)
- Mirko Steinmüller
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus-Liebig-University, Giessen, Germany
| | - Mrigank Srivastava
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus-Liebig-University, Giessen, Germany
- Department of Pulmonary Medicine, Laboratory for Experimental Lung Research, Hannover School of Medicine, Hannover, Germany
| | | | | | - Werner Seeger
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus-Liebig-University, Giessen, Germany
| | - Tobias Welte
- Department of Pulmonary Medicine, Laboratory for Experimental Lung Research, Hannover School of Medicine, Hannover, Germany
| | - Jürgen Lohmeyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus-Liebig-University, Giessen, Germany
| | - Ulrich A Maus
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Infectious Diseases, Justus-Liebig-University, Giessen, Germany
- Department of Pulmonary Medicine, Laboratory for Experimental Lung Research, Hannover School of Medicine, Hannover, Germany
| |
Collapse
|
14
|
Shelton JL, Wang L, Cepinskas G, Sandig M, Inculet R, McCormack DG, Mehta S. Albumin leak across human pulmonary microvascular vs. umbilical vein endothelial cells under septic conditions. Microvasc Res 2006; 71:40-7. [PMID: 16376951 DOI: 10.1016/j.mvr.2005.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 09/02/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Human pulmonary microvascular endothelial cell (HPMVEC) injury is central to the pathophysiology of human lung injury. However, septic HPMVEC barrier dysfunction and the contribution of neutrophils have not been directly addressed in vitro. Instead, human EC responses are often extrapolated from studies of human umbilical vein EC (HUVEC). We hypothesized that HUVEC was not a good model for investigating HPMVEC barrier function under septic conditions. HPMVEC was isolated from lung tissue resected from lung cancer patients using magnetic bead-bound anti-PECAM-1 antibody. In confluent monolayers in 3-mum cell-culture inserts, we assessed trans-EC Evans-Blue (EB)-conjugated albumin leak under basal, unstimulated conditions and following stimulation with either lipopolysaccharide or a mixture of equal concentrations of TNF-alpha, IL-1beta and IFN-gamma (cytomix). Basal EB-albumin leak was significantly lower across HPMVEC than HUVEC (0.64 +/- 0.06% vs. 1.13 +/- 0.10%, respectively, P < 0.001). Lipopolysaccharide and cytomix increased leak across both HPMVEC and HUVEC in a dose-dependent manner, with a similar increase relative to basal leak in both cell types. The presence of neutrophils markedly and dose-dependently enhanced cytomix-induced EB-albumin leak across HPMVEC (P < 0.01), but had no effect on EB-albumin leak across HUVEC. Both cytomix and lipopolysaccharide-induced albumin leak was not associated with a loss of cell viability. In conclusion, HPMVEC barrier dysfunction under septic conditions is dramatically enhanced by neutrophil presence, and HUVEC is not a suitable model for studying HPMVEC septic barrier responses. The direct study of HPMVEC septic responses will lead to a better understanding of human lung injury.
Collapse
Affiliation(s)
- Jennifer L Shelton
- Division of Respirology, Department of Medicine, Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, University of Western Ontario, South Street Campus, London, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Khan AI, Heit B, Andonegui G, Colarusso P, Kubes P. Lipopolysaccharide: a p38 MAPK-dependent disrupter of neutrophil chemotaxis. Microcirculation 2005; 12:421-32. [PMID: 16020390 DOI: 10.1080/10739680590960368] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In sepsis, and in models of sepsis including endotoxemia, impaired neutrophil recruitment and chemotaxis have been reported. The inability of the endotoxemic neutrophil to chemotax could be attributed to the fact that intracellular signaling via LPS overrides signals from endogenous chemokines or, alternatively, that sequestration of neutrophils into lungs prevents access to peripheral tissues. Using both in vitro and in vivo chemotaxis assays the authors established that neutrophils from healthy mice chemotaxed in vivo toward MIP-2, whereas endotoxemic neutrophils did not. Since LPS activates leukocytes via the p38 MAPK pathway, SKF86002, a p38 MAPK inhibitor, was given to endotoxemic animals. SKF86002 significantly reversed the LPS-induced impairment in emigration of endotoxic neutrophils in response to MIP-2. Neutrophil chemotaxis in vitro was also impaired by LPS, via a p38 MAPK-dependent pathway, and this impairment could be reversed via p38 MAPK inhibition. Although neutrophil numbers dropped in the circulation and trapped in lungs during endotoxemia, SKF86002 did not reverse these parameters, demonstrating that p38 MAPK inhibition did not release trapped neutrophils from the lungs. In conclusion, the data suggest that the impaired emigration and chemotaxis of neutrophils at peripheral sites during endotoxemia may be partially due to a p38 MAPK-mediated inhibition of neutrophil responses to endogenous chemokines.
Collapse
Affiliation(s)
- Adil I Khan
- Immunology Research Group, Department of Physiology and Biophysics, University of Calgary Medical Center, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Bench-to-bedside review: acute respiratory distress syndrome - how neutrophils migrate into the lung. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2004; 8:453-61. [PMID: 15566616 PMCID: PMC1065041 DOI: 10.1186/cc2881] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acute lung injury and its more severe form, acute respiratory distress syndrome, are major challenges in critically ill patients. Activation of circulating neutrophils and transmigration into the alveolar airspace are associated with development of acute lung injury, and inhibitors of neutrophil recruitment attenuate lung damage in many experimental models. The molecular mechanisms of neutrophil recruitment in the lung differ fundamentally from those in other tissues. Distinct signals appear to regulate neutrophil passage from the intravascular into the interstitial and alveolar compartments. Entry into the alveolar compartment is under the control of CXC chemokine receptor (CXCR)2 and its ligands (CXC chemokine ligand [CXCL]1–8). The mechanisms that govern neutrophil sequestration into the vascular compartment of the lung involve changes in the actin cytoskeleton and adhesion molecules, including selectins, β2 integrins and intercellular adhesion molecule-1. The mechanisms of neutrophil entry into the lung interstitial space are currently unknown. This review summarizes mechanisms of neutrophil trafficking in the inflamed lung and their relevance to lung injury.
Collapse
|
17
|
Abstract
OBJECTIVE To evaluate the activation status of neutrophils in blood samples obtained from horses with naturally occurring colic associated with strangulating obstruction, nonstrangulating obstruction, or inflammatory bowel disease. ANIMALS 30 horses with naturally occurring colic and 30 healthy control horses. PROCEDURE Activation status of neutrophils was determined by assessing the number of neutrophils that could pass through filters with 5-microm pores, cell-surface CD11-CD18 expression, and alterations in size and granularity of neutrophils. RESULTS Horses with impaction or gas colic did not have evidence of activated neutrophils. Horses with inflammatory bowel disease consistently had evidence of activated neutrophils, including decreased leukocyte deformability, increased CD11-CD18 expression, increased neutrophil size, and decreased neutrophil granularity. Horses with strangulating colic had variable results. Of horses with strangulating colic, 7 of 14 had marked changes in filtration pressures, 5 of 14 had increased CD11-CD18 expression, 6 of 14 had changes in neutrophil size, and 5 of 14 had changes in neutrophil granularity. Among horses with strangulating colic, changes in deformability, size, and granularity of neutrophils correlated with an adverse outcome. CONCLUSIONS AND CLINICAL RELEVANCE Activated neutrophils were detected in all horses with inflammatory bowel disease and a few horses with strangulating colic. Correlation of activated neutrophils with horses that had strangulating colic that died or were euthanatized indicates that activated neutrophils are a negative prognostic indicator. Additional studies are needed to determine whether activated neutrophils contribute directly to the adverse outcome in horses with strangulating colic.
Collapse
Affiliation(s)
- Douglas J Weiss
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA
| | | |
Collapse
|
18
|
Sallenave JM, Cunningham GA, James RM, McLachlan G, Haslett C. Regulation of pulmonary and systemic bacterial lipopolysaccharide responses in transgenic mice expressing human elafin. Infect Immun 2003; 71:3766-74. [PMID: 12819058 PMCID: PMC162023 DOI: 10.1128/iai.71.7.3766-3774.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The control of lung inflammation is of paramount importance in a variety of acute pathologies, such as pneumonia, the acute respiratory distress syndrome, and sepsis. It is becoming increasingly apparent that local innate immune responses in the lung are negatively influenced by systemic inflammation. This is thought to be due to a local deficit in cytokine responses by alveolar macrophages and neutrophils following systemic bacterial infection and the development of a septic response. Recently, using an adenovirus-based strategy which overexpresses the human elastase inhibitor elafin locally in the lung, we showed that elafin is able to prime lung innate immune responses. In this study, we generated a novel transgenic mouse strain expressing human elafin and studied its response to bacterial lipopolysaccharide (LPS) when the LPS was administered locally in the lungs and systemically. When LPS was delivered to the lungs, we found that mice expressing elafin had lower serum-to-bronchoalveolar lavage ratios of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-alpha), macrophage inflammatory protein 2, and monocyte chemoattractant protein 1, than wild-type mice. There was a concomitant increase in inflammatory cell influx, showing that there was potential priming of innate responses in the lungs. When LPS was given systemically, the mice expressing elafin had reduced levels of serum TNF-alpha compared to the levels in wild-type mice. These results indicate that elafin may have a dual function, promoting up-regulation of local lung innate immunity while simultaneously down-regulating potentially unwanted systemic inflammatory responses in the circulation.
Collapse
Affiliation(s)
- J-M Sallenave
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH8 9AG, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
19
|
Víctor VM, Rocha M, De la Fuente M. Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int Immunopharmacol 2003; 3:97-106. [PMID: 12538039 DOI: 10.1016/s1567-5769(02)00232-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Changes in several functions of peritoneal macrophages from mice with oxidative stress caused by intraperitoneal injection of endotoxin (Escherichia coli lipopolysaccharide, LPS) (100 mg/kg), and associated with a high production of reactive oxygen species (ROS), have been observed in our previous studies. Antioxidants such as N-acetylcysteine (NAC) are free radical scavengers that improve and modulate the immune response, especially in oxidative stress situations. Therefore, in the present work, we have studied the effects of the administration of NAC (150 mg/kg i.p.) on different functions of peritoneal macrophages from Swiss mice suffering that oxidative stress, caused by LPS (100 mg/kg). NAC was injected 30 min after LPS injection, and the peritoneal macrophages were obtained at 2, 4, 12, and 24 h after endotoxin injection. The following functions, key stages of the phagocytic process, were studied: adherence to substrate, chemotaxis, ingestion of particles, and production of ROS (reactive oxygen species), as well as tumor necrosis factor (TNFalpha) release. The decrease in chemotaxis and the increase in adherence, ingestion, superoxide anion production, and TNFalpha release shown by macrophages from animals with oxidative stress were counteracted by NAC injection. These data suggest that NAC administration may be useful for the treatment of oxidative stress-linked endotoxic shock, modulating the function of macrophages, specifically in decreasing the production of ROS and of inflammatory cytokines such as TNFalpha.
Collapse
Affiliation(s)
- Víctor Manuel Víctor
- Department of Animal Physiology, Faculty of Biological Sciences, Complutense University, 28040 Madrid, Spain.
| | | | | |
Collapse
|
20
|
Keeney SE, Mathews MJ, Shattuck KE, Dallas DV. Endotoxin protection from oxygen toxicity: effect on pulmonary neutrophils and L-selectin. Inflammation 2002; 26:243-52. [PMID: 12238567 DOI: 10.1023/a:1019770703047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms by which sublethal doses of endotoxin protect against hyperoxic lung injury are not completely understood. We hypothesized that endotoxin treatment would result in a decreased inflammatory response to hyperoxia and that this would be accompanied by activation of neutrophils (as evidenced by loss of L-selectin) in the peripheral circulation. Adult rats were injected with endotoxin 0.5 mg/kg prior to and 24 hr after onset of exposure to > or = 98% O2. After 56 hr of hyperoxia, pulmonary neutrophils were lower in the O2/endotoxin group compared to O2 controls as measured by myeloperoxidase in lung homogenates and neutrophil counts in bronchoalveolar lavage fluid. Circulating neutrophils were also significantly lower in the O2/endotoxin group compared to O2 controls at 56 hr. Expression of the neutrophil adhesion molecule, L-selectin, was lower at 4 and 24 hr in the endotoxin-treated rats compared to O2 controls. There were no differences at 48 hr. Expression of CD18 rose significantly in the O2/endotoxin group after 4 hr, but thereafter did not differ from O2 controls. In summary, endotoxin protection from O2 toxicity was associated with reduced neutrophils in the lung and a loss of L-selectin from peripheral blood neutrophils.
Collapse
Affiliation(s)
- Susan E Keeney
- Department of Pediatrics, University of Texas Medical Branch, Galveston 77555, USA.
| | | | | | | |
Collapse
|
21
|
Abstract
OBJECTIVE To evaluate lipopolysaccharide (LPS)-induced activation of equine neutrophils in blood. SAMPLE POPULATION Blood samples from 5 healthy adult Thoroughbreds. PROCEDURES Neutrophil integrin (CD11/CD18) expression, size variation, degranulation, and deformability were measured with and without incubation with LPS. Time and concentration studies were done. The mechanism of endotoxin-induced neutrophil activation was investigated by inactivating complement or preincubating neutrophils with inhibitors of tumor necrosis factor-alpha (TNF-alpha) synthesis, prostaglandin-leukotriene synthesis, or platelet-activating factor. RESULTS Incubation of equine neutrophils with LPS increased cell surface expression of CD11/CD18, decreased neutrophil deformability, increased and decreased neutrophil size, and induced neutrophil degranulation. The LPS-induced neutrophil activation was attenuated by addition of inhibitors of TNF-alpha and prostaglandin-leukotriene synthesis. CONCLUSIONS AND CLINICAL RELEVANCE Equine neutrophils are readily activated in vitro by LPS, resulting in increased expression of integrin adhesion molecules, decreased deformability, variation in neutrophil size, and degranulation. The tests used to detect activated neutrophils in this study may be useful in detecting in vivo neutrophil activation in horses with sepsis and endotoxemia.
Collapse
Affiliation(s)
- Douglas J Weiss
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St Paul 55108, USA
| | | |
Collapse
|
22
|
Sentman ML, Brännström T, Marklund SL. EC-SOD and the response to inflammatory reactions and aging in mouse lung. Free Radic Biol Med 2002; 32:975-81. [PMID: 12008113 DOI: 10.1016/s0891-5849(02)00790-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lung is exposed to high oxygen tension and oxygen free radicals have been implicated in many pathologies of the organ. Extracellular superoxide dismutase occurs in high concentration in the lung and protects against hyperoxia-induced inflammation. We hypothesized that the enzyme might ameliorate other types of inflammation as well as aging-related changes of the organ. Tracheal instillation of endotoxin plus zymosan into extracellular superoxide dismutase knockout and wild-type mice resulted in a marked neutrophilic inflammation and increases in inflammatory cytokines, protein, and lactate dehydrogenase activity in the bronchoalveolar lavage fluid. There were no significant differences between the genotypes. Repeated challenges with ovalbumin caused an allergic inflammation with increases in eosinophils, interleukin-5, protein, and lactate dehydrogenase activity in the bronchoalveolar lavage fluid. Only minimal differences between the genotypes were found. In lungs from 2-year-old mice, marginal increases in inflammatory variables and fibrosis were found in the knockout mice. In conclusion, extracellular superoxide dismutase had a negligible role in the present inflammation and allergy models and for the long-term integrity of the organ.
Collapse
Affiliation(s)
- Marie Louise Sentman
- Department of Medical Biosciences, Clinical Chemistry, Umeå University Hospital, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
23
|
Gao XP, Standiford TJ, Rahman A, Newstead M, Holland SM, Dinauer MC, Liu QH, Malik AB. Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3974-82. [PMID: 11937554 DOI: 10.4049/jimmunol.168.8.3974] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We addressed the role of O(2) generated by the NADPH oxidase complex in the mechanism of polymorphonuclear leukocyte (PMN) accumulation and transalveolar migration and lung microvascular injury. Studies were made in mice lacking the p47(phox) and gp91(phox) subunits of NADPH oxidase (p47(phox-/-) and gp91(phox-/-)) in which PMN are incapable of the respiratory burst. The mice were challenged i.p. with live Escherichia coli to induce sepsis. We observed time-dependent increases in PMN sequestration and migration from 1 to 6 h after challenge with 2 x 10(8) E. coli. The responses in knockout mice were greater post-E. coli challenge compared with control mice; i.e., transalveolar PMN migration post-E. coli challenge increased by approximately 50% in the null mice above values in wild type. The increased PMN infiltration was associated with decreased lung bacterial clearance. The generation of the chemoattractant macrophage-inflammatory protein-2 in lung tissue was greater in NADPH oxidase-defective mice after E. coli challenge than control mice; moreover, macrophage-inflammatory protein-2 Ab pretreatment prevented the PMN infiltration. We also observed that E. coli failed to increase lung microvascular permeability in p47(phox-/-) and gp91(phox-/-) mice despite the greater lung PMN sequestration. Thus, O(2) production is required for the induction of sepsis-induced lung microvascular injury. We conclude that NADPH oxidase-derived O(2) generation has an important bactericidal role, such that an impairment in bacterial clearance in NADPH oxidase-defective mice results in increased chemokine generation and lung tissue PMN infiltration.
Collapse
Affiliation(s)
- Xiao-pei Gao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Grutkoski PS, D'Amico R, Ayala A, Simms HH. Tumor necrosis factor-alpha-stimulated polymorphonuclear leukocytes suppress migration and bactericidal activity of polymorphonuclear leukocytes in a paracrine manner. Crit Care Med 2002; 30:591-7. [PMID: 11990921 DOI: 10.1097/00003246-200203000-00017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Polymorphonuclear leukocytes (PMN) and tumor necrosis factor-alpha (TNF-alpha) play prominent roles in acute respiratory distress syndrome, ischemia-reperfusion injury, trauma, and sepsis. Whereas direct effects of TNF-alpha on PMN function and viability are well documented, little data are available addressing the ability of PMN to communicate with each other in response to cytokine stimulation. Therefore, the aim of this study was to determine whether TNF-alpha can modulate PMN function by inducing PMN to secrete products upon stimulation, which would affect other PMN in vitro in a manner independent of cell contact. METHODS PMN were purified daily from blood obtained from a pool of 22 healthy volunteers. Conditioned media (CM-TNF) was prepared by incubating PMN in Hanks' balanced salt solution plus TNF-alpha for 1-4 hrs. Freshly isolated PMN were resuspended in CM-TNF and analyzed for 1) phagocytosis of opsonized Escherichia coli, 2) oxidative metabolism as measured as an index of DCF-DA activation, and 3) migration to chemoattractants through Transwell inserts. RESULTS CM-TNF decreased PMN phagocytotic activity by 8% to 15% and completely suppressed oxidative metabolism but did not modulate the expression of receptors associated with these functions. CM-TNF suppressed the migration of PMN to two biologically relevant agents, N-formyl-methionyl-leucyl-phenylalanine and leukotriene B4, by approximately 65%, but had no effect on PMN migration to interleukin-8. This suppression was observed for migration across plastic filters as well as extracellular matrix proteins. CONCLUSION Our data demonstrate that PMN stimulated with TNF-alpha suppress the immunologic function and migration of other PMN independent of cell-cell contact and suggest that TNF-alpha may participate in a negative feedback loop by inducing a PMN-derived factor that counteracts its activity.
Collapse
Affiliation(s)
- Patricia S Grutkoski
- Division of Surgical Research, Rhode Island Hospital, and Brown University School of Medicine, Providence, USA
| | | | | | | |
Collapse
|
25
|
Wagner JG, Harkema JR, Roth RA. Pulmonary leukostasis and the inhibition of airway neutrophil recruitment are early events in the endotoxemic rat. Shock 2002; 17:151-8. [PMID: 11837792 DOI: 10.1097/00024382-200202000-00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neutrophil (polymorphonuclear leukocyte [PMN]) migration into pulmonary airspaces is a prerequisite for clearance of bacteria commonly found in nosocomial pneumonia. Patients at risk for nosocomial pneumonia often experience endotoxemia, and neutrophil dysfunction is associated with endotoxemia in both humans and animals. Using a rodent model of endotoxemia-associated pneumonia, we characterized the altered kinetics of pulmonary PMN trafficking and addressed the roles of platelets, tumor necrosis factor (TNF), and products of complement activation as potential mediators in the modulation of PMN migratory function. In male Sprague-Dawley rats made endotoxemic with intravenously (i.v.) administered endotoxin (lipopolysaccharide [LPS]), recruitment of PMNs into the lung airspaces in response to intratracheally (i.t.) instilled LPS was inhibited. In animals given IT LPS alone (0.5 mg/rat), numbers of airway PMNs were significantly elevated by 2 h, and immunohistochemical evaluation revealed PMNs in alveolar airspaces, alveolar walls, and in interstitium surrounding large airways. LPS (2 mg/kg i.v.) caused neutropenia and pulmonary PMN sequestration within 15 min of administration. Inhibition of airway PMN accumulation occurred by 30 min and lasted for at least 6 h after i.v. LPS. Factors present or activated after 30 min of endotoxemia were hypothesized to mediate the inhibitory effect of i.v. LPS. We found that pretreatment of rats with cobra venom factor to deplete complement (and C5a production) or immunodepletion of platelets or TNF did not affect the ability of i.v. LPS to inhibit pulmonary PMN recruitment or to cause pulmonary leukostasis. In summary, our results show that the inhibitory effects of i.v. LPS on PMN trafficking are rapid and persist for several hours and suggest that neither TNF, C5a, nor platelets are sufficient to mediate the inhibitory response.
Collapse
Affiliation(s)
- James G Wagner
- Department of Pharmacology, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
26
|
Duffy AJ, Nolan B, Sheth K, Collette H, De M, Bankey PE. Inhibition of alveolar neutrophil immigration in endotoxemia is macrophage inflammatory protein 2 independent. J Surg Res 2000; 90:51-7. [PMID: 10781375 DOI: 10.1006/jsre.2000.5835] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Altered transendothelial migration and delayed apoptosis of neutrophils (PMN) have been implicated as contributing to infection in patients with gram-negative sepsis. Macrophage inflammatory protein 2 (MIP-2) signals PMN immigration and may alter other PMN functions. We tested the hypothesis that sequential endotoxin challenge in vivo alters PMN apoptosis and chemotactic responses. MATERIALS AND METHODS Endotoxemia was induced in male Wistar rats (250 g) via intraperitoneal (IP) administration of LPS (4 mg/kg). After 18 h, intratracheal (IT) injection of LPS (400 microg/kg) was performed. Control animals received saline injections. Four hours after IT-LPS, circulating and bronchoalveolar lavage (BAL) PMN were isolated. PMN yields were calculated, and apoptosis was quantified after 18 h in culture by annexin V-fluorescein isothiocyanate FACS analysis. BAL MIP-2 concentrations were determined by ELISA. PMN chemotaxis to MIP-2 and IL-8 was determined using a fluorescent in vitro migration assay. RESULTS Endotoxemia (IP-LPS) significantly decreases BAL PMN yield in response to an in vivo IT-LPS challenge. IT-LPS inhibits BAL PMN apoptosis to the same extent as sequential IP/IT-LPS. Alveolar MIP-2 concentrations are similar in the two groups. In vitro migration to IL-8 and MIP-2 was inhibited in PMN from endotoxemic versus control animals. CONCLUSIONS These data demonstrate that endotoxemia inhibits PMN migration despite similar MIP-2 concentrations in the alveolus. Sequential insults do not affect the inhibition of apoptosis. In vitro, PMN from endotoxemic animals display impaired chemotaxis to MIP-2 and interleukin-8. This may result in an inadequate host defense that contributes to increased ICU-acquired pneumonia in septic patients.
Collapse
Affiliation(s)
- A J Duffy
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
27
|
Blease K, Chen Y, Hellewell PG, Burke-Gaffney A. Lipoteichoic Acid inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression and IL-8 Release in Human Lung Microvascular Endothelial Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.11.6139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Cell adhesion molecule expression (CAM) and IL-8 release in lung microvascular endothelium facilitate neutrophil accumulation in the lung. This study investigated the effects of lipoteichoic acid (LTA), a cell wall component of Gram-positive bacteria, alone and with LPS or TNF-α, on CAM expression and IL-8 release in human lung microvascular endothelial cells (HLMVEC). The concentration-dependent effects of Staphylococcus aureus (S. aureus) LTA (0.3–30 μg/ml) on ICAM-1 and E-selectin expression and IL-8 release were bell shaped. Streptococcus pyogenes (S. pyogenes) LTA had no effect on CAM expression, but caused a concentration-dependent increase in IL-8 release. S. aureus and S. pyogenes LTA (30 μg/ml) abolished LPS-induced CAM expression, and S. aureus LTA reduced LPS-induced IL-8 release. In contrast, the effects of S. aureus LTA with TNF-α on CAM expression and IL-8 release were additive. Inhibitory effects of LTA were not due to decreased HLMVEC viability, as assessed by ethidium homodimer-1 uptake. Changes in neutrophil adhesion to HLMVEC paralleled changes in CAM expression. Using RT-PCR to assess mRNA levels, S. aureus LTA (3 μg/ml) caused a protein synthesis-dependent reduction (75%) in LPS-induced IL-8 mRNA and decreased the IL-8 mRNA half-life from >6 h with LPS to ∼2 h. These results suggest that mechanisms exist to prevent excessive endothelial cell activation in the presence of high concentrations of bacterial products. However, inhibition of HLMVEC CAM expression and IL-8 release ultimately may contribute to decreased neutrophil accumulation, persistence of bacteria in the lung, and increased severity of infection.
Collapse
Affiliation(s)
| | - Yan Chen
- †Unit of Critical Care, National Heart and Lung Institute Division, Imperial College School of Medicine, London, United Kingdom; and
| | - Paul G. Hellewell
- ‡Section of Vascular Biology, University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Sheffield, United Kingdom
| | - Anne Burke-Gaffney
- *Applied Pharmacology and
- †Unit of Critical Care, National Heart and Lung Institute Division, Imperial College School of Medicine, London, United Kingdom; and
| |
Collapse
|