1
|
Soto-Avellaneda A, Oxford AE, Halla F, Vasquez P, Oe E, Pugel AD, Schoenfeld AM, Tillman MC, Cuevas A, Ortlund EA, Morrison BE. FABP5-binding lipids regulate autophagy in differentiated SH-SY5Y cells. PLoS One 2024; 19:e0300168. [PMID: 38900831 PMCID: PMC11189175 DOI: 10.1371/journal.pone.0300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/22/2024] [Indexed: 06/22/2024] Open
Abstract
The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
| | - Alexandra E. Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Fabio Halla
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Peyton Vasquez
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Emily Oe
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Anton D. Pugel
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Matthew C. Tillman
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - André Cuevas
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Brad E. Morrison
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| |
Collapse
|
2
|
Steffan BN, Townsend EA, Denlinger LC, Johansson MW. Eosinophil-Epithelial Cell Interactions in Asthma. Int Arch Allergy Immunol 2024; 185:1033-1047. [PMID: 38885626 PMCID: PMC11534548 DOI: 10.1159/000539309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Eosinophils have numerous roles in type 2 inflammation depending on their activation states in the blood and airway or after encounter with inflammatory mediators. Airway epithelial cells have a sentinel role in the lung and, by instructing eosinophils, likely have a foundational role in asthma pathogenesis. SUMMARY In this review, we discuss various topics related to eosinophil-epithelial cell interactions in asthma, including the influence of eosinophils and eosinophil products, e.g., granule proteins, on epithelial cell function, expression, secretion, and plasticity; the effects of epithelial released factors, including oxylipins, cytokines, and other mediators on eosinophils, e.g., on their activation, expression, and survival; possible mechanisms of eosinophil-epithelial cell adhesion; and the role of intra-epithelial eosinophils in asthma. KEY MESSAGES We suggest that eosinophils and their products can have both injurious and beneficial effects on airway epithelial cells in asthma and that there are bidirectional interactions and signaling between eosinophils and airway epithelial cells in asthma.
Collapse
Affiliation(s)
- Breanne N. Steffan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Elizabeth A. Townsend
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Mats W. Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Kalyvianaki K, Salampasi EM, Katsoulieris EN, Boukla E, Vogiatzoglou AP, Notas G, Castanas E, Kampa M. 5-Oxo-ETE/OXER1: A Link between Tumor Cells and Macrophages Leading to Regulation of Migration. Molecules 2023; 29:224. [PMID: 38202807 PMCID: PMC10780139 DOI: 10.3390/molecules29010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation is an important factor in the development of cancer. Macrophages found in tumors, known as tumor associated macrophages (TAMs), are key players in this process, promoting tumor growth through humoral and cellular mechanisms. 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), an arachidonic acid metabolite, has been described to possess a potent chemoattractant activity for human white blood cells (WBCs). The biological actions of 5-oxo-ETE are mediated through the GPCR 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid receptor (OXER1). In addition, we have previously reported OXER1 as one of the membrane androgen receptors with testosterone antagonizing 5-oxo-ETE's actions. OXER1 is highly expressed in inflammatory cells and many normal and cancer tissues and cells, including prostate and breast cancer, promoting cancer cell survival. In the present study we investigate the expression and role of OXER1 in WBCs, THP-1 monocytes, and THP-1 derived macrophages, as well as its possible role in the interaction between macrophages and cancer cells (DU-145 and T47D). We report that OXER1 is differentially expressed between WBCs and macrophages and that receptor expression is modified by LPS treatment. Our results show that testosterone and 5-oxo-ETE can act in an antagonistic way affecting Ca2+ movements, migration, and cytokines' expression in immune-related cells, in a differentiation-dependent manner. Finally, we report that 5-oxo-ETE, through OXER1, can attract macrophages to the tumor site while tumor cells' OXER1 activation in DU-145 prostate and T47D breast cancer cells, by macrophages, induces actin cytoskeletal changes and increases their migration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, 71500 Heraklion, Greece; (K.K.); (E.M.S.); (E.N.K.); (E.B.); (A.P.V.); (G.N.)
| |
Collapse
|
4
|
Cossette C, Miller LA, Ye Q, Chourey S, Reddy CN, Rokach J, Powell WS. Targeting the oxoeicosanoid (OXE) receptor with a selective antagonist inhibits allergen-induced pulmonary inflammation in non-human primates. Br J Pharmacol 2021; 179:322-336. [PMID: 34766334 DOI: 10.1111/bph.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 10/01/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-lipoxygenase product 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is a potent chemoattractant for eosinophils and neutrophils. However, little is known about its pathophysiological role because of the lack of a rodent ortholog of its OXE receptor. The present study aimed to determine whether the selective OXE receptor antagonist S-Y048 can inhibit allergen-induced pulmonary inflammation in a monkey model of asthma. EXPERIMENTAL APPROACH Monkeys sensitized to house dust mite antigen (HDM) were treated with either vehicle or S-Y048 prior to challenge with aerosolized HDM and bronchoalveolar (BAL) fluid was obtained 24 h later. After six weeks, animals that had initially been treated with vehicle received S-Y048 and vice versa for animals initially treated with S-Y048. Eosinophils and neutrophils in BAL and lung tissue samples were evaluated, as well as mucus-containing cells in bronchi. KEY RESULTS HDM significantly increased the numbers of eosinophils, neutrophils, and macrophages in BAL fluid 24 h after challenge. These responses were all significantly inhibited by S-Y048, which also reduced the numbers of eosinophils and neutrophils in lung tissue 24 h after challenge with HDM. S-Y048 also significantly reduced the numbers of bronchial epithelial cells staining for mucin and MUC5AC after antigen challenge. CONCLUSION AND IMPLICATIONS This study provides the first evidence that 5-oxo-ETE may play an important role in inducing allergen-induced pulmonary inflammation and could also be involved in regulating MUC5AC in goblet cells. OXE receptor antagonists such as S-Y048 may useful therapeutic agents in asthma and other eosinophilic as well as neutrophilic diseases.
Collapse
Affiliation(s)
- Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Lisa A Miller
- California National Primate Research Center, University of California, Davis, CA, United States
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Present address: Dept. Chemistry, Rice University, Houston, TX, USA
| | - Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Present address: Chemical Development Dept., Curia Global, Albany, NY, USA
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States.,Flamma USA LLC, Malvern, PA
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, Melbourne, Florida, United States
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Knuplez E, Sturm EM, Marsche G. Emerging Role of Phospholipase-Derived Cleavage Products in Regulating Eosinophil Activity: Focus on Lysophospholipids, Polyunsaturated Fatty Acids and Eicosanoids. Int J Mol Sci 2021; 22:4356. [PMID: 33919453 PMCID: PMC8122506 DOI: 10.3390/ijms22094356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.
Collapse
Affiliation(s)
| | | | - Gunther Marsche
- Otto Loewi Research Center, Division of Pharmacology, Medical University of Graz, 8010 Graz, Austria; (E.K.); (E.M.S.)
| |
Collapse
|
6
|
Powell WS, Rokach J. Targeting the OXE receptor as a potential novel therapy for asthma. Biochem Pharmacol 2020; 179:113930. [PMID: 32240653 PMCID: PMC10656995 DOI: 10.1016/j.bcp.2020.113930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology, McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC H4A 3J1, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901-6982, USA
| |
Collapse
|
7
|
Miller LA, Cossette C, Chourey S, Ye Q, Reddy CN, Rokach J, Powell WS. Inhibition of allergen-induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non-human primates. Br J Pharmacol 2020; 177:360-371. [PMID: 31655023 PMCID: PMC6989951 DOI: 10.1111/bph.14872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/13/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys. EXPERIMENTAL APPROACH In a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM. KEY RESULTS In a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM. CONCLUSIONS AND IMPLICATIONS 5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases.
Collapse
Affiliation(s)
- Lisa A. Miller
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| | - Shishir Chourey
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of Chemical DevelopmentAlbany Molecular Research Inc.Albany, New York
| | - Qiuji Ye
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Department of ChemistryRice UniversityHoustonTexas
| | - Chintam Nagendra Reddy
- Present address:
California National Primate Research CenterUniversity of CaliforniaDavisCaliforniaUSA
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
- Synthetic ChemistryOlon Ricerca Bioscience LLCConcordOhio
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFloridaUSA
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontreal, QuebecCanada
| |
Collapse
|
8
|
Ye Q, Chourey S, Reddy CN, Wang R, Cossette C, Gravel S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Novel highly potent OXE receptor antagonists with prolonged plasma lifetimes that are converted to active metabolites in vivo in monkeys. Br J Pharmacol 2020; 177:388-401. [PMID: 31655025 PMCID: PMC6989946 DOI: 10.1111/bph.14874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The 5-lipoxygenase product 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), acting through the OXE receptor, is a potent eosinophil chemoattractant that may be an important proinflammatory mediator in eosinophilic diseases such as asthma. We previously identified a series of indole-based OXE receptor antagonists that rapidly appear in the blood following oral administration but have limited lifetimes. The objective of this study was to increase the potency and plasma half-lives of these compounds and thereby identify the optimal candidate for future preclinical studies in monkeys, as rodents do not have an OXE receptor orthologue. EXPERIMENTAL APPROACH We synthesized a series of substituted phenylalkyl indoles and compared their antagonist potencies, pharmacokinetics, and metabolism to those of our earlier compounds. The potencies of some of their metabolites were also investigated. KEY RESULTS Among the compounds tested, the S-enantiomer of the m-chlorophenyl compound (S-Y048) was the most potent, with an pIC50 of about 10.8 for inhibition of 5-oxo-ETE-induced calcium mobilization in human neutrophils. When administered orally to cynomolgus monkeys, S-Y048 rapidly appeared in the blood and had a half-life in plasma of over 7 hr, considerably longer than any of the other OXE analogues tested. A major hydroxylated metabolite, with a potency close to that of its precursor, was identified in plasma. CONCLUSION AND IMPLICATIONS Because of its highly potent antagonist activity and its long lifetime in vivo, S-Y048 may be a useful anti-inflammatory agent for the treatment of eosinophilic diseases such as asthma, allergic rhinitis, and atopic dermatitis.
Collapse
Affiliation(s)
- Qiuji Ye
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Department of ChemistryRice UniversityHoustonTexas
| | - Shishir Chourey
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Chemical Development DepartmentAlbany Molecular Research Inc.AlbanyNew York
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
- Present address:
Synthetic ChemistryOlon Ricerca BioscienceConcordOhio
| | - Rui Wang
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
| | - Chantal Cossette
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| | - Sylvie Gravel
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| | - Irina Slobodchikova
- Department of Chemistry and Biochemistry and PERFORM CentreConcordia UniversityMontrealQCCanada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry and PERFORM CentreConcordia UniversityMontrealQCCanada
| | - Joshua Rokach
- Claude Pepper Institute and Department of ChemistryFlorida Institute of TechnologyMelbourneFlorida
| | - William S. Powell
- Meakins‐Christie Laboratories, Centre for Translational BiologyMcGill University Health CentreMontrealQCCanada
| |
Collapse
|
9
|
Jiang YX, Shi WJ, Ma DD, Zhang JN, Ying GG, Zhang H, Ong CN. Dydrogesterone exposure induces zebrafish ovulation but leads to oocytes over-ripening: An integrated histological and metabolomics study. ENVIRONMENT INTERNATIONAL 2019; 128:390-398. [PMID: 31078873 DOI: 10.1016/j.envint.2019.04.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 05/21/2023]
Abstract
Dydrogesterone (DDG) is a synthetic progestin widely used in numerous gynecological diseases. DDG has been shown to disturb fish reproduction, however, the mechanism is still unclear. Here we studied the histological changes and differences of metabolome between exposed and control fish gonads after exposure of zebrafish (Danio rerio) embryos to 2.8, 27.6, and 289.8 ng/L DDG until sexual maturity for a total of 140 days. Dydrogesterone exposure led to male-biased zebrafish sex ratios. Histological examination revealed that DDG induced postovulatory follicles and atretic follicles in the ovary of the female fish. Postovulatory follicles indicated the occurrence of ovulation. DDG also increased spermatids and spermatozoa in the male fish testis, suggesting promotion of spermatogenesis. Ovarian metabolome showed that DDG increased the concentrations of free amino acids, urea, putrescine, free fatty acids, acylcarnitines, lysophospholipids, and other metabolites catabolized from phospholipids. Most of these metabolites are biodegradation products of proteins and lipids, suggesting the existence of ovulated oocytes over-ripening. Further, DDG upregulated arachidonic acid (AA) and its 5‑lipoxygenase (5-LOX) metabolites 5‑oxo‑6,8,11,14‑eicosatetraenoic acid (5-oxo-ETE) in the ovary, which could lead to suppression of AA cyclooxygenase (COX) metabolite prostaglandin F2α (PGF2α). It is believed that AA induced oocyte maturation, while 5-oxo-ETE and related metabolites in purinergic signaling promoted ovulation. Whereas, the suppression of PGF2α production might block spawning and damaged follicular tissue digestion, which explained the oocytes over-ripening and atretic follicles in the treated ovary. Overall, our results suggested that DDG exposure induced zebrafish oocyte maturation and ovulation but led to oocytes over-ripening via the AA metabolic pathway and purinergic signaling.
Collapse
Affiliation(s)
- Yu-Xia Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jin-Na Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Choon-Nam Ong
- School of Public Health, National University of Singapore, 117547, Singapore.
| |
Collapse
|
10
|
Bautzova T, Hockley JRF, Perez-Berezo T, Pujo J, Tranter MM, Desormeaux C, Barbaro MR, Basso L, Le Faouder P, Rolland C, Malapert P, Moqrich A, Eutamene H, Denadai-Souza A, Vergnolle N, Smith ESJ, Hughes DI, Barbara G, Dietrich G, Bulmer DC, Cenac N. 5-oxoETE triggers nociception in constipation-predominant irritable bowel syndrome through MAS-related G protein-coupled receptor D. Sci Signal 2018; 11:eaal2171. [PMID: 30563864 PMCID: PMC6411128 DOI: 10.1126/scisignal.aal2171] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Irritable bowel syndrome (IBS) is a common gastrointestinal disorder that is characterized by chronic abdominal pain concurrent with altered bowel habit. Polyunsaturated fatty acid (PUFA) metabolites are increased in abundance in IBS and are implicated in the alteration of sensation to mechanical stimuli, which is defined as visceral hypersensitivity. We sought to quantify PUFA metabolites in patients with IBS and evaluate their role in pain. Quantification of PUFA metabolites by mass spectrometry in colonic biopsies showed an increased abundance of 5-oxoeicosatetraenoic acid (5-oxoETE) only in biopsies taken from patients with IBS with predominant constipation (IBS-C). Local administration of 5-oxoETE to mice induced somatic and visceral hypersensitivity to mechanical stimuli without causing tissue inflammation. We found that 5-oxoETE directly acted on both human and mouse sensory neurons as shown by lumbar splanchnic nerve recordings and Ca2+ imaging of dorsal root ganglion (DRG) neurons. We showed that 5-oxoETE selectively stimulated nonpeptidergic, isolectin B4 (IB4)-positive DRG neurons through a phospholipase C (PLC)- and pertussis toxin-dependent mechanism, suggesting that the effect was mediated by a G protein-coupled receptor (GPCR). The MAS-related GPCR D (Mrgprd) was found in mouse colonic DRG afferents and was identified as being implicated in the noxious effects of 5-oxoETE. Together, these data suggest that 5-oxoETE, a potential biomarker of IBS-C, induces somatic and visceral hyperalgesia without inflammation in an Mrgprd-dependent manner. Thus, 5-oxoETE may play a pivotal role in the abdominal pain associated with IBS-C.
Collapse
Affiliation(s)
- Tereza Bautzova
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - James R F Hockley
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Teresa Perez-Berezo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Julien Pujo
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Michael M Tranter
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Cleo Desormeaux
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | | | - Lilian Basso
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pauline Le Faouder
- INSERM UMR1048, Lipidomic Core Facility, Metatoul Platform, Université de Toulouse, Toulouse, France
| | - Corinne Rolland
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Helene Eutamene
- Neuro-Gastroenterology and Nutrition Team, UMR 1331, INRA Toxalim, INP-EI-Purpan, Université de Toulouse, Toulouse, France
| | | | - Nathalie Vergnolle
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
- Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
| | - David I Hughes
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Gilles Dietrich
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB1 2PD, UK
- National Centre for Bowel Research and Surgical Innovation, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AJ, UK
| | - Nicolas Cenac
- INSERM, UMR1220, IRSD, Université de Toulouse, INRA, ENVT, UPS, Toulouse, France.
| |
Collapse
|
11
|
Chourey S, Ye Q, Reddy CN, Wang R, Cossette C, Gravel S, Slobodchikova I, Vuckovic D, Rokach J, Powell WS. Novel Highly Potent and Metabolically Resistant Oxoeicosanoid (OXE) Receptor Antagonists That Block the Actions of the Granulocyte Chemoattractant 5-Oxo-6,8,11,14-Eicosatetraenoic Acid (5-oxo-ETE). J Med Chem 2018; 61:5934-5948. [PMID: 29972644 DOI: 10.1021/acs.jmedchem.8b00154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent lipid mediator that induces tissue eosinophilia via the selective OXE receptor (OXE-R), which is an attractive therapeutic target in eosinophilic diseases. We previously identified indole OXE-R antagonists that block 5-oxo-ETE-induced primate eosinophil activation. Although these compounds possess good oral absorption, their plasma levels decline rapidly due to extensive oxidation of their hexyl side chain. We have now succeeded in dramatically increasing antagonist potency and resistance to metabolism by replacing the hexyl group with phenylpentyl or phenylhexyl side chains. Compared with our previous lead compound S-230, our most potent antagonist, S-C025, has an IC50 (120 pM) over 80 times lower and a substantially longer plasma half-life. A single major metabolite, which retains antagonist activity (IC50, 690 pM) and has a prolonged lifetime in plasma was observed. These new highly potent OXE-R antagonists may provide a novel strategy for the treatment of eosinophilic disorders like asthma.
Collapse
Affiliation(s)
- Shishir Chourey
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Qiuji Ye
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Chintam Nagendra Reddy
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Rui Wang
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - Chantal Cossette
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| | - Sylvie Gravel
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| | - Irina Slobodchikova
- Department of Chemistry and Biochemistry and PERFORM Centre , Concordia University , 7141 Sherbrooke Street West , Montréal , Quebec H4B 1R6 , Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry and PERFORM Centre , Concordia University , 7141 Sherbrooke Street West , Montréal , Quebec H4B 1R6 , Canada
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology , 150 West University Boulevard , Melbourne , Florida 32901-6982 , United States
| | - William S Powell
- Meakins-Christie Laboratories, Centre for Translational Biology , McGill University Health Centre , 1001 Decarie Boulevard , Montreal , Quebec H4A 3J1 , Canada
| |
Collapse
|
12
|
Larose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma. Front Med (Lausanne) 2017; 4:136. [PMID: 28848734 PMCID: PMC5554517 DOI: 10.3389/fmed.2017.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
13
|
Powell WS, Rokach J. Biosynthesis, biological effects, and receptors of hydroxyeicosatetraenoic acids (HETEs) and oxoeicosatetraenoic acids (oxo-ETEs) derived from arachidonic acid. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:340-55. [PMID: 25449650 DOI: 10.1016/j.bbalip.2014.10.008] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | - Joshua Rokach
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| |
Collapse
|
14
|
Ochkur SI, Protheroe CA, Li W, Colbert DC, Zellner KR, Shen HH, Luster AD, Irvin CG, Lee JJ, Lee NA. Cys-leukotrienes promote fibrosis in a mouse model of eosinophil-mediated respiratory inflammation. Am J Respir Cell Mol Biol 2014; 49:1074-84. [PMID: 23859654 DOI: 10.1165/rcmb.2013-0009oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leukotrienes (i.e., products of the 5-lipoxygenase pathway) are thought to be contributors to lung pathologies. Moreover, eosinophils have been linked with pulmonary leukotriene activities both as potential sources of these mediators and as responding effector cells. The objective of the present study was to define the role(s) of leukotrienes in the lung pathologies accompanying eosinophil-associated chronic respiratory inflammation. A transgenic mouse model of chronic T helper (Th) 2-driven inflammation expressing IL-5 from T cells and human eotaxin-2 locally in the lung (I5/hE2) was used to define potential in vivo relationships among eosinophils, leukotrienes, and chronic Th2-polarized pulmonary inflammation. Airway levels of cys-leukotrienes and leukotriene B4 (LTB4) are both significantly elevated in I5/hE2 mice. The eosinophil-mediated airway hyperresponsiveness (AHR) characteristic of these mice was abolished in the absence of leukotrienes (i.e., 5-lipoxygenase-deficient I5/hE2). More importantly, the loss of leukotrienes led to an unexpectedly significant decrease in collagen deposition (i.e., pulmonary fibrosis) that accompanied elevated levels of IL-4/-13 and TGF-β in the lungs of I5/hE2 mice. Further studies using mice deficient for the LTB4 receptor (BLT-1(-/-)/I5/hE2) and I5/hE2 animals administered a cys-leukotriene receptor antagonist (montelukast) demonstrated that the AHR and the enhanced pulmonary fibrosis characteristic of the I5/hE2 model were uniquely cys-leukotriene-mediated events. These data demonstrate that, similar to allergen challenge models of wild-type mice, cys-leukotrienes underlie AHR in this transgenic model of severe pulmonary Th2 inflammation. These data also suggest that an underappreciated link exists among eosinophils, cys-leukotriene-mediated events, and fibrotic remodeling associated with elevated levels of IL-4/-13 and TGF-β.
Collapse
Affiliation(s)
- Sergei I Ochkur
- 1 Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Powell WS, Rokach J. The eosinophil chemoattractant 5-oxo-ETE and the OXE receptor. Prog Lipid Res 2013; 52:651-65. [PMID: 24056189 DOI: 10.1016/j.plipres.2013.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/10/2013] [Indexed: 01/04/2023]
Abstract
5-Oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid) is formed from the 5-lipoxygenase product 5-HETE (5S-hydroxy-6,8,11,14-eicosatetraenoic acid) by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). The cofactor NADP(+) is a limiting factor in the synthesis of 5-oxo-ETE because of its low concentrations in unperturbed cells. Activation of the respiratory burst in phagocytic cells, oxidative stress, and cell death all dramatically elevate both intracellular NADP(+) levels and 5-oxo-ETE synthesis. 5-HEDH is widely expressed in inflammatory, structural, and tumor cells. Cells devoid of 5-lipoxygenase can synthesize 5-oxo-ETE by transcellular biosynthesis using inflammatory cell-derived 5-HETE. 5-Oxo-ETE is a chemoattractant for neutrophils, monocytes, and basophils and promotes the proliferation of tumor cells. However, its primary target appears to be the eosinophil, for which it is a highly potent chemoattractant. The actions of 5-oxo-ETE are mediated by the highly selective OXE receptor, which signals by activating various second messenger pathways through the release of the βγ-dimer from Gi/o proteins to which it is coupled. Because of its potent effects on eosinophils, 5-oxo-ETE may be an important mediator in asthma, and, because of its proliferative effects, may also contribute to tumor progression. Selective OXE receptor antagonists, which are currently under development, could be useful therapeutic agents in asthma and other allergic diseases.
Collapse
Key Words
- 12-HHT
- 12-hydroxy-5Z,8E,10E-heptadecatrienoic acid
- 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid
- 5,12-diHETE
- 5,15-diHETE
- 5-HEDH
- 5-HEPE
- 5-HETE
- 5-HETrE
- 5-HODE
- 5-HpETE
- 5-LO
- 5-Lipoxygenase
- 5-Oxo-ETE
- 5-hydroxyeicosanoid dehydrogenase
- 5-lipoxygenase
- 5-oxo-12-HETE
- 5-oxo-12S-hydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5-oxo-15-HETE
- 5-oxo-15S-hydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5-oxo-20-HETE
- 5-oxo-20-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5-oxo-6E,8Z,11Z-eicosatrienoic acid
- 5-oxo-6E,8Z-octadecadienoic acid
- 5-oxo-7-glutathionyl factor-8,11,14-eicosatrienoic acid
- 5-oxo-EPE
- 5-oxo-ETE
- 5-oxo-ETrE
- 5-oxo-ODE
- 5S,12S-dihydroxy-6E,8Z,10E,14Z-eicosatetraenoic acid
- 5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic acid
- 5S-hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid
- 5S-hydroxy-6E,8Z,11Z-eicosatrienoic acid
- 5S-hydroxy-6E,8Z-octadecadienoic acid
- 5Z,8Z,11Z,14Z,17Z-eicosapentaenoic acid
- 5Z,8Z,11Z-eicosatrienoic acid
- 5Z,8Z-octadecadienoic acid
- Asthma
- Chemoattractants
- DHA
- ECL
- EPA
- Eosinophils
- FOG(7)
- G protein-coupled receptor
- GPCR
- Inflammation
- LT
- LXA(4)
- Mead acid
- PAF
- PI3K
- PLC
- PMA
- PUFA
- Sebaleic acid
- StAR
- eosinophil chemotactic lipid
- leukotriene
- lipoxin A(4)
- phorbol myristate acetate
- phosphoinositide-3 kinase
- phospholipase C
- platelet-activating
- polyunsaturated fatty acid
- steroidogenic acute regulatory protein
- uPAR
- urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- William S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada.
| | | |
Collapse
|
16
|
Gore V, Patel P, Chang CT, Sivendran S, Kang N, Ouedraogo YP, Gravel S, Powell WS, Rokach J. 5-Oxo-ETE receptor antagonists. J Med Chem 2013; 56:3725-32. [PMID: 23581530 DOI: 10.1021/jm400480j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Oxo-ETE is the most powerful eosinophil chemoattractant among lipid mediators. Eosinophil infiltration into the lungs of asthmatics may be responsible for the late phase of inflammatory asthma. We have designed and synthesized a 5-oxo-ETE receptor antagonist, the purpose of which is to prevent eosinophil migration to the lung during an asthma attack and thereby reduce asthma symptoms.
Collapse
Affiliation(s)
- Vivek Gore
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, Florida 32901, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Provost V, Larose MC, Langlois A, Rola-Pleszczynski M, Flamand N, Laviolette M. CCL26/eotaxin-3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin-1 and CCL24/eotaxin-2. J Leukoc Biol 2013; 94:213-22. [PMID: 23532518 DOI: 10.1189/jlb.0212074] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CCL11, CCL24, and CCL26 are chemokines involved in the recruitment of eosinophils into tissues and mainly activate CCR3. Whereas the genomic or pharmacological inhibition of CCR3 prevents the development of experimental asthma in rodents, it only impairs the recruitment of eosinophils by ∼40% in humans. As humans, but not rodents, express CCL26, we investigated the impact of CCL11, CCL24, and CCL26 on human eosinophils recruitment and evaluated the involvement of CCR3. The migration of eosinophils of healthy volunteers was similar for the three eotaxins. Eosinophils of mild asthmatics had a greater response to CCL11 and a much greater response to CCL26. Whereas all eotaxins induced the migration of eosinophil of asthmatics from 0 to 6 h, CCL26 triggered a second phase of migration between 12 and 18 h. Given that the CCR3 antagonists SB 328437 and SB 297006 inhibited the 5-oxo-eicosatetraenoate-induced migration of eosinophils and that the CCR3 antagonist UCB 35625 was not specific for CCR3, CCR3 blockade was performed with the CCR3 mAb. This antibody completely blocked the effect of all eotaxins on eosinophils of healthy subjects and the effect of CCL24 on the eosinophils of asthmatics. Interestingly, CCR3 blockade did not affect the second migration phase induced by CCL26 on eosinophils of asthmatics. In conclusion, CCL26 is a more effective chemoattractant than CCL11 and CCL24 for eosinophils of asthmatics. The mechanism of this greater efficiency is not yet defined. However, these results suggest that CCL26 may play a unique and important role in the recruitment of eosinophils in persistent asthma.
Collapse
|
18
|
Provost V, Langlois A, Chouinard F, Rola-Pleszczynski M, Chakir J, Flamand N, Laviolette M. Leukotriene D4 and interleukin-13 cooperate to increase the release of eotaxin-3 by airway epithelial cells. PLoS One 2012; 7:e43544. [PMID: 22952702 PMCID: PMC3432028 DOI: 10.1371/journal.pone.0043544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Airway epithelial cells play a central role in the physiopathology of asthma. They release eotaxins when treated with T(H)2 cytokines such as interleukin (IL)-4 or IL-13, and these chemokines attract eosinophils and potentiate the biosynthesis of cysteinyl leukotrienes (cysLTs), which in turn induce bronchoconstriction and mucus secretion. These effects of cysLTs mainly mediated by CysLT(1) and CysLT(2) receptors on epithelial cell functions remain largely undefined. Because the release of inflammatory cytokines, eotaxins, and cysLTs occur relatively at the same time and location in the lung tissue, we hypothesized that they regulate inflammation cooperatively rather than redundantly. We therefore investigated whether cysLTs and the T(H)2 cytokines would act in concert to augment the release of eotaxins by airway epithelial cells. METHODS A549 cells or human primary bronchial epithelial cells were incubated with or without IL-4, IL-13, and/or LTD(4). The release of eotaxin-3 and the expression of cysLT receptors were assessed by ELISA, RT-PCR, and flow cytometry, respectively. RESULTS IL-4 and IL-13 induced the release of eotaxin-3 by airway epithelial cells. LTD(4) weakly induced the release of eotaxin-3 but clearly potentiated the IL-13-induced eotaxin-3 release. LTD(4) had no effect on IL-4-stimulated cells. Epithelial cells expressed CysLT(1) but not CysLT(2). CysLT(1) expression was increased by IL-13 but not by IL-4 and/or LTD(4). Importantly, the upregulation of CysLT(1) by IL-13 preceded eotaxin-3 release. CONCLUSIONS These results demonstrate a stepwise cooperation between IL-13 and LTD(4). IL-13 upregulates CysLT(1) expression and consequently the response to cysLTs This results in an increased release of eotaxin-3 by epithelial cells which at its turn increases the recruitment of leukocytes and their biosynthesis of cysLTs. This positive amplification loop involving epithelial cells and leukocytes could be implicated in the recruitment of eosinophils observed in asthmatics.
Collapse
Affiliation(s)
- Véronique Provost
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Anick Langlois
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - François Chouinard
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | | | - Jamila Chakir
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- * E-mail: (NF); (ML)
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
- * E-mail: (NF); (ML)
| |
Collapse
|
19
|
Affiliation(s)
- Motonao Nakamura
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Hongo, Tokyo, Japan.
| | | |
Collapse
|
20
|
Patel P, Gore V, Powell WS, Rokach J. C20-trifluoro-5-oxo-ETE: a metabolically stable 5-oxo-ETE derivative. Bioorg Med Chem Lett 2011; 21:1987-90. [PMID: 21377873 PMCID: PMC3062511 DOI: 10.1016/j.bmcl.2011.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 11/27/2022]
Abstract
The total synthesis of C(20)-trifluoro-6(E),8(Z),11(Z),14(Z) 5-oxo-ETE is reported. This compound was designed as an ω-oxidation-resistant analog of 5-oxo-ETE that would be resistant to metabolism. The trifluoro derivative of 5-oxo-ETE stimulated calcium mobilization in neutrophils and desensitized these cells to subsequent exposure to 5-oxo-ETE.
Collapse
Affiliation(s)
- Pranav Patel
- Claude Pepper Institute and Department of Chemistry, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA
| | | | | | | |
Collapse
|
21
|
Masferrer JL, Zweifel BS, Hardy M, Anderson GD, Dufield D, Cortes-Burgos L, Pufahl RA, Graneto M. Pharmacology of PF-4191834, a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. J Pharmacol Exp Ther 2010; 334:294-301. [PMID: 20378715 DOI: 10.1124/jpet.110.166967] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-Lipoxygenase (LOX) is an important arachidonic acid-metabolizing enzyme producing leukotrienes and other proinflammatory lipid mediators with potent pathophysiological functions in asthma and other inflammatory diseases. 4-(3-(4-(1-Methyl-1H-pyrazol-5-yl)phenylthio)phenyl)-tetrahydro-2H-pyran-4-carboxamide (PF-4191834) is a novel, selective non-redox 5-lipoxygenase inhibitor effective in inflammation and pain. In vitro and in vivo assays were developed for the evaluation of a novel 5-LOX inhibitor using conditions of maximal enzyme activity. PF-4191834 exhibits good potency in enzyme- and cell-based assays, as well as in a rat model of acute inflammation. Enzyme assay results indicate that PF-4191834 is a potent 5-LOX inhibitor, with an IC(50) = 229 +/- 20 nM. Furthermore, it demonstrated approximately 300-fold selectivity for 5-LOX over 12-LOX and 15-LOX and shows no activity toward the cyclooxygenase enzymes. In addition, PF-4191834 inhibits 5-LOX in human blood cells, with an IC(80) = 370 +/- 20 nM. This inhibitory concentration correlates well with plasma exposures needed for in vivo efficacy in inflammation in models of inflammatory pain. The combination of potency in cells and in vivo, together with a sustained in vivo effect, provides PF-4191834 with an overall pharmacodynamic improvement consistent with once a day dosing.
Collapse
Affiliation(s)
- Jaime L Masferrer
- Inflammation Research Unit, Pfizer Global Research & Development, St. Louis Laboratories, Pfizer Inc., Chesterfield, Missouri, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Grant GE, Rokach J, Powell WS. 5-Oxo-ETE and the OXE receptor. Prostaglandins Other Lipid Mediat 2009; 89:98-104. [PMID: 19450703 DOI: 10.1016/j.prostaglandins.2009.05.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Accepted: 05/06/2009] [Indexed: 11/26/2022]
Abstract
5-Oxo-ETE is a product of the 5-lipoxygenase pathway that is formed by the oxidation of 5-HETE by 5-hydroxyeicosanoid dehydrogenase (5-HEDH). 5-HEDH is a microsomal NADP(+)-dependent enzyme that is highly selective for 5-HETE. 5-Oxo-ETE synthesis is regulated by intracellular NADP(+) levels and is dramatically increased under conditions that favor oxidation of NADPH to NADP(+) such as oxidative stress and the respiratory burst in phagocytic cells. 5-Oxo-ETE is a potent chemoattractant for eosinophils and has similar effects on neutrophils, basophils and monocytes. It elicits infiltration of eosinophils and, to a lesser extent, neutrophils into the skin after intradermal injection in humans. It also promotes the survival of tumor cells and has been shown to block the induction of apoptosis by 5-LO inhibitors. 5-Oxo-ETE acts by the G(i/o)-coupled OXE receptor, which was also known as TG1019, R527 and hGPCR48. Although the pathophysiological role of 5-oxo-ETE is not well understood, it may play important roles in asthma and allergic diseases, cancer, and cardiovascular disease. The availability of a selective antagonist would help to clarify the role of 5-oxo-ETE and may be of therapeutic benefit.
Collapse
Affiliation(s)
- Gail E Grant
- Meakins-Christie Laboratories, McGill University, QC, Canada
| | | | | |
Collapse
|
23
|
Shinagawa K, Ploplis VA, Castellino FJ. A severe deficiency of coagulation factor VIIa results in attenuation of the asthmatic response in mice. Am J Physiol Lung Cell Mol Physiol 2009; 296:L763-70. [PMID: 19286924 DOI: 10.1152/ajplung.90638.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eosinophil counts in the bronchoalveolar lavage fluid of wild-type (WT) mice increased after ovalbumin (OVA) challenge, a response that was diminished in comparably challenged low-expressing coagulation factor VII (FVII(tTA/tTA)) mice. Levels of T helper type 2 (Th2) cytokines, IL-4, IL-5, and IL-13, and eosinophil-attracting chemokines, eotaxin and RANTES, were also lower in the OVA-challenged FVII(tTA/tTA) mice. Eosinophils purified from low-FVII mice underwent apoptosis at a faster rate compared with WT eosinophils, and eosinophil migration in response to eotaxin was reduced in eosinophils obtained from FVII(tTA/tTA) mice. Airway hyperresponsiveness and mucous layer thickness were reduced in OVA-treated FVII(tTA/tTA) mice, and addition of exogenous coagulation factor X (FX) enhanced mucin production in human epithelial NCI-H292 cells. Correspondingly, incubation of FX with NCI-H292 cells resulted in activated (a) FX production, suggesting that the components required for FX activation were present on NCI-H292 cells. These results demonstrate that FVIIa functions in the asthmatic response to an allergen by stimulating lung eosinophilia, airway hyperresponsiveness, and mucin production, this latter effect through its ability to activate FX in conjunction with tissue factor.
Collapse
|
24
|
The urokinase system in patients with intermittent and persistent allergic rhinitis. Blood Coagul Fibrinolysis 2008; 19:685-8. [DOI: 10.1097/mbc.0b013e32830b287d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Zweifel BS, Hardy MM, Anderson GD, Dufield DR, Pufahl RA, Masferrer JL. A rat air pouch model for evaluating the efficacy and selectivity of 5-lipoxygenase inhibitors. Eur J Pharmacol 2008; 584:166-74. [PMID: 18295198 DOI: 10.1016/j.ejphar.2008.01.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/03/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
Abstract
The 5-lipoxygenase (5-LOX) pathway has been associated with a variety of inflammatory diseases including asthma, atherosclerosis, rheumatoid arthritis, pain, cancer and liver fibrosis. Several classes of 5-LOX inhibitors have been identified, but only one drug, zileuton, a redox inhibitor of 5-LOX, has been approved for clinical use. To better evaluate the efficacy of 5-LOX inhibitors for pharmacological intervention, a rat model was modified to test the in vivo efficacy of 5-LOX inhibitors. Inflammation was produced by adding carrageenan into a newly formed air pouch and prostaglandins produced. While macrophages and neutrophils are present in the inflamed pouch, little 5-LOX products are formed. Cellular 5-LOX activation was obtained by adding calcium ionophore (A23187) into the pouch thus providing a novel model to evaluate the efficacy and selectivity of 5-LOX inhibitors. Also, we described modifications to the in vitro 5-LOX enzyme and cell assays. These assays included a newly developed fluorescence-based enzyme assay, a 5-LOX redox assay, an ex vivo human whole blood assay and an IgE-stimulated rat mast cell assay, all designed for maximal production of leukotrienes. Zileuton and CJ-13,610, a competitive, non-redox inhibitor of 5-LOX, were evaluated for their pharmacological properties using these assays. Although both compounds achieved dose-dependent inhibition of 5-LOX enzyme activity, CJ-13,610 was 3-4 fold more potent than zileuton in all-assays. Evaluation of 5-LOX metabolites-by LC/MS/MS and ELISA confirmed that both compounds selectively inhibited all products downstream of 5-hydroperoxy eicosatetraenoic acid (5-HPETE), including 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxoETE), without inhibition of 12-lipoxygenase (12-LOX), 15-lipoxygenase (15-LOX), or cyclooxygenase (COX) products. In the rat air pouch model, oral dosing of CJ-13,610 and zileuton resulted in selective inhibition 5-LOX activity from pouch exudate and ex vivo rat whole blood with similar potency to in vitro assay. These data show that the rat air pouch model is a reliable and useful tool for evaluating in vivo efficacy of 5-LOX inhibitors and may aid in the development of the next generation of 5-LOX inhibitors, such as the non-redox inhibitors similar to CJ-13,610.
Collapse
Affiliation(s)
- Ben S Zweifel
- Pfizer Global Research & Development, Pfizer Inc., St. Louis, MO 63017, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Swaisgood CM, Aronica MA, Swaidani S, Plow EF. Plasminogen is an important regulator in the pathogenesis of a murine model of asthma. Am J Respir Crit Care Med 2007; 176:333-42. [PMID: 17541016 PMCID: PMC1994216 DOI: 10.1164/rccm.200609-1345oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 05/30/2007] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Asthma is a syndrome whose common pathogenic expression is inflammation of the airways. Plasminogen plays an important role in cell migration and is also implicated in tissue remodeling, but its role in asthma has not been defined. OBJECTIVES To test whether plasminogen is a critical component in the development of asthma. METHODS We used a mouse model of ovalbumin-induced pulmonary inflammation in Plg(+/+), Plg(+/-), and Plg(-/-) mice. MEASUREMENTS AND MAIN RESULTS The host responses measured included lung morphometry, and inflammatory mediators and cell counts were assessed in bronchoalveolar lavage fluid. Bronchoalveolar lavage demonstrated a marked increase in eosinophils and lymphocytes in ovalbumin-treated Plg(+/+) mice, which were reduced to phosphate-buffered saline-treated control levels in Plg(+/-) or Plg(-/-) mice. Lung histology revealed peribronchial and perivascular leukocytosis, mucus production, and increased collagen deposition in ovalbumin-treated Plg(+/+) but not in Plg(+/-) or Plg(-/-) mice. IL-5, tumor necrosis factor-alpha, and gelatinases, known mediators of asthma, were detected in bronchoalveolar lavage fluid of ovalbumin-treated Plg(+/+) mice, yet were reduced in Plg(-/-) mice. Administration of the plasminogen inhibitor, tranexamic acid, reduced eosinophil and lymphocyte numbers, mucus production, and collagen deposition in the lungs of ovalbumin-treated Plg(+/+) mice. CONCLUSIONS The decreased inflammation in the lungs of Plg(-/-) mice and its blockade with a plasminogen inhibitor indicate that plasminogen plays an important role in orchestrating the asthmatic response and suggests that plasminogen may be a therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Carmen M Swaisgood
- Cleveland Clinic, Department of Molecular Cardiology, NB50, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
27
|
Blanchet MR, Langlois A, Israël-Assayag E, Beaulieu MJ, Ferland C, Laviolette M, Cormier Y. Modulation of eosinophil activation in vitro by a nicotinic receptor agonist. J Leukoc Biol 2007; 81:1245-51. [PMID: 17289799 DOI: 10.1189/jlb.0906548] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Nicotinic receptor agonists decreased the infiltration of eosinophils into the lung and airways in a mouse model of asthma. To better understand the mechanisms implicated in this anti-inflammatory phenomenon, the expression of nicotinic acetylcholine receptors (nAChRs) and the effect of dimethylphenylpiperazinium (DMPP), a nonselective nAChR agonist, on human blood eosinophils were studied. The expression of alpha-3, -4, and -7 nAChR subunits on human blood eosinophils was measured by cell ELISA and immunocytochemistry. mRNA expression for all three subunits was evaluated by quantitative RT-PCR. The effect of DMPP on leukotriene C4 (LTC4) and matrix metalloproteinase-9 (MMP-9) production, eosinophil migration, and intracellular calcium mobilization was measured. The results show that the alpha-3, -4, and -7 nAChR subunits and mRNAs are expressed by blood eosinophils. In vitro treatment of these cells with various concentrations of DMPP reduced platelet-activating factor (PAF)-induced LTC4 production significantly. DMPP (160 microM) decreased eotaxin, and 5-oxo-6,8,11,14-eicosatetranoic acid induced eosinophil migration through Matrigel by 40.9% and 55.5%, respectively. This effect was reversed by the nAChR antagonist mecamylamine. In addition, DMPP reduced MMP-9 release and the inositol 1,4,5-triphosphate-dependent intracellular calcium increase provoked by PAF. Taken together, these results indicate that functional nAChRs are expressed on eosinophils and that nAChR agonists down-regulate eosinophil function in vitro. These anti-inflammatory effects could be of interest in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Marie-Renée Blanchet
- Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, 2725 Chemin Ste-Foy, Ste-Foy, Québec, Canada, G1V 4G5
| | | | | | | | | | | | | |
Collapse
|
28
|
Davoine F, Ferland C, Chakir J, Lee JE, Adamko DJ, Moqbel R, Laviolette M. Interleukin-12 Inhibits Eosinophil Degranulation and Migration but Does Not Promote Eosinophil Apoptosis. Int Arch Allergy Immunol 2006; 140:277-84. [PMID: 16735797 DOI: 10.1159/000093705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 01/20/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Animal and human studies demonstrated that interleukin (IL)-12, a Th1 cytokine, reduces blood and bronchial eosinophilia, and airway hyperreactivity. According to current concepts, these effects are mediated through the release of cytokines promoting eosinophil recruitment and activation. However, the presence of IL-12 receptors on eosinophils suggests that IL-12 also acts directly on eosinophils. We postulated that IL-12 directly modulates eosinophil functions and has the capacity to regulate eosinophil degranulation, migration and survival, in vitro. METHOD Effects of IL- 12 on purified human blood eosinophils were evaluated for peroxidase (EPO) release, eotaxin-induced migration through a model of basement membrane (Matrigel), and survival. RESULTS IL-12 inhibited 50% of PAF and secretory IgA-induced EPO release (n = 8, p < 0.001). IL-12 also reduced eotaxin-induced migration through Matrigel by 54 +/-6% (n = 6, p < 0.01). These effects were not explained by an IL-12-induced impaired viability or apoptosis. CONCLUSION Our results demonstrate that IL-12 directly modulates eosinophil functions without promoting apoptosis and explain, at least in part, the effects of IL-12 on eosinophils observed in in vivo studies.
Collapse
Affiliation(s)
- Francis Davoine
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Brooks AM, Bates ME, Vrtis RF, Jarjour NN, Bertics PJ, Sedgwick JB. Urokinase-type plasminogen activator modulates airway eosinophil adhesion in asthma. Am J Respir Cell Mol Biol 2006; 35:503-11. [PMID: 16728704 PMCID: PMC2643268 DOI: 10.1165/rcmb.2006-0113oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eosinophils migrate from the vascular circulation to the inflamed airways during asthma exacerbations. While the mechanism(s) of this process is not known, the expression of urokinase-type plasminogen activator receptor (uPAR) has been found to modulate neutrophil adhesion and migration to inflammatory sites. We hypothesized that increased expression of uPAR and its ligand, uPA, enhance eosinophil adhesion in patients with asthma. Patients with allergic asthma underwent segmental bronchoprovocation with allergen; 48 h later, peripheral blood and airway (from bronchoalveolar lavage fluid) eosinophils were isolated. uPA and uPAR protein expression were measured by flow cytometry and Western blot; mRNA was quantified by real-time PCR. Eosinophil adhesion to intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 was assessed by eosinophil peroxidase activity. Airway eosinophils expressed significantly more uPA and uPAR protein and uPAR mRNA than peripheral blood eosinophils. Removal of cell-bound uPA and/or addition of exogenous uPA had no effect on blood eosinophil adhesion to ICAM-1 or VCAM-1. In contrast, exogenous uPA stimulated ICAM and VCAM adhesion of airway eosinophils. N-formyl-methionyl-leucyl-phenylalanine-activated airway eosinophil adherence to VCAM-1 and ICAM-1 (VCAM-1, 52.8 +/- 4.7%; ICAM-1, 49.2 +/- 5.3%) was increased over blood eosinophil adhesion (VCAM-1, 38.4 +/- 3.6%; ICAM-1, 27.7 +/- 4.9%; P < 0.05). Removal of cell-bound uPA from airway eosinophils decreased adhesion to blood cell levels; reintroduction of exogenous uPA completely restored adhesion levels. These data suggest that constitutive uPA primes, and exogenous uPA can activate, airway eosinophil adhesion following segmental allergen challenge and that increased uPA expression may be a mechanism of increased eosinophil infiltration and function in asthma.
Collapse
Affiliation(s)
- Anne M Brooks
- Department of Medicine, Allergy, Immunology and Pulmonary Unit, University of Wisconsin, Madison, USA
| | | | | | | | | | | |
Collapse
|
30
|
Jones CE. The OXE receptor: a new therapeutic approach for asthma? Trends Mol Med 2005; 11:266-70. [PMID: 15949767 DOI: 10.1016/j.molmed.2005.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 04/08/2005] [Accepted: 04/28/2005] [Indexed: 11/26/2022]
Abstract
The eicosanoid 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) has recently been identified as the ligand for the oxoeicosanoid (OXE) receptor. In vitro and in vivo studies have suggested that 5-oxo-ETE has a role in the asthmatic inflammatory response and it has been shown to stimulate eosinophil migration to the airways. New data suggest that eosinophils have an important role in the pathogenesis of asthma, being required for mucus accumulation, airway hyperresponsiveness and remodelling of the airways. However, there are several mediators that can stimulate the recruitment of eosinophils to the airways and the development of antagonists against the OXE receptor is required to evaluate the potential of the OXE receptor as a new therapeutic approach for asthma.
Collapse
Affiliation(s)
- Carol E Jones
- Respiratory Diseases Therapeutic Area, Novartis Institutes for Biomedical Research, Horsham, RH12 5AB, UK.
| |
Collapse
|
31
|
Ferland C, Flamand N, Davoine F, Chakir J, Laviolette M. IL-16 activates plasminogen-plasmin system and promotes human eosinophil migration into extracellular matrix via CCR3-chemokine-mediated signaling and by modulating CD4 eosinophil expression. THE JOURNAL OF IMMUNOLOGY 2004; 173:4417-24. [PMID: 15383572 DOI: 10.4049/jimmunol.173.7.4417] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increased eosinophil counts are a major feature of asthmatic airways. Eosinophil recruitment requires migration through epithelium and tissue extracellular matrix by activation of proteases. We assessed the capacity of IL-16, a CD4(+) cell chemotactic factor, to induce migration of eosinophils through a reconstituted basement membrane and evaluated the proteases, mediators, and receptors involved in this migration. IL-16 added to lower chambers of Invasion Chambers elicited eosinophil migration through Matrigel. This effect was decreased by inhibition of the plasminogen-plasmin system (Abs against urokinase plasminogen activator receptor or plasminogen depletion), but not by anti-matrix metalloproteinase-9 Abs. Abs against CD4 also inhibited IL-16-induced eosinophil migration. At the baseline level, few eosinophils (4.6% positive cells with a mean fluorescence of 0.9) expressed surface membrane CD4, while most permeabilized eosinophils (68% positive cells with a mean fluorescence of 18) express the CD4 Ag. TNF-pretreatment increased surface membrane CD4(+) expression by 6-fold as previously described, and increased IL-16-induced cell migration by 2.2-fold. Incubation of eosinophils with IL-16 also increased surface membrane CD4 expression by 5.4-fold, supporting the role of CD4 as receptor for IL-16. Abs against CCR3, eotaxin, or RANTES blocked IL-16-induced migration. In conclusion, IL-16 promotes eosinophil migration in vitro, by activating the plasminogen-plasmin system and increasing the membrane expression of its receptor. This effect is initiated via CD4 and mediated via the release of CCR3 ligand chemokines. Interestingly, most eosinophils express intracellular CD4. Hence, IL-16 may play an important role in the recruitment of blood eosinophils to the bronchial mucosa of asthmatics.
Collapse
Affiliation(s)
- Claudine Ferland
- Unité de Recherche en Pneumologie, Centre de Recherche de l'Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
32
|
Mercier F, Morin C, Cloutier M, Proteau S, Rokach J, Powell WS, Rousseau E. 5-Oxo-ETE regulates tone of guinea pig airway smooth muscle via activation of Ca2+pools and Rho-kinase pathway. Am J Physiol Lung Cell Mol Physiol 2004; 287:L631-40. [PMID: 15090369 DOI: 10.1152/ajplung.00005.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a proinflammatory mediator, but its effects on airway smooth muscle (ASM) have never been assessed. Tension measurements performed on guinea pig ASM showed that 5-oxo-ETE induced sustained concentration-dependent positive inotropic responses (EC50= 0.89 μM) of somewhat lower amplitude than those induced by carbamylcholine and the thromboxane A2(TXA2) agonist U-46619. Transient inotropic responses to 5-oxo-ETE were recorded in Ca2+-free medium, suggesting mobilization of intracellular Ca2+. Meanwhile, the sustained contraction, which required Ca2+entry, was partially blocked by 1 μM nifedipine (an L-type Ca2+channel blocker) but relatively insensitive to 100 μM Gd3+. The 5-oxo-ETE responses were also inhibited by indomethacin and SC-560 [a cyclooxygenase (COX-1) inhibitor] pretreatments but not by NS-398 (a selective COX-2 inhibitor). The contractile effects of 5-oxo-ETE on ASM were inhibited by the selective TXA2receptor (TP receptor) antagonist SQ-29548 (−75%) and by 2-(p-amylcinnamoyl) amino-4-chlorobenzoic acid pretreatment, a phospholipase A2inhibitor (−66%), suggesting that the major part of its effect is mediated by the release of TXA2. ASM responses to 5-oxo-ETE were also blocked by the Rho-kinase inhibitor Y-27632, which also partially inhibited the response to the TP receptor agonist U-46619, suggesting that the contractile response is due in part to Ca2+sensitization of ASM cell myofilaments.
Collapse
Affiliation(s)
- Frederic Mercier
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | | | | | | | | | | |
Collapse
|
33
|
Stamatiou PB, Chan CC, Monneret G, Ethier D, Rokach J, Powell WS. 5-Oxo-6,8,11,14-eicosatetraenoic Acid Stimulates the Release of the Eosinophil Survival Factor Granulocyte/Macrophage Colony-stimulating Factor from Monocytes. J Biol Chem 2004; 279:28159-64. [PMID: 15136573 DOI: 10.1074/jbc.m401537200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allergic diseases such as asthma are characterized by tissue eosinophilia induced by the combined effects of chemoattractants and cytokines. Lipid mediators are a major class of endogenous chemoattractants, among which 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is the most potent for human eosinophils. In this study, we investigated the effects of 5-oxo-ETE on eosinophil survival by flow cytometry. We found that this compound could promote eosinophil survival in the presence of small numbers of contaminating monocytes, but not in their absence. The conditioned medium from monocytes treated for 24 h with 5-oxo-ETE also strongly promoted eosinophil survival, whereas the medium from vehicle-treated monocytes had no effect. An antibody against the granulocyte/macrophage colony-stimulating factor (GM-CSF) completely blocked the response of eosinophils to the conditioned medium from 5-oxo-ETE-treated monocytes, whereas an antibody against interleukin-5 had no effect. Furthermore, 5-oxo-ETE stimulated the release of GM-CSF from cultured monocytes in amounts compatible with eosinophil survival activity, with a maximal effect being observed after 24 h. This effect was concentration-dependent and could be observed at concentrations in the picomolar range. 5-Oxo-ETE and leukotriene B(4) had similar effects on GM-CSF release at low concentrations, but 5-oxo-ETE induced a much stronger response at concentrations of 10 nm or higher. This is the first report that 5-oxo-ETE can induce the release of any cytokine, suggesting that it could be an important mediator in allergic and other inflammatory diseases due both to its chemoattractant properties and to its potent effects on the synthesis of the survival factor GM-CSF.
Collapse
Affiliation(s)
- Panagiota B Stamatiou
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Kostenis E. A glance at G-protein-coupled receptors for lipid mediators: a growing receptor family with remarkably diverse ligands. Pharmacol Ther 2004; 102:243-57. [PMID: 15246248 DOI: 10.1016/j.pharmthera.2004.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A plethora of lipid-like molecules known to act as intracellular second messengers are now recognized to signal cells through plasma membrane 7 transmembrane G-protein-coupled receptors (GPCRs). This has been the result of a decade-long genetic hunt for novel sequences encoding 7 transmembrane receptor proteins and the efforts to pair novel sequences with biologically active substances of (partly) unknown molecular mechanism of action. Identification of novel GPCR ligand pairs represents the first step to shed more light into the mode of action of novel cellular signaling molecules in human health and disease and might represent a fruitful source for the development of new drugs, judged on the successful history of GPCR as drug targets. Since 2000, more than 16 reports became available on lipid mediators--as diverse as lysophospholipids, arachidonic acid metabolites, short-, medium-, and long-chain fatty acids as well as steroid-like molecules--exerting their effects as extracellular mediators via rhodopsin-like family GPCRs. These reports have opened new avenues for research in human lipid receptor physiology and pharmacology. Here, the current knowledge on the recently deorphanized lipid receptors, including their isolation, expression pattern, function, and possible physiological or pathological roles will be reviewed.
Collapse
Affiliation(s)
- Evi Kostenis
- 7TM Pharma A/S, 3 Fremtidsvej, 2970 Hoersholm, Denmark.
| |
Collapse
|
35
|
Brink C, Dahlén SE, Drazen J, Evans JF, Hay DWP, Rovati GE, Serhan CN, Shimizu T, Yokomizo T. International Union of Pharmacology XLIV. Nomenclature for the Oxoeicosanoid Receptor. Pharmacol Rev 2004; 56:149-57. [PMID: 15001665 DOI: 10.1124/pr.56.1.4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxoeicosanoids are a family of biologically active arachidonic acid derivatives that have been intimately linked with cellular migration. These metabolites are not only potent chemotaxins but also elicit oxygen radical production as well as induce secretory events in different cells. The most potent native ligand reported is 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), and the cell membrane receptor activated has now been cloned. This receptor is distinct from those receptors activated by either the prostaglandins or the leukotrienes. The purpose of this review is to briefly summarize the molecular evidence and highlight the significance of this receptor. In addition, an official nomenclature for this oxoeicosanoid receptor is proposed.
Collapse
Affiliation(s)
- Charles Brink
- Centre National de la Recherche Scientifique UMR 7131, Hôpital Broussais, Bâtiment Les Mariniers, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gauthier MC, Racine C, Ferland C, Flamand N, Chakir J, Tremblay GM, Laviolette M. Expression of membrane type-4 matrix metalloproteinase (metalloproteinase-17) by human eosinophils. Int J Biochem Cell Biol 2003; 35:1667-73. [PMID: 12962706 DOI: 10.1016/s1357-2725(03)00136-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Circulating eosinophils need proteinases to mediate a spatially limited and orientated digestion of the extracellular matrix and to migrate into tissue. Moreover, proteinases are likely involved in tissue remodeling, a crucial feature of chronic diseases including asthma. Eosinophils express matrix metalloproteinase (MMP)-9, which is increased upon stimulation with TNF-alpha. Other MMPs, the membrane type (MT)-MMPs, likely play a major role in cell invasion and tissue remodeling. MT4-MMP was identified in peripheral blood leukocyte preparations, but it is not known whether eosinophils express MT4-MMP. We investigated the expression of MT4-MMP and its modulation by TNF-alpha in purified human blood eosinophils. The constitutive expression of MT4-MMP mRNA was detected by RT-PCR in unstimulated eosinophils, lymphocytes, and monocytes, but not neutrophils. Stimulation of eosinophils with TNF-alpha increased MT4-MMP mRNA expression. This effect appeared at 4h and reached a maximum at 8h of incubation. MT4-MMP protein was detected in freshly isolated blood eosinophils by Western blotting and immunocytochemistry. TNF-alpha increased expression of the MT4-MMP protein. MT4-MMP protein was also detected in nasal polyp eosinophils by immunohistochemistry. In conclusion, eosinophils constitutively express MT4-MMP, which is increased upon stimulation with TNF-alpha. Consequently, MT4-MMP may be directly involved in the degradation of extracellular matrix components and/or modulate the activity of other proteins implicated in eosinophil migration and tissue remodeling.
Collapse
Affiliation(s)
- Marie-Christine Gauthier
- Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Que., G1V 4G5, Sainte-Foy, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Zarini S, Murphy RC. Biosynthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid from 5-hydroperoxyeicosatetraenoic acid in the murine macrophage. J Biol Chem 2003; 278:11190-6. [PMID: 12547823 DOI: 10.1074/jbc.m208496200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a metabolite of arachidonic acid shown to possess important biological activities within different cell types. In the neutrophil, a specific NADP(+)-dependent dehydrogenase utilizes 5-lipoxygenase-derived 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5(S)-HETE) as the required substrate. In the present study, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HpETE), rather than 5-HETE, was found to be the biosynthetic precursor of 5-oxo-ETE in the murine macrophage. The macrophage was not able to convert 5-HETE into 5-oxo-ETE even when preincubated with phorbol ester or with other lipid hydroperoxides. The factor responsible for the conversion of 5-HpETE into 5-oxo-ETE was found predominantly in the cytosolic fraction of the macrophage, with an approximate molecular weight of 50,000-60,000, as assessed by size exclusion chromatography. Formation of 5-oxo-ETE was rapid and the catalytic protein was found to have an apparent K(m) of 5.3 microM for the eicosanoid. Furthermore, the protein could efficiently utilize 5(R,S)-HpETE as substrate and was heat and protease labile. This novel pathway of 5-oxo-ETE biosynthesis in the murine macrophage was consistent with reduction of a 5-hydroperoxy group to an intermediate alkoxy radical that could be subsequently oxidized to the 5-oxo product. Such a mechanism would enable racemic 5-HpETE, derived from free radical oxidation of arachidonic acid, to be efficiently converted into this potent chemotactic eicosanoid.
Collapse
Affiliation(s)
- Simona Zarini
- Division of Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | |
Collapse
|
38
|
Elghetany MT, Patel J, Martinez J, Schwab H. CD87 as a marker for terminal granulocytic maturation: assessment of its expression during granulopoiesis. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2003; 51:9-13. [PMID: 12500292 DOI: 10.1002/cyto.b.10008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Understanding the normal surface maturation pattern of granulocytes is essential for the recognition of abnormal patterns, which in turn may be of diagnostic or pathogenetic significance in disorders such as myelodysplastic syndromes and inherited bone marrow failure disorders. CD87 plays a role in cellular interaction, cell migration, and inflammatory response. Surface expression of this antigen has not been adequately studied on bone marrow granulocytes, and the small number of previous studies has provided conflicting data. METHODS Bone marrow aspirates from 11 control subjects were studied by flow cytometry and a lysed whole blood technique to compare surface expression of CD87 on marrow granulocytes with those of CD11b, CD16, CD35, and CD10, which are expressed at the myelocyte, metamyelocyte, band, and segmented stage of neutrophilic development, respectively. Four sorting experiments of CD87(+) granulocytes were also performed. RESULTS Our study showed no statistical difference between surface expression of CD35 and CD87 (P > 0.3), whereas significant differences existed between CD87 and the other antibodies (P < 0.004). Sorting experiments showed that more than 80% of CD87(+) cells were bands and segmented neutrophils. Dual staining for CD87 and CD35 showed that most CD87(+) granulocytes coexpress CD35. CONCLUSIONS CD87 is expressed on granulocytes at the band and segmented neutrophil stage of development and can be used to study normal and abnormal granulopoiesis.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Division of Hematopathology, Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555, USA.
| | | | | | | |
Collapse
|
39
|
Kumagai K, Ohno I, Imai K, Nawata J, Hayashi K, Okada S, Senoo H, Hattori T, Shirato K. The involvement of matrix metalloproteinases in basement membrane injury in a murine model of acute allergic airway inflammation. Clin Exp Allergy 2002; 32:1527-34. [PMID: 12372136 DOI: 10.1046/j.1365-2745.2002.01491.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Airway remodelling in asthma such as subepithelial fibrosis is thought to be the repair process that follows the continuing injury as of chronic airway inflammation. However, how acute allergic inflammation causes tissue injury in the epithelial basement membrane in asthmatic airways remains unclear. Matrix metalloproteinases (MMPs) capable of degrading almost all of the extracellular matrix components have been demonstrated to be involved in cell migration through the basement membrane in vivo and in vitro. OBJECTIVE We investigated the alterations of matrix construction and the role of MMPs in matrix degradation in the subepithelium during acute allergic airway inflammation. METHODS Airway inflammation, the ultrastructure of the subepithelium and injury of types III and IV collagen in tracheal tissues from ovalbumin (OVA)-sensitized mice after OVA inhalation with or without the administration of tissue inhibitor of metalloproteinase-2 (TIMP-2) and dexamethasone were evaluated by cell counting in bronchoalveolar lavage (BAL) fluids, electron microscopy and immunohistochemistry, respectively. RESULTS The disruption of the lamina densa and matrix construction and the decrease of the immunoreactivity for type IV collagen in subepithelium were observed in association with the accumulation of inflammatory cells in airways 3 days after OVA inhalation. This disorganization of the matrix components in the subepithelium, as well the cellular accumulation, was abolished by the administration of TIMP-2 and dexamethasone. The immunoreactivity for type IV collagen in the subepithelium in OVA-inhaled mice returned to the level of that in saline-inhaled mice 10 days after inhalation in association with a decrease of the cell numbers in the BAL fluid. The immunoreactivity for type III collagen was changed neither 3 nor 10 days after OVA inhalation. CONCLUSION These results suggest that epithelial basement membrane gets injured by, at least in part, MMPs as a consequence of cell transmigration through the membrane during acute allergic airway inflammation.
Collapse
Affiliation(s)
- K Kumagai
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hosoi T, Koguchi Y, Sugikawa E, Chikada A, Ogawa K, Tsuda N, Suto N, Tsunoda S, Taniguchi T, Ohnuki T. Identification of a novel human eicosanoid receptor coupled to G(i/o). J Biol Chem 2002; 277:31459-65. [PMID: 12065583 DOI: 10.1074/jbc.m203194200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have conducted an in silico data base search for and cloned a novel G-protein-coupled receptor (GPCR) named TG1019. Dot and Northern blotting analyses showed that transcripts of the novel GPCR were expressed in various tissues except brain, and the expression was more intense in liver, kidney, peripheral leukocyte, lung, and spleen than in other tissues. By GTP gamma S binding assay using the TG1019-G alpha(i1)-protein fusion expressed in insect cells, eicosanoids, and polyunsaturated fatty acids such as 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), 5(S)-hydroperoxy-6E,8Z, 11Z,14Z-eicosatetraenoic acid, and arachidonic acid were identified to exhibit agonistic activities against TG1019. 5-oxo-ETE was the most potent to enhance the specific binding by 6-fold at a maximum effect dose of submicromolar to micromolar order with an ED(50) value of 5.7 nM. Conversely, polyunsaturated fatty acids such as docosahexaenoic acid and eicosapentaenoic acid showed antagonistic activities against TG1019. In Chinese hamster ovary cells transiently expressing TG1019, the forskolin-stimulated production of cAMP was inhibited up to approximately 70% by 5-oxo-ETE, with an IC(50) value of 33 nM. This inhibition was sensitive to pretreatment of the cells with pertussis toxin.
Collapse
Affiliation(s)
- Takeshi Hosoi
- Discovery Research Laboratory, Tanabe Seiyaku Co. Ltd., 2-50 Kawagishi-2-chome, Toda-shi, Saitama 335-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Dallaire MJ, Ferland C, Lavigne S, Chakir J, Laviolette M. Migration through basement membrane modulates eosinophil expression of CD44. Clin Exp Allergy 2002; 32:898-905. [PMID: 12047437 DOI: 10.1046/j.1365-2222.2002.01377.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tissue eosinophils express more membrane receptors and release more mediators than blood eosinophils, suggesting that migration from blood to tissue modulates eosinophil phenotype and functions. OBJECTIVE We postulated that eosinophil passage through endothelial basement membrane, an important step of eosinophil migration into tissue, may be responsible for some of these changes. METHOD We previously showed that 5-oxo-6, 8, 11, 14-eicosatetraenoic acid (5-oxo-ETE) in combination with IL-5 promotes eosinophil migration through Matrigel, a mouse tumour cell-derived basement membrane. Using this model, we evaluated the effect of trans-Matrigel migration on purified human blood eosinophil expressions of CD44, CD69 and HLA-DR that either increase or appear on activated eosinophils, and releases of peroxidase (EPO), leukotriene (LT) C(4) and granulocyte-monocyte colony stimulating factor (GM-CSF). RESULTS IL-5, but not 5-oxo-ETE, increased eosinophil expression of CD44 and CD69. Migration of eosinophils through Matrigel significantly increased CD44 expression level over the one induced by IL-5 (P = 0.0001). Migration through Matrigel did not modify CD69 expression compared with the one obtained in the presence of IL-5 alone; however, incubation of eosinophils on Matrigel decreased IL-5-induced CD69 (P = 0.0001). Trans-Matrigel migration did not modify HLA-DR expression, nor EPO, LTC(4) and GM-CSF releases. CONCLUSION These data show that in vitro trans-Matrigel migration and Matrigel contact modulate eosinophil membrane receptor expression. Consequently, they suggest that migration through basement membrane mediates changes in cell-surface phenotype observed on activated eosinophils and probably prepares them for interactions with tissue components and cells.
Collapse
Affiliation(s)
- M-J Dallaire
- Unité de Recherche en Pneumologie, Centre de Recherche de Hôpital Laval, Institut Universitaire de Cardiologie et de Pneumologie de l'Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | |
Collapse
|
42
|
Kumar RK, Thomas PS, Seetoo DQ, Herbert C, McKenzie ANJ, Foster PS, Lloyd AR. Eotaxin expression by epithelial cells and plasma cells in chronic asthma. J Transl Med 2002; 82:495-504. [PMID: 11950906 DOI: 10.1038/labinvest.3780442] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chemoattractants such as eotaxin are believed to play an important role in the recruitment of eosinophils into the airways in asthma. We investigated expression of eotaxin in the airway wall in a model of chronic human asthma, in which systemically sensitized mice were exposed to low mass concentrations of aerosolized antigen for 6 weeks. In these animals, the number of intraepithelial eosinophils in the airways was significantly increased 3 hours after exposure and declined by 24 hours. In parallel, immunoreactivity for eotaxin was strikingly up-regulated in airway epithelial cells and in inflammatory cells in the lamina propria. The latter were identified as plasma cells by double immunofluorescent labeling. Increased expression of eotaxin by epithelial cells and plasma cells was also demonstrated in a case of fatal human asthma. In contrast, sensitized mice that received a single exposure to a high mass concentration of aerosolized antigen exhibited delayed eosinophil recruitment, which did not correlate with eotaxin expression. Furthermore, in sensitized chronically exposed interleukin-13-deficient mice there was virtually no recruitment of eosinophils into the airways, although eotaxin expression was greater than or equal to that in wild-type mice. These results indicate that there are striking differences between acute and chronic exposure models in the time course of eotaxin expression and eosinophil recruitment. Although high eotaxin levels alone are not sufficient to cause recruitment of eosinophils into the airways, recurrent exposure may generate or up-regulate additional signals required for eosinophil chemotaxis.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Inflammation Research Unit, Department of Pathology, University of New South Wales, Sydney, Australia.
| | | | | | | | | | | | | |
Collapse
|
43
|
Davoine F, Lavigne S, Chakir J, Ferland C, Boulay ME, Laviolette M. Expression of FcgammaRIII (CD16) on human peripheral blood eosinophils increases in allergic conditions. J Allergy Clin Immunol 2002; 109:463-9. [PMID: 11897993 DOI: 10.1067/mai.2002.121952] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Blood eosinophils have mRNA for FcgammaRIIIB (CD16) but no or minimal spontaneous CD16 expression. Because IFN-gamma and chemotactic factors induce eosinophil CD16 expression in vitro, we postulated that blood eosinophils could express CD16. OBJECTIVE Blood of nonallergic controls and subjects with allergic rhinitis, allergic and nonallergic asthma, or hypereosinophilia of various etiologies were analyzed for leukocyte CD16 surface expression. METHODS CD16(+) eosinophils were identified on the basis of physico-optic characteristics, major basic protein, CD49b expression, and sorting by flow cytometry and microscope examination. RESULTS Subjects with allergic rhinitis and subjects with asthma had higher median percentages of CD16(+) eosinophils (8.1% [1% to 48.6%] and 7.3% [1.4% to 31.1%], respectively) than nonallergic controls and nonallergic asthmatics (3% [0% to 11%] and 4.6% [2.9% to 5.1%], respectively). In subjects with hypereosinophilia, CD16(+) eosinophils were increased only in a case of drug allergy. When subjects with mild allergic asthma were challenged with a relevant aeroallergen, blood CD16(+) eosinophils further increased during or after the late-phase response (6 to 48 hours after challenge; mean +/- SEM, 9.4% +/- 2.5% to 20.0% +/- 3.0%). CD16(+) eosinophils expressed more IL-5 receptor but less CD11b and IL-12p35 than did CD16(-) eosinophils. CONCLUSION Upregulation of blood CD16(+) eosinophils in allergic conditions and its association with a modified phenotype suggest that CD16 receptor could play a role in eosinophil activation in allergy.
Collapse
Affiliation(s)
- Francis Davoine
- Unité de recherche en pneumologie, Centre de recherche de l'Hôpital Laval, Institut universitaire de cardiologie et de pneumologie de l'Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Powell WS, Boismenu D, Khanapure SP, Rokach J. Quantitative analysis of 5-oxo-6,8,11,14-eicosatetraenoic acid by electrospray mass spectrometry using a deuterium-labeled internal standard. Anal Biochem 2001; 295:262-6. [PMID: 11488631 DOI: 10.1006/abio.2001.5206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), a metabolite of arachidonic acid formed by the 5-lipoxygenase pathway, is a potent eosinophil chemoattractant that may be an important mediator in asthma. To further investigate the physiological and pathological roles of 5-oxo-ETE we have developed a mass spectrometric assay employing a tetradeuterated analog (5-oxo-[11,12,14,15-(2)H]ETE) as an internal standard. Collision-induced dissociation of the quasimolecular anion of 5-oxo-[11,12,14,15-(2)H]ETE (m/z 321) resulted in the formation of a major ion at m/z 207 that retained all four deuterium atoms. Measurement of the ratio of ions at m/z 203 (endogenous 5-oxo-ETE) and m/z 207 permitted quantitation of this compound by liquid chromatography-mass spectrometry-mass spectrometry using multiple reaction monitoring. The resulting assay was highly sensitive (< or =20 pg/sample) and selective, enabling detection of the amount of 5-oxo-ETE produced by as few as 10,000 neutrophils. This assay should permit measurement of 5-oxo-ETE in biological fluids, enabling evaluation of its role in asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- W S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St. Urbain Street, Montreal, Quebec, Canada H2X 2P2
| | | | | | | |
Collapse
|
45
|
Ferland C, Guilbert M, Davoine F, Flamand N, Chakir J, Laviolette M. Eotaxin promotes eosinophil transmigration via the activation of the plasminogen‐plasmin system. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.5.772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Claudine Ferland
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| | - Martin Guilbert
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| | - Francis Davoine
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| | - Nicolas Flamand
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| | - Jamila Chakir
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| | - Michel Laviolette
- Unité de Recherche en Pneumologie, Centre de Recherche, Hôpital Laval, Institut Universitaire de Cardiologie et Pneumologie de l’Université, Laval, Quebec, Canada
| |
Collapse
|
46
|
Giembycz MA, Lynch OT, De Souza PM, Lindsay MA. Review: G-protein-coupled receptors on eosinophils. Pulm Pharmacol Ther 2001; 13:195-223. [PMID: 11001865 DOI: 10.1006/pupt.2000.0250] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M A Giembycz
- Thoracic Medicine, Imperial College of School of Medicine at the National Heart & Lung Institute, London, UK.
| | | | | | | |
Collapse
|
47
|
Powell WS, Ahmed S, Gravel S, Rokach J. Eotaxin and RANTES enhance 5-oxo-6,8,11,14-eicosatetraenoic acid-induced eosinophil chemotaxis. J Allergy Clin Immunol 2001; 107:272-8. [PMID: 11174193 DOI: 10.1067/mai.2001.112847] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The 5-lipoxygenase product 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent activator of human eosinophils and, among lipid mediators, is the most active chemoattractant for these cells. Studies have demonstrated the importance of 5-lipoxygenase products in allergen-induced pulmonary eosinophilia. Because CC chemokines such as eotaxin and RANTES also play critical roles in this phenomenon, it would seem likely that members of both classes of mediators contribute to this response. OBJECTIVE The study was designed to directly compare the effects of 5-oxo-ETE on eosinophils with those of eotaxin and RANTES and to determine whether these chemokines could enhance the chemotactic response to 5-oxo-ETE. METHODS Eosinophil chemotaxis was measured with microchemotaxis chambers. CD11b, L-selectin, and actin polymerization were measured by flow cytometry. Calcium mobilization was measured by fluorescence. RESULTS 5-Oxo-ETE stimulated eosinophil chemotaxis with a potency between those of eotaxin and RANTES and a maximal response about 50% higher than that of eotaxin. Threshold concentrations of eotaxin and RANTES increased the chemotactic potency of 5-oxo-ETE by more than 4-fold. 5-Oxo-ETE and eotaxin were approximately equipotent in mobilizing cytosolic calcium in eosinophils. Eotaxin was more potent in inducing CD11b expression and actin polymerization, but the maximal responses to 5-oxo-ETE were about 50% higher. 5-Oxo-ETE strongly induced L-selectin shedding, whereas eotaxin elicited only a weak and variable response. CONCLUSION 5-Oxo-ETE is a strong activator of human eosinophils with a chemotactic potency comparable to those of eotaxin and RANTES, both of wwhich enhance 5-oxo-ETE-induced chemotaxis. 5-Oxo-ETE and CC chemokines may combine to induce pulmonary eosinophilia in asthma.
Collapse
Affiliation(s)
- W S Powell
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
48
|
O'Flaherty JT, Taylor JS, Kuroki M. The coupling of 5-oxo-eicosanoid receptors to heterotrimeric G proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:3345-52. [PMID: 10706729 DOI: 10.4049/jimmunol.164.6.3345] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
5-Oxo-eicosatetraenoic acid (5-oxoETE) stimulated human neutrophil (PMN) and eosinophil chemotaxis, PMN hexose uptake, and PMN membrane GTP/GDP exchange. Pertussis toxin (PT), a blocker of heterotrimeric G proteins (GP), completely inhibited these responses, but proved far less effective on the same responses when elicited by leukotriene B4, C5a, FMLP, platelet-activating factor, IL-8, or RANTES chemotactic factors. 5-OxoETE also specifically bound to the membrane preparations that conducted GTP/GDP exchange. This binding was down-regulated by GTPgammaS, but not ADPgammaS, and displaced by 5-oxoETE analogues, but not by leukotriene B4, lipoxin A4, or lipoxin B4. Finally, PMN expressed PT-sensitive GP alphaiota2 and PT-resistant GP alphaq/11- and alpha13-chains; eosinophils expressed only alphai2 and alphaq/11. We conclude that 5-oxoETE activates granulocytes through a unique receptor that couples preferentially to PT-sensitive GP. The strict dependency of this putative receptor on PT-sensitive GP may underlie the limited actions of 5-oxoETE, compared with other CF, and help clarify the complex relations between receptors, GP, cell signals, and cell responses.
Collapse
Affiliation(s)
- J T O'Flaherty
- Department of Medicine, Section on Infectious Diseases, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA. joflaher@wfubmc
| | | | | |
Collapse
|