1
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Hernandez-Lara MA, Yadav SK, Conaway S, Shah SD, Penn RB, Deshpande DA. Crosstalk between diacylglycerol kinase and protein kinase A in the regulation of airway smooth muscle cell proliferation. Respir Res 2023; 24:155. [PMID: 37301818 PMCID: PMC10257838 DOI: 10.1186/s12931-023-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.
Collapse
Affiliation(s)
- Miguel A. Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Santosh Kumar Yadav
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Stanley Conaway
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sushrut D. Shah
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Deepak A. Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
3
|
Hernandez-Lara MA, Yadav SK, Shah SD, Okumura M, Yokoyama Y, Penn RB, Kambayashi T, Deshpande DA. Regulation of Airway Smooth Muscle Cell Proliferation by Diacylglycerol Kinase: Relevance to Airway Remodeling in Asthma. Int J Mol Sci 2022; 23:11868. [PMID: 36233170 PMCID: PMC9569455 DOI: 10.3390/ijms231911868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Airway remodeling in asthma involves the hyperproliferation of airway smooth muscle (ASM) cells. However, the molecular signals that regulate ASM growth are not completely understood. Gq-coupled G protein-coupled receptor and receptor tyrosine kinase signaling regulate ASM cell proliferation via activation of phospholipase C, generation of inositol triphosphate (IP3) and diacylglycerol (DAG). Diacylglycerol kinase (DGK) converts DAG into phosphatidic acid (PA) and terminates DAG signaling while promoting PA-mediated signaling and function. Herein, we hypothesized that PA is a pro-mitogenic second messenger in ASM, and DGK inhibition reduces the conversion of DAG into PA resulting in inhibition of ASM cell proliferation. We assessed the effect of pharmacological inhibition of DGK on pro-mitogenic signaling and proliferation in primary human ASM cells. Pretreatment with DGK inhibitor I (DGKI) significantly inhibited platelet-derived growth factor-stimulated ASM cell proliferation. Anti-mitogenic effect of DGKI was associated with decreased mTOR signaling and expression of cyclin D1. Exogenous PA promoted pro-mitogenic signaling and rescued DGKI-induced attenuation of ASM cell proliferation. Finally, house dust mite (HDM) challenge in wild type mice promoted airway remodeling features, which were attenuated in DGKζ-/- mice. We propose that DGK serves as a potential drug target for mitigating airway remodeling in asthma.
Collapse
Affiliation(s)
- Miguel Angel Hernandez-Lara
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Santosh K Yadav
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sushrut D Shah
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raymond B Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deepak A Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Defnet AE, Huang W, Polischak S, Yadav SK, Kane MA, Shapiro P, Deshpande DA. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation. FASEB J 2019; 33:10833-10843. [PMID: 31266368 PMCID: PMC6766654 DOI: 10.1096/fj.201900680r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
Increased airway smooth muscle (ASM) cell mass and secretory functions are characteristics of airway inflammatory diseases, such as asthma. To date, there are no effective therapies to combat ASM cell proliferation, which contributes to bronchoconstriction and airway obstruction. Growth factors such as platelet-derived growth factor (PDGF) and the activation of the ERK1/2 are major regulators of ASM cell proliferation and airway remodeling in asthma. However, given the ubiquitous expression and multiple functions of ERK1/2, complete inhibition of ERK1/2 using ATP-competitive inhibitors may lead to unwanted off-target effects. Alternatively, we have identified compounds that are designed to target substrate docking sites and act as function-selective inhibitors of ERK1/2 signaling. Here, we show that both function-selective and ATP-competitive ERK1/2 inhibitors are effective at inhibiting PDGF-mediated proliferation, collagen production, and IL-6 secretion in ASM cells. Proteomic analysis revealed that both types of inhibitors had similar effects on reducing proteins related to TGF-β and IL-6 signaling that are relevant to airway remodeling. However, function-selective ERK1/2 inhibitors caused fewer changes in protein expression compared with ATP-competitive inhibitors. These studies provide a molecular basis for the development of function-selective ERK1/2 inhibitors to mitigate airway remodeling in asthma with defined regulation of ERK1/2 signaling.-Defnet, A. E., Huang, W., Polischak, S., Yadav, S. K., Kane, M. A., Shapiro, P., Deshpande, D. A. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Amy E. Defnet
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Steven Polischak
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| | - Santosh Kumar Yadav
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Deepak A. Deshpande
- Department of Medicine, Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Jude JA, Tirumurugaan KG, Kang BN, Panettieri RA, Walseth TF, Kannan MS. Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases. Am J Respir Cell Mol Biol 2012; 47:427-35. [PMID: 22556157 DOI: 10.1165/rcmb.2012-0025oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ADP-ribosyl cyclase activity of CD38 generates cyclic ADP-ribose, a Ca(2+)-mobilizing agent. In human airway smooth muscle (HASM) cells, TNF-α mediates CD38 expression through mitogen-activated protein kinases and NF-κB and AP-1. The phosphatidylinositol-3 kinase/Akt (PI3K/Akt) pathway is involved in TNF-α signaling and contributes to airway hyperresponsiveness and airway remodeling. We hypothesized that PI3Ks mediate CD38 expression and are involved in the differential induction of CD38 by TNF-α in asthmatic HASM cells. HASM cells were treated with pan-PI3K inhibitors (LY294002 or wortmannin) or class I-selective (GDC0941) or isoform-selective PI3K inhibitors (p110α-PIK-75 and p110β-TGX-221) with or without TNF-α. HASM cells were transfected with a catalytically active form of PI3K or phosphatase and tensin homolog (PTEN) or nontargeting or p110 isoform-targeting siRNAs before TNF-α exposure. CD38 expression and activation of Akt, NF-κB, and AP-1 were determined. LY294002 and wortmannin inhibited TNF-α-induced Akt activation, whereas only LY294002 inhibited CD38 expression. P110 expression caused Akt activation and basal and TNF-α-induced CD38 expression, whereas PTEN expression attenuated Akt activation and CD38 expression. Expression levels of p110 isoforms α, β, and δ were comparable in nonasthmatic and asthmatic HASM cells. Silencing of p110α or -δ, but not p110β, resulted in comparable attenuation of TNF-α-induced CD38 expression in asthmatic and nonasthmatic cells. NF-κB and AP-1 activation were unaltered by the PI3K inhibitors. In HASM cells, regulation of CD38 expression occurs by specific class I PI3K isoforms, independent of NF-κB or AP-1 activation, and PI3K signaling may not be involved in the differential elevation of CD38 in asthmatic HASM cells.
Collapse
Affiliation(s)
- Joseph A Jude
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
6
|
Takeda N, Kondo M, Ito S, Ito Y, Shimokata K, Kume H. Role of RhoA inactivation in reduced cell proliferation of human airway smooth muscle by simvastatin. Am J Respir Cell Mol Biol 2006; 35:722-9. [PMID: 16858009 DOI: 10.1165/rcmb.2006-0034oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enhanced proliferation of smooth muscle cells contributes to airway remodeling of bronchial asthma. Recently, statins, inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, have been shown to inhibit proliferation of both vascular and airway smooth muscle cells independently of lowering cholesterol. However, the mechanisms remain to be elucidated. The purpose of this study was to determine molecular processes by which statins inhibit proliferation of human bronchial smooth muscle cells. Simvastatin (0.1-1.0 muM) significantly inhibited cell proliferation and DNA synthesis induced by FBS in a concentration-dependent manner. The inhibitory effects of simvastatin were antagonized by mevalonate and geranylgeranylpyrophosphate, whereas the effects were not affected by squalene and farnesylpyrophosphate. The antiproliferative effects of simvastatin were mimicked by GGTI-286, a geranylgeranyltransferase-I inhibitor, C3 exoenzyme, an inhibitor of Rho, and Y-27632, an inhibitor of Rho-kinase, a target protein of RhoA. Western blot analysis showed that the level of membrane localization of RhoA (active Rho) was markedly increased by FBS, and that the level of active RhoA increased by FBS was reduced by simvastatin. Moreover, the inhibitory effect of simvastatin on FBS-induced RhoA activation was also antagonized by geranylgeranylpyrophosphate, but not by farnesylpyrophosphate. Because these isoprenoids are required for prenylation of small G proteins RhoA and Ras, respectively, the present results demonstrate that an inhibition in airway smooth muscle cell proliferation by simvastatin is due to prevention of geranylgeranylation of RhoA, not farnesylation of Ras. Therefore, statins may have therapeutic potential for prohibiting airway remodeling in bronchial asthma.
Collapse
Affiliation(s)
- Naoya Takeda
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Krymskaya VP, Goncharova EA, Ammit AJ, Lim PN, Goncharov DA, Eszterhas A, Panettieri RA. Src is necessary and sufficient for human airway smooth muscle cell proliferation and migration. FASEB J 2004; 19:428-30. [PMID: 15746183 DOI: 10.1096/fj.04-2869fje] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Airway smooth muscle (ASM) hypertrophy and hyperplasia, important pathological features in chronic severe asthma, likely contribute to irreversible airflow obstruction. Despite considerable research effort, the precise cellular mechanisms that modulate ASM growth remain unknown. Src, a nonreceptor tyrosine kinase proto-oncogene, reportedly modulates cell proliferative responses to growth factors, contractile agonists, and inflammatory mediators. Here, we show that Src activation is required for human ASM mitogenesis and motility. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and thrombin induce rapid activation of Src, and inhibition of Src induces a concentration-dependent abrogation of PDGF-, EGF-, and thrombin-induced ASM cell proliferation. Src immunoprecipitates had associated phosphatidylinositol 3-kinase, or PI3K, activation in response to PDGF and thrombin but not EGF. Further, Src activation is both necessary and sufficient for the stimulation of DNA synthesis as demonstrated by dominant negative Src inhibition of PDGF-, EGF-, and thrombin-induced DNA synthesis. Human ASM cell migration was also attenuated by transfection of cells with dominant negative Src. Further, expression of constitutively active Src promoted cell migration. Collectively, these data demonstrate that Src modulates human ASM cell proliferation and migration, suggesting that Src may play an important role in promoting ASM cell growth and migration that occur in airway remodeling found in asthma and chronic obstructive pulmonary disease, or COPD.
Collapse
Affiliation(s)
- Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, 421 Curie Blvd., BRB II/III, Philadelphia, PA 19104-6160, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Huang CD, Chen HH, Wang CH, Chou CL, Lin SM, Lin HC, Kuo HP. Human neutrophil-derived elastase induces airway smooth muscle cell proliferation. Life Sci 2004; 74:2479-92. [PMID: 15010259 DOI: 10.1016/j.lfs.2003.07.059] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Accepted: 07/03/2003] [Indexed: 11/15/2022]
Abstract
Neutrophils and their derived elastase are abundant in chronic inflammatory responses of asthma. This study aimed to investigate the mitogenic effect of elastase on airway smooth muscle (ASM) cells and the implicated signal transduction pathway. Near confluent cultured human ASM cells were treated with human neutrophil elastase (HNE, 0.01 to 0.5 microg/ml) or vehicle for 24 hours with or without extracellular signal-regulated kinase (ERK) inhibitor (PD98059, 30 microM), p38 kinase inhibitor (SB203580, 10 microM) or elastase inhibitor II (100 microg/ml). The ASM cell numbers were counted by a hemocytometer and DNA synthesis was assessed by flowcytometry. Western blots analysis for the expression of ERK, p38 and cyclin D1 was determined. HNE dose-dependently increased ASM cell numbers and the percentage of cells entering S-phase of cell cycle. This response was abolished by neutrophil elastase inhibitors and attenuated by PD98059, but not SB203580. HNE increased ERK phosphorylation and cyclin D1 expression. Pretreatment with PD98059 significantly inhibited elastase-induced cyclin D1 activity. The increased ASM cellular gap and cell shape change by proteolytic activity of HNE may be contributory to ERK activation and therefore cell proliferation. Our results demonstrate that HNE is mitogenic for ASM cells by increasing cyclin D1 activity through ERK signaling pathway.
Collapse
Affiliation(s)
- Chien-Da Huang
- Department of Thoracic Medicine II, Chang Gung Memorial Hospital, 199 Tun-Hwa N. Rd., Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
9
|
Krymskaya VP, Ammit AJ, Hoffman RK, Eszterhas AJ, Panettieri RA. Activation of class IA PI3K stimulates DNA synthesis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1009-18. [PMID: 11290526 DOI: 10.1152/ajplung.2001.280.5.l1009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise mechanisms that regulate increases in airway smooth muscle (ASM) mass in asthma are unknown. This study determined whether class IA phosphatidylinositol 3-kinase (PI3K) is sufficient to stimulate DNA synthesis and characterized the PI3K isoforms expressed in human ASM cells. ASM cells express class IA, II, and III PI3K but not class IB. Because thrombin induces ASM cell proliferation, we investigated whether thrombin can stimulate class IA PI3K. Transient transfection of ASM cells with hemagglutinin-tagged p85 PI3K followed by immunostaining revealed that in quiescent cells, p85 was expressed diffusely in the cytoplasm and after stimulation with thrombin p85 translocated to the cell membrane. Microinjection of ASM cells with a dominant negative class IA PI3K inhibited thrombin-induced DNA synthesis by 30% and epidermal growth factor (EGF)- or serum-induced DNA synthesis by 13 and 28%, respectively (P < 0.05 by chi(2) analysis). In parallel experiments, transfection or microinjection of cells with constitutively active PI3K markedly increased DNA synthesis in transfected cells 10.5-fold and in microinjected cells 12.7-fold (P < 0.05 by chi(2) analysis) compared with cells transfected or microinjected with control plasmid. Interestingly, constitutively active PI3K augmented EGF-induced DNA synthesis but had little effect on that induced by serum or thrombin in ASM cells. Collectively, these data suggest that class IA PI3K is activated by thrombin and is sufficient to induce ASM cell growth.
Collapse
Affiliation(s)
- V P Krymskaya
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|