1
|
Zhi J, Zhao KX, Liu JH, Yang D, Deng XM, Xu J, Zhang H. The therapeutic potential of gelsolin in attenuating cytokine storm, ARDS, and ALI in severe COVID-19. Front Pharmacol 2024; 15:1447403. [PMID: 39130641 PMCID: PMC11310015 DOI: 10.3389/fphar.2024.1447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
Severe COVID-19 cases often progress to life-threatening conditions such as acute respiratory distress syndrome (ARDS), sepsis, and multiple organ dysfunction syndrome (MODS). Gelsolin (GSN), an actin-binding protein with anti-inflammatory and immunomodulatory properties, is a promising therapeutic target for severe COVID-19. Plasma GSN levels are significantly decreased in critical illnesses, including COVID-19, correlating with dysregulated immune responses and poor outcomes. GSN supplementation may mitigate acute lung injury, ARDS, and sepsis, which share pathophysiological features with severe COVID-19, by scavenging actin, modulating cytokine production, enhancing macrophage phagocytosis, and stabilizing the alveolar-capillary barrier. Preliminary data indicate that recombinant human plasma GSN improves oxygenation and lung function in severe COVID-19 patients with ARDS. Although further research is needed to optimize GSN therapy, current evidence supports its potential to mitigate severe consequences of COVID-19 and improve patient outcomes. This review provides a comprehensive analysis of the biological characteristics, mechanisms, and therapeutic value of GSN in severe COVID-19.
Collapse
Affiliation(s)
| | | | | | - Dong Yang
- Department of Anesthesiology at the Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
2
|
Zhang Q, Wen XH, Tang SL, Zhao ZW, Tang CK. Role and therapeutic potential of gelsolin in atherosclerosis. J Mol Cell Cardiol 2023; 178:59-67. [PMID: 36967105 DOI: 10.1016/j.yjmcc.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Atherosclerosis is the major pathophysiological basis of a variety of cardiovascular diseases and has been recognized as a lipid-driven chronic inflammatory disease. Gelsolin (GSN) is a member of the GSN family. The main function of GSN is to cut and seal actin filaments to regulate the cytoskeleton and participate in a variety of biological functions, such as cell movement, morphological changes, metabolism, apoptosis and phagocytosis. Recently, more and more evidences have demonstrated that GSN is Closely related to atherosclerosis, involving lipid metabolism, inflammation, cell proliferation, migration and thrombosis. This article reviews the role of GSN in atherosclerosis from inflammation, apoptosis, angiogenesis and thrombosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hui Wen
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
3
|
Physiology and Proteomic Basis of Lung Adaptation to High-Altitude Hypoxia in Tibetan Sheep. Animals (Basel) 2022; 12:ani12162134. [PMID: 36009723 PMCID: PMC9405401 DOI: 10.3390/ani12162134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary As an indigenous animal living in the Tibetan plateau, the Tibetan sheep is well adapted to high-altitude hypoxia, and the lungs play an important role in overcoming the hypoxic environment. To reveal the physiological and proteomic basis of Tibetan sheep lungs during their adaptation to hypoxia, we studied the lungs of Tibetan sheep at different altitudes using light and electron microscopy and proteome sequencing. The results showed that in the lungs of Tibetan sheep occurred a series of physiological changes with increasing altitude, and some important proteins and pathways identified by proteome sequencing further support these physiology findings. These changes at the physiological and molecular levels may facilitate the adaptation of Tibetan sheep to high-altitude hypoxia. In conclusion, these findings may provide a reference for the prevention of altitude sickness in humans. Abstract The Tibetan sheep is an indigenous animal of the Tibetan plateau, and after a long period of adaptation have adapted to high-altitude hypoxia. Many physiological changes occur in Tibetan sheep as they adapt to high-altitude hypoxia, especially in the lungs. To reveal the physiological changes and their molecular mechanisms in the lungs of Tibetan sheep during adaptation to high altitudes, we selected Tibetan sheep from three altitudes (2500 m, 3500 m, and 4500 m) and measured blood-gas indicators, observed lung structures, and compared lung proteome changes. The results showed that the Tibetan sheep increased their O2-carrying capacity by increasing the hemoglobin (Hb) concentration and Hematocrit (Hct) at an altitude of 3500 m. While at altitude of 4500 m, Tibetan sheep decreased their Hb concentration and Hct to avoid pulmonary hypertension and increased the efficiency of air-blood exchange and O2 transfer by increasing the surface area of gas exchange and half-saturation oxygen partial pressure. Besides these, some important proteins and pathways related to gas transport, oxidative stress, and angiogenesis identified by proteome sequencing further support these physiology findings, including HBB, PRDX2, GPX1, GSTA1, COL14A1, and LTBP4, etc. In conclusion, the lungs of Tibetan sheep are adapted to different altitudes by different strategies; these findings are valuable for understanding the basis of hypoxic adaptation in Tibetan sheep.
Collapse
|
4
|
Yang HY, Liang ZH, Xie JL, Wu Q, Qin YY, Zhang SY, Tang GD. Gelsolin impairs barrier function in pancreatic ductal epithelial cells by actin filament depolymerization in hypertriglyceridemia‑induced pancreatitis in vitro. Exp Ther Med 2022; 23:290. [PMID: 35317441 PMCID: PMC8908475 DOI: 10.3892/etm.2022.11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Gelsolin (GSN) is a calcium-regulated actin-binding protein that can sever actin filaments. Notably, actin dynamics affect the structure and function of epithelial barriers. The present study investigated the role of GSN in the barrier function of pancreatic ductal epithelial cells (PDECs) in hypertriglyceridemia-induced pancreatitis (HTGP). The human PDEC cell line HPDE6-C7 underwent GSN knockdown and was treated with caerulein (CAE) + triglycerides (TG). Intracellular calcium levels and the actin filament network were analyzed under a fluorescence microscope. The expression levels of GSN, E-cadherin, nectin-2, ZO-1 and occludin were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. Ultrastructural changes in tight junctions were observed by transmission electron microscopy. Furthermore, the permeability of PDECs was analyzed by fluorescein isothiocyanate-dextran fluorescence. The results revealed that CAE + TG increased intracellular calcium levels, actin filament depolymerization and GSN expression, and increased PDEC permeability by decreasing the expression levels of E-cadherin, nectin-2, ZO-1 and occludin compared with the control. Moreover, changes in these markers, with the exception of intracellular calcium levels, were reversed by silencing GSN. In conclusion, GSN may disrupt barrier function in PDECs by causing actin filament depolymerization in HTGP in vitro.
Collapse
Affiliation(s)
- Hui-Ying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhi-Hai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Lian Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Ying-Ying Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Du Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
5
|
Jana S, Aujla P, Hu M, Kilic T, Zhabyeyev P, McCulloch CA, Oudit GY, Kassiri Z. Gelsolin is an important mediator of Angiotensin II-induced activation of cardiac fibroblasts and fibrosis. FASEB J 2021; 35:e21932. [PMID: 34549830 DOI: 10.1096/fj.202100038rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023]
Abstract
Myocardial fibrosis is a characteristic of various cardiomyopathies, and myocardial fibroblasts play a central role in this process. Gelsolin (GSN) is an actin severing and capping protein that regulates actin assembly and may be involved in fibroblast activation. While the role of GSN in mechanical stress-mediated cardiac fibrosis has been explored, its role in myocardial fibrosis in the absence of mechanical stress is not defined. In this study, we investigated the role of GSN in myocardial fibrosis induced by Angiotensin II (Ang II), a profibrotic hormone that is elevated in cardiovascular disease. We utilized mice lacking GSN (Gsn-/- ) and cultured primary adult cardiac fibroblasts (cFB). In vivo, Ang II infusion in mice resulted in significantly less severe myocardial fibrosis in Gsn-/- compared with Gsn+/+ mice, along with diminished activation of the TGFβ1-Smad2/3 pathway, and reduced expression of cardiac extracellular matrix proteins (collagen, fibronectin, periostin). Moreover, Gsn-deficient hearts exhibited suppressed activity of the AMPK pathway and its downstream effectors, mTOR and P70S6Kinase, which could contribute to the suppressed TGFβ1 activity. In vitro, the Ang II-induced activation of cFBs was reduced in Gsn-deficient fibroblasts evident from decreased expression of αSMA and periostin, diminished actin filament turnover; which also exhibited reduced activity of the AMPK-mTOR pathway, and P70S6K phosphorylation. AMPK inhibition compensated for the loss of GSN, restored the levels of G-actin in Gsn-/- cFBs and promoted activation to myofibroblasts by increasing αSMA and periostin levels. This study reveals a novel role for GSN in mediating myocardial fibrosis by regulating the AMPK-mTOR-P70S6K pathway in cFB activation independent from mechanical stress-induced factors.
Collapse
Affiliation(s)
- Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Preetinder Aujla
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Mei Hu
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Pavel Zhabyeyev
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine/Division of Cardiology, Mazankowski Alberta Heart Institute, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | | | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine/Division of Cardiology, Mazankowski Alberta Heart Institute, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Yang Z, Bedugnis A, Levinson S, DiNubile M, Stossel T, Lu Q, Kobzik L. Delayed administration of recombinant plasma gelsolin improves survival in a murine model of severe influenza. F1000Res 2019; 8:1860. [PMID: 31824672 PMCID: PMC6894358 DOI: 10.12688/f1000research.21082.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Host-derived inflammatory responses contribute to the morbidity and mortality of severe influenza, suggesting that immunomodulatory therapy may improve outcomes. The normally circulating protein, human plasma gelsolin, is available in recombinant form (rhu-pGSN) and has beneficial effects in a variety of pre-clinical models of inflammation and injury. Methods: We evaluated delayed therapy with subcutaneous rhu-pGSN initiated 3 to 6 days after intra-nasal viral challenge in a mouse model of influenza A/PR/8/34. Results: Rhu-pGSN administered starting on day 3 or day 6 increased survival (12-day survival: 62 % vs 39 %, pGSN vs vehicle; p < 0.00001, summary of 18 trials), reduced morbidity, and decreased pro-inflammatory gene expression. Conclusions: Rhu-pGSN improves outcomes in a highly lethal influenza model when given after a clinically relevant delay.
Collapse
Affiliation(s)
- Zhiping Yang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alice Bedugnis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Mark DiNubile
- BioAegis Therapeutics, North Brunswick, NJ, 07960, USA
| | | | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
7
|
Yang Z, Bedugnis A, Levinson S, DiNubile M, Stossel T, Lu Q, Kobzik L. Delayed administration of recombinant plasma gelsolin improves survival in a murine model of severe influenza. F1000Res 2019; 8:1860. [PMID: 31824672 PMCID: PMC6894358 DOI: 10.12688/f1000research.21082.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Host-derived inflammatory responses contribute to the morbidity and mortality of severe influenza, suggesting that immunomodulatory therapy may improve outcomes. The normally circulating protein, human plasma gelsolin, is available in recombinant form (rhu-pGSN) and has beneficial effects in a variety of pre-clinical models of inflammation and injury. Methods: We evaluated delayed therapy with subcutaneous rhu-pGSN initiated 3 to 6 days after intra-nasal viral challenge in a mouse model of influenza A/PR/8/34. Results: Rhu-pGSN administered starting on day 3 or day 6 increased survival (12-day survival: 62 % vs 39 %, pGSN vs vehicle; p < 0.00001, summary of 18 trials), reduced morbidity, and decreased pro-inflammatory gene expression. Conclusions: Rhu-pGSN improves outcomes in a highly lethal influenza model when given after a clinically relevant delay.
Collapse
Affiliation(s)
- Zhiping Yang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alice Bedugnis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Mark DiNubile
- BioAegis Therapeutics, North Brunswick, NJ, 07960, USA
| | | | - Quan Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Lester Kobzik
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Zasada M, Suski M, Bokiniec R, Szwarc-Duma M, Borszewska-Kornacka MK, Madej J, Bujak-Giżycka B, Madetko-Talowska A, Revhaug C, Baumbusch LO, Saugstad OD, Pietrzyk JJ, Kwinta P. Comparative two time-point proteome analysis of the plasma from preterm infants with and without bronchopulmonary dysplasia. Ital J Pediatr 2019; 45:112. [PMID: 31445514 PMCID: PMC6708124 DOI: 10.1186/s13052-019-0676-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we aimed to analyze differences in plasma protein abundances between infants with and without bronchopulmonary dysplasia (BPD), to add new insights into a better understanding of the pathogenesis of this disease. METHODS Cord and peripheral blood of neonates (≤ 30 weeks gestational age) was drawn at birth and at the 36th postmenstrual week (36 PMA), respectively. Blood samples were retrospectively subdivided into BPD(+) and BPD(-) groups, according to the development of BPD. RESULTS Children with BPD were characterized by decreased afamin, gelsolin and carboxypeptidase N subunit 2 levels in cord blood, and decreased galectin-3 binding protein and hemoglobin subunit gamma-1 levels, as well as an increased serotransferrin abundance in plasma at the 36 PMA. CONCLUSIONS BPD development is associated with the plasma proteome changes in preterm infants, adding further evidence for the possible involvement of disturbances in vitamin E availability and impaired immunological processes in the progression of prematurity pulmonary complications. Moreover, it also points to the differences in proteins related to infection resistance and maintaining an adequate level of hematocrit in infants diagnosed with BPD.
Collapse
Affiliation(s)
- Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Renata Bokiniec
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | - Monika Szwarc-Duma
- Neonatal and Intensive Care Department, Medical University of Warsaw, Warsaw, Poland
| | | | - Józef Madej
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Beata Bujak-Giżycka
- Chair of Pharmacology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Madetko-Talowska
- Department of Medical Genetics, Jagiellonian University Medical College, Cracow, Poland
| | - Cecilie Revhaug
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Lars O. Baumbusch
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Ola D. Saugstad
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Jacek Józef Pietrzyk
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
9
|
Plasma Gelsolin: Indicator of Inflammation and Its Potential as a Diagnostic Tool and Therapeutic Target. Int J Mol Sci 2018; 19:ijms19092516. [PMID: 30149613 PMCID: PMC6164782 DOI: 10.3390/ijms19092516] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Gelsolin, an actin-depolymerizing protein expressed both in extracellular fluids and in the cytoplasm of a majority of human cells, has been recently implicated in a variety of both physiological and pathological processes. Its extracellular isoform, called plasma gelsolin (pGSN), is present in blood, cerebrospinal fluid, milk, urine, and other extracellular fluids. This isoform has been recognized as a potential biomarker of inflammatory-associated medical conditions, allowing for the prediction of illness severity, recovery, efficacy of treatment, and clinical outcome. A compelling number of animal studies also demonstrate a broad spectrum of beneficial effects mediated by gelsolin, suggesting therapeutic utility for extracellular recombinant gelsolin. In the review, we summarize the current data related to the potential of pGSN as an inflammatory predictor and therapeutic target, discuss gelsolin-mediated mechanisms of action, and highlight recent progress in the clinical use of pGSN.
Collapse
|
10
|
Borlak J, Länger F, Chatterji B. Serum proteome mapping of EGF transgenic mice reveal mechanistic biomarkers of lung cancer precursor lesions with clinical significance for human adenocarcinomas. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3122-3144. [PMID: 29960043 DOI: 10.1016/j.bbadis.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Atypical adenomatous hyperplasia (AAH) of the lung is a pre-invasive lesion (PL) with high risk of progression to lung cancer (LC). However, the pathways involved are uncertain. We searched for novel mechanistic biomarkers of AAH in an EGF transgenic disease model of lung cancer. Disease regulated proteins were validated by Western immunoblotting and immunohistochemistry (IHC) of control and morphologically altered respiratory epithelium. Translational work involved clinical resection material. Collectively, 68 unique serum proteins were identified by 2DE-MALDI-TOF mass spectrometry and 13 reached statistical significance (p < 0.05). EGF, amphiregulin and the EGFR endosomal sorting protein VPS28 were induced up to 5-fold while IHC confirmed strong induction of these proteins. Furthermore, ApoA1, α-2-macroglobulin, and vitamin-D binding protein were nearly 6- and 2-fold upregulated in AAH; however, ApoA1 was oppositely regulated in LC to evidence disease stage dependent regulation of this tumour suppressor. Conversely, plasminogen and transthyretin were highly significantly repressed by 3- and 20-fold. IHC confirmed induced ApoA1, Fetuin-B and transthyretin expression to influence calcification, inflammation and tumour-infiltrating macrophages. Moreover, serum ApoA4, ApoH and ApoM were 2-, 2- and 6-fold repressed; however tissue ApoM and sphingosine-1-phosphate receptor expression was markedly induced to suggest a critical role of sphingosine-1-phosphate signalling in PL and malignant transformation. Finally, a comparison of three different LC models revealed common and unique serum biomarkers mechanistically linked to EGFR, cMyc and cRaf signalling. Their validation by IHC on clinical resection material established relevance for distinct human lung pathologies. In conclusion, we identified mechanistic biomarker candidates recommended for in-depth clinical evaluation.
Collapse
Affiliation(s)
- Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Florian Länger
- Hannover Medical School, Institute of Pathology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Bijon Chatterji
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
11
|
Schnoor M, García Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 2017; 74:1985-1997. [PMID: 28154894 PMCID: PMC11107778 DOI: 10.1007/s00018-016-2449-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.
Collapse
Affiliation(s)
- Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| | - Alexander García Ponce
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720, Mexico City, Mexico
| | - Jan Rossaint
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
12
|
Age-related variations in the methylome associated with gene expression in human monocytes and T cells. Nat Commun 2014; 5:5366. [PMID: 25404168 PMCID: PMC4280798 DOI: 10.1038/ncomms6366] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 09/24/2014] [Indexed: 01/21/2023] Open
Abstract
Age-related variations in DNA methylation have been reported; however, the functional relevance of these differentially methylated sites (age-dMS) are unclear. Here we report potentially functional age-dMS, defined as age- and cis-gene expression-associated methylation sites (age-eMS), identified by integrating genome-wide CpG methylation and gene expression profiles collected ex vivo from circulating T cells (227 CD4+ samples) and monocytes (1,264 CD14+ samples, age range: 55–94 years). None of the age-eMS detected in 227 T cell samples are detectable in 1,264 monocyte samples, in contrast to the majority of age-dMS detected in T cells that replicated in monocytes. Age-eMS tend to be hypomethylated with older age, located in predicted enhancers, and preferentially linked to expression of antigen processing and presentation genes. These results identify and characterize potentially functional age-related methylation in human T cells and monocytes, and provide novel insights into the role age-dMS may play in the aging process.
Collapse
|
13
|
García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost 2014; 113:20-36. [PMID: 25183310 DOI: 10.1160/th14-04-0298] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/01/2014] [Indexed: 01/19/2023]
Abstract
The endothelial barrier of the vasculature is of utmost importance for separating the blood stream from underlying tissues. This barrier is formed by tight and adherens junctions (TJ and AJ) that form intercellular endothelial contacts. TJ and AJ are integral membrane structures that are connected to the actin cytoskeleton via various adaptor molecules. Consequently, the actin cytoskeleton plays a crucial role in regulating the stability of endothelial cell contacts and vascular permeability. While a circumferential cortical actin ring stabilises junctions, the formation of contractile stress fibres, e. g. under inflammatory conditions, can contribute to junction destabilisation. However, the role of actin-binding proteins (ABP) in the control of vascular permeability has long been underestimated. Naturally, ABP regulate permeability via regulation of actin remodelling but some actin-binding molecules can also act independently of actin and control vascular permeability via various signalling mechanisms such as activation of small GTPases. Several studies have recently been published highlighting the importance of actin-binding molecules such as cortactin, ezrin/radixin/moesin, Arp2/3, VASP or WASP for the control of vascular permeability by various mechanisms. These proteins have been described to regulate vascular permeability under various pathophysiological conditions and are thus of clinical relevance as targets for the development of treatment strategies for disorders that are characterised by vascular hyperpermeability such as sepsis. This review highlights recent advances in determining the role of ABP in the control of endothelial cell contacts and vascular permeability.
Collapse
Affiliation(s)
| | | | | | | | - Michael Schnoor
- Dr. Michael Schnoor, CINVESTAV del IPN, Department for Molecular Biomedicine, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360 Mexico City, Mexico, Tel.: +52 55 5747 3321, Fax: +52 55 5747 3938, E-mail:
| |
Collapse
|
14
|
Chiang KM, Yang HC, Liang YJ, Chen JW, Hwang SM, Ho HY, Ting CT, Lin TH, Sheu SH, Tsai WC, Chen JH, Leu HB, Yin WH, Chiu TY, Chen CI, Lin SJ, Thomas GN, Tomlinson B, Guo Y, Gui HS, Sham PC, Lam TH, Pan WH. A three-stage genome-wide association study combining multilocus test and gene expression analysis for young-onset hypertension in Taiwan Han Chinese. Am J Hypertens 2014; 27:819-27. [PMID: 24413707 DOI: 10.1093/ajh/hpt239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although many large-scale genome-wide association studies (GWASs) have been performed, only a few studies have successfully identified replicable, large-impact hypertension loci; even fewer studies have been done on Chinese subjects. Young-onset hypertension (YOH) is considered to be a more promising target disorder to investigate than late-onset hypertension because of its stronger genetic component. METHODS To map YOH genetic variants, we performed a 3-stage study combining 1st-stage multilocus GWASs, 2nd-stage gene expression analysis, and 3rd-stage multilocus confirmatory study. RESULTS In the 1st stage, Illumina550K data from 400 case-control pairs were used, and 22 genes flanked by 14 single nucleotide polymorphism (SNP) septets (P values adjusted for false discovery rate (pFDR) < 3.16×10(-7)) were identified. In the 2nd stage, differential gene expression analysis was carried out for these genes, and 5 genes were selected (pFDR < 0.05). In the 3rd stage, we re-examined the finding with an independent set of 592 case-control pairs and with the joint samples (n = 992 case-control pairs). A total of 6 SNP septets flanking C1orf135, GSN, LARS, and ACTN4 remained significant in all 3 stages. Among them, the same septet flanking ACTN4 was also associated with blood pressure traits in the Hong Kong Hypertension Study (HKHS) and in the Wellcome Trust Case-Control Consortium Hypertension Study (WTCCCHS). LARS was detected in the HKHS, but not in the WTCCCHS. GSN may be specific to Taiwanese individuals because it was not found by either the HKHS or the WTCCCHS. CONCLUSIONS Our study identified 4 previously unknown YOH loci in Han Chinese. Identification of these genes enriches the hypertension susceptibility gene list, thereby shedding light on the etiology of hypertension in Han Chinese.
Collapse
Affiliation(s)
- Kuang-Mao Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhan Y, Yang YT, You HM, Cao D, Liu CY, Zhou CJ, Wang ZY, Bai SJ, Mu J, Wu B, Zhan QL, Xie P. Plasma-based proteomics reveals lipid metabolic and immunoregulatory dysregulation in post-stroke depression. Eur Psychiatry 2014; 29:307-15. [PMID: 24853294 DOI: 10.1016/j.eurpsy.2014.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is the most common psychiatric complication facing stroke survivors and has been associated with increased distress, physical disability, poor rehabilitation, and suicidal ideation. However, the pathophysiological mechanisms underlying PSD remain unknown, and no objective laboratory-based test is available to aid PSD diagnosis or monitor progression. METHODS Here, an isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic approach was performed to identify differentially expressed proteins in plasma samples obtained from PSD, stroke, and healthy control subjects. RESULTS The significantly differentiated proteins were primarily involved in lipid metabolism and immunoregulation. Six proteins associated with these processes--apolipoprotein A-IV (ApoA-IV), apolipoprotein C-II (ApoC-II), C-reactive protein (CRP), gelsolin, haptoglobin, and leucine-rich alpha-2-glycoprotein (LRG)--were selected for Western blotting validation. ApoA-IV expression was significantly upregulated in PSD as compared to stroke subjects. ApoC-II, LRG, and CRP expression were significantly downregulated in both PSD and HC subjects relative to stroke subjects. Gelsolin and haptoglobin expression were significantly dysregulated across all three groups with the following expression profiles: gelsolin, healthy control>PSD>stroke subjects; haptoglobin, stroke>PSD>healthy control. CONCLUSIONS Early perturbation of lipid metabolism and immunoregulation may be involved in the pathophysiology of PSD. The combination of increased gelsolin levels accompanied by decreased haptoglobin levels shows promise as a plasma-based diagnostic biomarker panel for detecting increased PSD risk in post-stroke patients.
Collapse
Affiliation(s)
- Y Zhan
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Y-T Yang
- Department of Neurology, The First Affiliated Hospital at Chongqing Medical University, 1, Yixue Road, Yuzhong District, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - H-M You
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - D Cao
- Department of Neurology, The First Affiliated Hospital at Chongqing Medical University, 1, Yixue Road, Yuzhong District, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - C-Y Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - C-J Zhou
- Department of Neurology, The First Affiliated Hospital at Chongqing Medical University, 1, Yixue Road, Yuzhong District, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Z-Y Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - S-J Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - J Mu
- Department of Neurology, The First Affiliated Hospital at Chongqing Medical University, 1, Yixue Road, Yuzhong District, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - B Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Q-L Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - P Xie
- Department of Neurology, The First Affiliated Hospital at Chongqing Medical University, 1, Yixue Road, Yuzhong District, Chongqing, 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
17
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
18
|
Abrams ST, Zhang N, Manson J, Liu T, Dart C, Baluwa F, Wang SS, Brohi K, Kipar A, Yu W, Wang G, Toh CH. Circulating histones are mediators of trauma-associated lung injury. Am J Respir Crit Care Med 2012; 187:160-9. [PMID: 23220920 DOI: 10.1164/rccm.201206-1037oc] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Acute lung injury is a common complication after severe trauma, which predisposes patients to multiple organ failure. This syndrome largely accounts for the late mortality that arises and despite many theories, the pathological mechanism is not fully understood. Discovery of histone-induced toxicity in mice presents a new dimension for elucidating the underlying pathophysiology. OBJECTIVES To investigate the pathological roles of circulating histones in trauma-induced lung injury. METHODS Circulating histone levels in patients with severe trauma were determined and correlated with respiratory failure and Sequential Organ Failure Assessment (SOFA) scores. Their cause-effect relationship was studied using cells and mouse models. MEASUREMENTS AND MAIN RESULTS In a cohort of 52 patients with severe nonthoracic blunt trauma, circulating histones surged immediately after trauma to levels that were toxic to cultured endothelial cells. The high levels were significantly associated with the incidence of acute lung injury and SOFA scores, as well as markers of endothelial damage and coagulation activation. In in vitro systems, histones damaged endothelial cells, stimulated cytokine release, and induced neutrophil extracellular trap formation and myeloperoxidase release. Cellular toxicity resulted from their direct membrane interaction and resultant calcium influx. In mouse models, cytokines and markers for endothelial damage and coagulation activation significantly increased immediately after trauma or histone infusion. Pathological examinations showed that lungs were the predominantly affected organ with edema, hemorrhage, microvascular thrombosis, and neutrophil congestion. An anti-histone antibody could reduce these changes and protect mice from histone-induced lethality. CONCLUSIONS This study elucidates a new mechanism for acute lung injury after severe trauma and proposes that circulating histones are viable therapeutic targets for improving survival outcomes in patients.
Collapse
Affiliation(s)
- Simon T Abrams
- National Institute of Health Research Biomedical Research Centre, Royal Liverpool University Hospital, Liverpool L7 8XP, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Goo YA, Cain K, Jarrett M, Smith L, Voss J, Tolentino E, Tsuji J, Tsai YS, Panchaud A, Goodlett DR, Shulman RJ, Heitkemper M. Urinary proteome analysis of irritable bowel syndrome (IBS) symptom subgroups. J Proteome Res 2012; 11:5650-62. [PMID: 22998556 DOI: 10.1021/pr3004437] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by chronic abdominal pain associated with alterations in bowel function. Given the heterogeneity of the symptoms, multiple pathophysiologic factors are suspected to play a role. We classified women with IBS into four subgroups based on distinct symptom profiles. In-depth shotgun proteomic analysis was carried out to profile the urinary proteomes to identify possible proteins associated with these subgroups. First void urine samples with urine creatinine level≥100 mg/dL were used after excluding samples that tested positive for blood. Urine from 10 subjects representing each symptom subgroup was pooled for proteomic analysis. The urine proteome was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a data-independent method known as Precursor Acquisition Independent From Ion Count (PAcIFIC) that allowed extended detectable dynamic range. Differences in protein quantities were determined by peptide spectral counting followed by validation of select proteins with ELISA or a targeted single reaction monitoring (LC-SRM/MS) approach. Four IBS symptom subgroups were selected: (1) Constipation, (2) Diarrhea+Low Pain, (3) Diarrhea+High Pain, and (4) High Pain+High Psychological Distress. A fifth group consisted of Healthy Control subjects. From comparisons of quantitative spectral counting data among the symptom subgroups and controls, a total of 18 proteins that showed quantitative differences in relative abundance and possible physiological relevance to IBS were selected for further investigation. Three of the 18 proteins were chosen for validation by either ELISA or SRM. An elevated expression of gelsolin (GSN) was associated with the high pain groups. Trefoil Factor 3 (TFF3) levels were higher in IBS groups compared to controls. In this study, the IBS patients subclassified by predominant symptoms showed differences in urine proteome levels. Proteins showing distinctive changes are involved in homeostasis of intestinal function and inflammatory response. These findings warrant future studies with larger, independent cohorts to enable more extensive assessment and validation of urinary protein markers as a diagnostic tool in adults with IBS.
Collapse
Affiliation(s)
- Young Ah Goo
- Department of Biobehavioral Nursing and Health Systems, University of Washington, Seattle, Washington 98195, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
You Q, Verschoor CP, Pant SD, Macri J, Kirby GM, Karrow NA. Proteomic analysis of plasma from Holstein cows testing positive for Mycobacterium avium subsp. paratuberculosis (MAP). Vet Immunol Immunopathol 2012; 148:243-51. [PMID: 22633222 DOI: 10.1016/j.vetimm.2012.05.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 04/28/2012] [Accepted: 05/01/2012] [Indexed: 12/13/2022]
Abstract
Johne's disease (JD) is a widespread and economically important chronic inflammatory disease of the small intestine of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Although there are several techniques available for diagnosis of JD, their sensitivity is questionable. New proteome profiling methods, such as serum/plasma protein fingerprinting by 2-Dimensional Fluorescence Difference Gel Electrophoresis (2D-DIGE), may therefore be useful for identifying novel protein biomarkers of MAP infection. In this study, plasma samples were collected from 380 Holstein cows and screened for the presence of MAP infection using the M.pt. Johne's antibody Kit (IDEXX). Five negative (MAP-), and 5 strongly positive (MAP+) cows were selected for proteomic analysis. Highly abundant proteins were depleted from the plasma samples using the ProteoMiner technology (Bio-Rad) to enhance the resolution of low abundance proteins. Plasma samples from MAP-, MAP+, and a pooled internal control were labelled with different fluorescent dyes and separated based on their isoelectrical point (IP) and then their molecular weight. Gel images of the fluorescent plasma protein maps were acquired using a Typhoon scanner and analyzed using the DeCyder software. Proteins that were differentially expressed were excised from the gels, trypsin digested, and subjected to MS/MS analysis for identification. Six proteins were identified as being up-regulated at least 2-fold in MAP+ cows including: transferrin, gelsolin isoforms α & β (actin binding protein - ABP), complement subcomponent C1r, complement component C3, amine oxidase - copper containing 3 (AOC3), and coagulation factor II (thrombin) (p<0.05). Two proteins that were down-regulated approximately 2-fold in the MAP+ cows included coagulation factor XIII -B polypeptide (COAFXIII), and fibrinogen γ chain (FGG) and its precursor.
Collapse
Affiliation(s)
- Qiumei You
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
21
|
Long chain acyl CoA synthetase 1 and gelsolin are oppositely regulated in adipogenesis and lipogenesis. Biochem Biophys Res Commun 2012; 420:588-93. [DOI: 10.1016/j.bbrc.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/08/2012] [Indexed: 11/22/2022]
|
22
|
Thomson EM, Williams A, Yauk CL, Vincent R. Overexpression of tumor necrosis factor-α in the lungs alters immune response, matrix remodeling, and repair and maintenance pathways. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1413-30. [PMID: 22322299 DOI: 10.1016/j.ajpath.2011.12.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 12/03/2011] [Accepted: 12/09/2011] [Indexed: 11/25/2022]
Abstract
Increased production of tumor necrosis factor (TNF)-α and matrix metalloproteinases (MMPs) is a feature of inflammatory lung diseases, including emphysema and fibrosis, but the divergent pathological characteristics that result indicate involvement of other processes in disease pathogenesis. Transgenic mice overexpressing TNF-α in type II alveolar epithelial cells under the control of the surfactant protein (SP)-C promoter develop pulmonary inflammation and emphysema but are resistant to induction of fibrosis by administration of bleomycin or transforming growth factor-β. To study the molecular mechanisms underlying the development of this phenotype, we used a microarray approach to characterize the pulmonary transcriptome of SP-C/TNF-α mice and wild-type littermates. Four-month-old SP-C/TNF-α mice displayed pronounced pulmonary inflammation, airspace enlargement, increased MMP-2 and MMP-9 levels, and altered expression of 2332 probes. The functional assessment of genes with increased expression revealed enrichment of inflammatory/immune responses and proteases, whereas genes involved in protease inhibition, angiogenesis, cross-linking of basement membrane proteins, and myofibroblast differentiation were predominantly decreased. Comparison with multiple lung disease models identified a set of genes unique to the SP-C/TNF-α model and revealed that lack of extracellular matrix production distinguished SP-C/TNF-α mice from fibrosis models. Activation of inflammatory and proteolytic pathways and disruption of maintenance and repair processes are central features of emphysema in this TNF-overexpression model. Impairment of myofibroblast differentiation and extracellular matrix production may underlie resistance to induction of fibrosis.
Collapse
Affiliation(s)
- Errol M Thomson
- Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
23
|
Le HT, Hirko AC, Thinschmidt JS, Grant M, Li Z, Peris J, King MA, Hughes JA, Song S. The protective effects of plasma gelsolin on stroke outcome in rats. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2011; 3:13. [PMID: 22047744 PMCID: PMC3224589 DOI: 10.1186/2040-7378-3-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
Abstract
Background To date, recombinant tissue plasminogen activator (rtPA) is the only approved drug for ischemic stroke. It is intravenously administered functioning as a thrombolytic agent and is used to obtain reperfusion of the affected area of the brain. Excitotoxicity, inflammation and apoptosis are all involved in delayed neuronal death following stroke and offer multiple opportunities to intervene with neuroprotective agents. Gelsolin (GSN) is an actin- and calcium-binding protein mediating the disassembly of actin filaments and activity of calcium channels. It also functions as a regulator of apoptosis and inflammatory responses. This study tests the hypothesis that increasing the concentration of the form of GSN known as plasma GSN (pGSN) near an infarct will provide neuroprotection following ischemic stroke. Methods We induced middle cerebral artery occlusion (MCAO) in male rats via intracranial injection of endothelin-1 (ET-1), a potent vasoconstrictor, and then treated with local delivery of pGSN. Whole brain laser Doppler perfusion imaging was performed through the skull to assess MCAO effectiveness. Cylinder and vibrissae tests evaluated sensorimotor function before and 72 h after MCAO. Infarct volumes were examined 72 h after MCAO via 2, 3, 5-triphenyltetrazolium chloride (TTC) assay. Results Estimates of relative cerebral perfusion were significantly decreased in all groups receiving MCAO with no differences detected between treatments. Despite equivalent initial strokes, the infarct volume of the pGSN treatment group was significantly reduced compared with the untreated MCAO rats at 72 h. ET-1 induced significant deficits in both cylinder and vibrissae tests while pGSN significantly limited these deficits. Conclusion Gelsolin could be a promising drug for protection against neurodegeneration following ischemic stroke.
Collapse
Affiliation(s)
- Huong T Le
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reduction of plasma gelsolin levels correlates with development of multiple organ dysfunction syndrome and fatal outcome in burn patients. PLoS One 2011; 6:e25748. [PMID: 22069445 PMCID: PMC3206022 DOI: 10.1371/journal.pone.0025748] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/11/2011] [Indexed: 12/15/2022] Open
Abstract
Background Depletion of the circulating actin-binding protein, plasma gelsolin (pGSN) has been described in critically ill surgical patients. We hypothesized that the extent of pGSN reduction might correlate with different outcome of burn patients. The study was performed to evaluate the prognostic implications of pGSN levels on the development of multiple organ dysfunction syndrome (MODS) and fatal outcome in a group of severely burn patients. Methods and Findings 95 patients were included, and they were divided into three groups with different burn area: group I (n = 33), group II (n = 32) and group III (n = 30). According to whether there was development of MODS or not, patients were divided into MODS group (n = 28) and none-MODS group (n = 67); then the patients with MODS were further divided into non-survivor group (n = 17) and survivor group (n = 11). The peripheral blood samples were collected on postburn days (PBD) 1, 3, 7, 14, and 21. The levels of pGSN were determined and T cells were procured from the blood. The contents of cytokines (IL-2, IL-4 and IFN-γ) released by T cells were also measured. The related factors of prognosis were analyzed by using multivariate logistic regression analysis. The results showed that pGSN concentrations, as well as the levels of IL-2 and IFN-γ, decreased markedly on PBD 1–21, whereas, the levels of IL-4 increased markedly in all burn groups as compared with normal controls (P<0.05 or P<0.01), and there were obviously differences between group I and group III (P<0.05 or P<0.01). The similar results were found in MODS patients and the non-survivor group as compared with those without MODS and the survival group on days 3–21 postburn (P<0.05 or P<0.01). Moreover, as the pGSN levels decreased, the incidence of septic complication as well as MODS remarkably increased. Conclusions pGSN levels appear to be an early prognostic marker in patients suffering from major burns.
Collapse
|
25
|
Griffoni C, Di Molfetta S, Fantozzi L, Zanetti C, Pippia P, Tomasi V, Spisni E. Modification of proteins secreted by endothelial cells during modeled low gravity exposure. J Cell Biochem 2011; 112:265-72. [PMID: 21069737 DOI: 10.1002/jcb.22921] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exposure of the human body to microgravity, conditions that occurs during space flights, causes significant changes in the cardiovascular system. Many cell types have been involved in these changes, and the endothelium seems to play a major role. In endothelial cells (EC), it has been shown that modeled low gravity impairs nitric oxide synthesis, cell adhesion, extracellular matrix composition, cytoskeleton organization, cytokines, and growth factors secretion. Nevertheless, detailed analysis of EC physiological changes induced by microgravity exposure is still lacking. Secretome analysis is one of the most promising approaches for the identification of biomarkers directly related to the physiopathological cellular state. In this study, we analyzed in details the modifications of EC secretome by using umbilical vein endothelial (HUVE) cells exposed to modeled low gravity conditions. By adopting a two-dimensional (2-D) proteomic approach, in conjunction with a technique for the compression of the dynamic range of proteins, we observed that modeled low gravity exposure of HUVE cells affected the secretion of proteins involved in the regulation of cytoskeleton assembly. Moreover, by using Luminex® suspension array systems, we found that the low gravity condition decreased in ECs the secretion of some key pro-inflammatory cytokines, including IL-1α and IL-8, and of the pro-angiogenic factor bFGF. On the contrary, microgravity increase the secretion of two chemokines (Rantes and Eotaxin), involved in leukocytes recruitment.
Collapse
Affiliation(s)
- Cristiana Griffoni
- Department of Experimental Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
26
|
Li GH, Arora PD, Chen Y, McCulloch CA, Liu P. Multifunctional roles of gelsolin in health and diseases. Med Res Rev 2010; 32:999-1025. [PMID: 22886630 DOI: 10.1002/med.20231] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Gelsolin, a Ca(2+) -regulated actin filament severing, capping, and nucleating protein, is an ubiquitous, multifunctional regulator of cell structure and metabolism. More recent data show that gelsolin can act as a transcriptional cofactor in signal transduction and its own expression and function can be influenced by epigenetic changes. Here, we review the functions of the plasma and cytoplasmic forms of gelsolin, and their manifold impacts on cancer, apoptosis, infection and inflammation, cardiac injury, pulmonary diseases, and aging. An improved understanding of the functions and regulatory mechanisms of gelsolin may lead to new considerations of this protein as a potential biomarker and/or therapeutic target.
Collapse
Affiliation(s)
- Guo Hua Li
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
27
|
Protective role of PI3-kinase/Akt/eNOS signaling in mechanical stress through inhibition of p38 mitogen-activated protein kinase in mouse lung. Acta Pharmacol Sin 2010; 31:175-83. [PMID: 20139900 DOI: 10.1038/aps.2009.190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AIM To test the hypothesis that PI3K/Akt/eNOS signaling has a protective role in a murine model of ventilation associated lung injury (VALI) through down-regulation of p38 MAPK signaling. METHODS Male C57BL/J6 (wild-type, WT) or eNOS knockout mice (eNOS(-/-)) were exposed to mechanical ventilation (MV) with low (LV(T), 7 mL/kg) and high tidal volume (HV(T), 20 mL/kg) for 0-4 h. A subset of WT mice was administered the specific inhibitors of PI3K (100 nmol/L Wortmannin [Wort], ip) or of p38 MAPK (SB203580, 2 mg/kg, ip) 1 h before MV. Cultured type II alveolar epithelial cells C10 were exposed to 18% cyclic stretch for 2 h with or without 20 nmol/L Wort pretreatment. At the end of the experiment, the capillary leakage in vivo was assessed by extravasation of Evans blue dye (EBD), wet/dry weight ratio and lung lavage protein concentration. The lung tissue and cell lysate were also collected for protein and histological review. RESULTS MV decreased PI3K/Akt phosphorylation and eNOS expression but increased phospho-p38 MAPK expression along with a lung leakage of EBD. Inhibitions of phospho-Akt by Wort worsen the lung edema, whereas inhibition of p38 MAPK kinase restored activation of Akt together with alleviated capillary leakage. eNOS(-/-) mice showed an exacerbated lung edema and injury. The stretched C10 cells demonstrated that Wort diminished the activation of Akt, but potentiated phosphorylation of MAPK p38. CONCLUSION Our results indicate that PI-3K/Akt/eNOS pathway has significant protective effects in VALI by preventing capillary leakage, and that there is a cross-talk between PI3K/Akt and p38 MAPK pathways in vascular barrier dysfunction resulting from VALI.
Collapse
|
28
|
Maniatis NA, Harokopos V, Thanassopoulou A, Oikonomou N, Mersinias V, Witke W, Orfanos SE, Armaganidis A, Roussos C, Kotanidou A, Aidinis V. A Critical Role for Gelsolin in Ventilator-Induced Lung Injury. Am J Respir Cell Mol Biol 2009; 41:426-32. [DOI: 10.1165/rcmb.2008-0144oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Dahl B. The extracellular actin scavenger system in trauma and major surgery. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2009. [DOI: 10.1080/03008820510040694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Pottiez G, Sevin E, Cecchelli R, Karamanos Y, Flahaut C. Actin, gelsolin and filamin-A are dynamic actors in the cytoskeleton remodelling contributing to the blood brain barrier phenotype. Proteomics 2009; 9:1207-19. [DOI: 10.1002/pmic.200800503] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
31
|
Wadgaonkar R, Patel V, Grinkina N, Romano C, Liu J, Zhao Y, Sammani S, Garcia JGN, Natarajan V. Differential regulation of sphingosine kinases 1 and 2 in lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296:L603-13. [PMID: 19168577 DOI: 10.1152/ajplung.90357.2008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Two mammalian sphingosine kinase (SphK) isoforms, SphK1 and SphK2, possess identical kinase domains but have distinct kinetic properties and subcellular localizations, suggesting each has one or more specific roles in sphingosine-1-phosphate (S1P) generation. Although both kinases use sphingosine as a substrate to generate S1P, the mechanisms controlling SphK activation and subsequent S1P generation during lung injury are not fully understood. In this study, we established a murine lung injury model to investigate LPS-induced lung injury in SphK1 knockout (SphK1(-/-)) and wild-type (WT) mice. We found that SphK1(-/-) mice were much more susceptible to LPS-induced lung injury compared with their WT counterparts, quantified by multiple parameters including cytokine induction. Intriguingly, overexpression of WT SphK1 delivered by adenoviral vector to the lungs protected SphK1(-/-) mice from lung injury and attenuated the severity of the response to LPS. However, adenoviral overexpression of a SphK1 kinase-dead mutant (SphKKD) in SphK1(-/-) mouse lungs further exacerbated the response to LPS as well as the extent of lung injury. WT SphK2 adenoviral overexpression also failed to provide protection and, in fact, augmented the degree of LPS-induced lung injury. This suggested that, in vascular injury, S1P generated by SphK2 activation plays a distinctly separate role compared with SphK1-dependent S1P generation and survival signaling. Microarray and real-time RT-PCR analysis of SphK1 and SphK2 expression levels during lung injury revealed that, in WT mice, LPS treatment caused significantly enhanced SphK1 expression ( approximately 5x) levels within 6 h, which declined back to baseline levels by 24 h posttreatment. In contrast, expression of SphK2 was gradually induced following LPS treatment and was elevated within 24 h. Collectively, our results for the first time demonstrate distinct functional roles of the two SphK isoforms in the regulation of LPS-induced lung injury.
Collapse
Affiliation(s)
- Raj Wadgaonkar
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Le Saux O, Teeters K, Miyasato S, Choi J, Nakamatsu G, Richardson JA, Starcher B, Davis EC, Tam EK, Jourdan-Le Saux C. The role of caveolin-1 in pulmonary matrix remodeling and mechanical properties. Am J Physiol Lung Cell Mol Physiol 2008; 295:L1007-17. [PMID: 18849439 DOI: 10.1152/ajplung.90207.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Caveolin-1 (cav1) is a 22-kDa membrane protein essential to the formation of small invaginations in the plasma membrane, called caveolae. The cav1 gene is expressed primarily in adherent cells such as endothelial and smooth muscle cells and fibroblasts. Caveolae contain a variety of signaling receptors, and cav1 notably downregulates transforming growth factor (TGF)-beta signal transduction. In pulmonary pathologies such as interstitial fibrosis or emphysema, altered mechanical properties of the lungs are often associated with abnormal ECM deposition. In this study, we examined the physiological functions and the deposition of ECM in cav1(-/-) mice at various ages (1-12 mo). Cav1(-/-) mice lack caveolae and by 3 mo of age have significant reduced lung compliance and increased elastance and airway resistance. Pulmonary extravasation of fluid, as part of the cav1(-/-) mouse phenotype, probably contributed to the alteration of compliance, which was compounded by a progressive increase in deposition of collagen fibrils in airways and parenchyma. We also found that the increased elastance was caused by abundant elastic fiber deposition primarily around airways in cav1(-/-) mice at least 3 mo old. These observed changes in the ECM composition probably also contribute to the increased airway resistance. The higher deposition of collagen and elastic fibers was associated with increased tropoelastin and col1alpha2 and col3alpha1 gene expression in lung tissues, which correlated tightly with increased TGF-beta/Smad signal transduction. Our study illustrates that perturbation of cav1 function may contribute to several pulmonary pathologies as the result of the important role played by cav1, as part of the TGF-beta signaling pathway, in the regulation of the pulmonary ECM.
Collapse
Affiliation(s)
- O Le Saux
- Univ. of Hawaii, John A. Burns School of Medicine, Dept. of Cell and Molecular Biology, 651 Ilalo St., BSB 222, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang H, Cheng B, Chen Q, Wu S, Lv C, Xie G, Jin Y, Fang X. Time course of plasma gelsolin concentrations during severe sepsis in critically ill surgical patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 12:R106. [PMID: 18706105 PMCID: PMC2575595 DOI: 10.1186/cc6988] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 08/07/2008] [Accepted: 08/17/2008] [Indexed: 12/01/2022]
Abstract
Introduction Gelsolin is an actin-binding plasma protein that is part of an 'actin-scavenging' system. Studies suggest that plasma gelsolin may play a crucial role in the pathophysiology of sepsis. Little is known about the course of plasma gelsolin levels over time in patients with severe sepsis. The aim of the study was to investigate plasma gelsolin levels in severe septic patients and to determine whether these levels predict the severity or clinical outcome of severe sepsis. Methods Ninety-one patients who were diagnosed with severe sepsis at admission to a surgical intensive care unit were enrolled, and admission plasma gelsolin levels were recorded. Plasma gelsolin levels were recorded daily in 23 of these patients. Daily plasma gelsolin levels were recorded in an additional 15 nonseptic critically ill patients. Fifteen volunteers served as healthy control individuals. Plasma gelsolin levels were measured using an enzyme-linked immunosorbent assay. Concentrations of IL-6, IL-10 and tumour necrosis factor (TNF)-α were also measured on intensive care unit admission. Results The admission gelsolin levels were significantly decreased in severe sepsis (20.6 ± 11.7 mg/l) compared with nonseptic critically ill patients (52.3 ± 20.3 mg/l; P < 0.001) and healthy control individuals (126.8 ± 32.0 mg/l; P < 0.001). Severe septic patients had increased IL-6 levels compared with nonseptic critically ill patients (20.0 ± 10.7 pg/ml versus 11.4 ± 13.9 pg/ml; P = 0.048), whereas no significant difference in IL-10 or TNF-α levels was observed (IL-10: 97.9 ± 181.5 pg/ml versus 47.4 ± 91.5 pg/ml, respectively [P = 0.425]; TNF-α: 14.2 ± 13.9 pg/ml versus 6.9 ± 5.3 pg/ml, respectively; P = 0.132). Survivors of severe sepsis exhibited substantial recovery of their depressed plasma gelsolin levels, whereas gelsolin levels in nonsurvivors remained at or below their depleted admission levels. Conclusion Plasma gelsolin may be a valuable marker for severe sepsis. Recovery of depleted plasma gelsolin levels correlated with clinical improvement. The prognostic role of plasma gelsolin in critical illness requires further investigation in a large cohort.
Collapse
Affiliation(s)
- HaiHong Wang
- Department of Anesthesiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, QingChun Road, Hangzhou 310003, PR China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dinubile MJ. Plasma gelsolin: in search of its raison d'être. Focus on “Modifications of cellular responses to lysophosphatidic acid and platelet-activating factor by plasma gelsolin”. Am J Physiol Cell Physiol 2007; 292:C1240-2. [PMID: 17428843 DOI: 10.1152/ajpcell.00007.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Ferjani I, Fattoum A, Maciver S, Bénistant C, Chahinian A, Manai M, Benyamin Y, Roustan C. A direct interaction with calponin inhibits the actin-nucleating activity of gelsolin. Biochem J 2006; 396:461-8. [PMID: 16536729 PMCID: PMC1482823 DOI: 10.1042/bj20051690] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 03/02/2006] [Accepted: 03/15/2006] [Indexed: 12/26/2022]
Abstract
Gelsolin and calponin are well-characterized cytoskeletal proteins that are abundant and widely expressed in vertebrate tissues. It is also becoming apparent, however, that they are involved in cell signalling. In the present study, we show that gelsolin and calponin interact directly to form a high-affinity (K(d)=16 nM) 1:1 complex, by the use of fluorescent probes attached to both proteins, by affinity chromatography and by immunoprecipitation. These methods show that gelsolin can form high-affinity complexes with two calponin isoforms (basic h1 and acidic h3). They also show that gelsolin binds calponin through regions that have been identified previously as being calponin's actin-binding sites. Moreover, gelsolin does not interact with calponin while calponin is bound to F-actin. Reciprocal experiments to find calponin-binding sites on gelsolin show that these are in both the N- and C-terminal halves of gelsolin. Calponin has minimal effects on actin severing by gelsolin. In contrast, calponin markedly affects the nucleation activity of gelsolin. The maximum inhibition of nucleation by gelsolin was 50%, which was achieved with a ratio of two calponins for every gelsolin. Thus the interaction of calponin with gelsolin may play a regulatory role in the formation of actin filaments through modulation of gelsolin's actin-binding function and through the prevention of calponin's actin-binding activities.
Collapse
Affiliation(s)
- Imen Ferjani
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
- †Unité de Biochimie et Biololgie Moléculaire, Faculté des Sciences de Tunis, Campus Universitaire 2092 El Manar, Tunis, Tunisia
| | - Abdellatif Fattoum
- ‡School of Biomedical and Clinical Laboratory Sciences, Division of Biomedical Sciences, College of Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland
| | - Sutherland K. Maciver
- §Centre de Recherches de Biochimie Macromoléculaire, FRE 2593 (CNRS), 1919 rte de Mende, 34293 Montpellier Cedex 5, France
| | - Christine Bénistant
- ‡School of Biomedical and Clinical Laboratory Sciences, Division of Biomedical Sciences, College of Medicine, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland
| | - Anne Chahinian
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Mohamed Manai
- †Unité de Biochimie et Biololgie Moléculaire, Faculté des Sciences de Tunis, Campus Universitaire 2092 El Manar, Tunis, Tunisia
| | - Yves Benyamin
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| | - Claude Roustan
- *UMR 5539 (CNRS) Laboratoire de Motilité Cellulaire (Ecole Pratique des Hautes Etudes), Université de Montpellier 2, Place E. Bataillon, CC107, 34095 Montpellier Cedex 5, France
| |
Collapse
|
36
|
Abstract
BACKGROUND Gc-globulin (vitamin D-binding protein) appears to have important functions in addition to its role as a carrier of vitamin D. APPROACH We reviewed recent studies focusing on the pathophysiologic functions and clinical significance of Gc-globulin. RESULTS Serum concentrations of Gc-globulin, as determined by immunoassay techniques, are decreased in severe injury. The extent of the decrease may have prognostic significance for patient outcomes. Clinical studies and animal models have shown that Gc-globulin has an important role in the clearance of procoagulant actin from the circulation after its release during cell necrosis and tissue injury. Gc-globulin has other potential roles in responses to acute tissue injury through conversion to a macrophage-activating factor, neutrophil chemotactic activity, and enhancement of C5a-mediated signaling. CONCLUSION Considering the important physiologic roles of Gc-globulin in responses to tissue injury, such as clearance of actin, measurement of Gc-globulin may have value in directing the care of patients in many clinical disorders.
Collapse
Affiliation(s)
- Ursula Meier
- Institute of Clinical Chemistry and Pathobiochemistry and Central Laboratory, Rheinisch-Westfälische Technische Hochschule (RWTH)-University Hospital Aachen, Aachen, Germany.
| | | | | | | |
Collapse
|
37
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|