1
|
Imidazopyridazine Acetylcholinesterase Inhibitors Display Potent Anti-Proliferative Effects in the Human Neuroblastoma Cell-Line, IMR-32. Molecules 2021; 26:molecules26175319. [PMID: 34500749 PMCID: PMC8434581 DOI: 10.3390/molecules26175319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 11/29/2022] Open
Abstract
Imidazo[1,2-b]pyridazine compounds are a new class of promising lead molecules to which we have incorporated polar nitro and amino moieties to increase the scope of their biological activity. Two of these substituted 3-nitro-6-amino-imidazo[1,2-b]pyridazine compounds (5c and 5h) showed potent acetylcholinesterase (AChE) inhibitory activity (IC50 40–50 nM), which we have previously reported. In this study, we wanted to test the biological efficacy of these compounds. Cytotoxicity assays showed that compound 5h mediated greater cell death with over 43% of cells dead at 100 μM and activation of caspase 3-mediated apoptosis. On the other hand, compound 5c mediated a dose-dependent decrease in cell proliferation. Both compounds showed cell cycle arrest in the G0/G1 phase and reduced cellular ATP levels leading to activation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitochondrial oxidative stress. It has to be noted that all these effects were observed at doses beyond 10 μM, 200-fold above the IC50 for AChE inhibition. Both compounds also inhibited bacterial lipopolysaccharide-mediated cyclooxygenase-2 and nitric oxide release in primary rat microglial cells. These results suggested that the substituted imidazo (1,2-b) pyridazine compounds, which have potent AChE inhibitory activity, were also capable of antiproliferative, anti-migratory, and anti-inflammatory effects at higher doses.
Collapse
|
2
|
Samra SK, Rajasekaran A, Sandford AJ, Ellis AK, Tebbutt SJ. Cholinergic Synapse Pathway Gene Polymorphisms Associated With Late-Phase Responses in Allergic Rhinitis. FRONTIERS IN ALLERGY 2021; 2:724328. [PMID: 35387037 PMCID: PMC8974783 DOI: 10.3389/falgy.2021.724328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Allergic rhinitis (AR) is characterized by an early-phase response (EPR), and in a subgroup of individuals, a late-phase response (LPR). We sought to investigate polymorphisms in cholinergic synapse pathway genes, previously associated with late-asthmatic responses, in the LPR. Twenty healthy participants and 74 participants with AR underwent allergen exposure using the Environmental Exposure Unit. Allergic participants were sub-phenotyped using self-reported nasal congestion scores; congestion is the predominant symptom experienced during the LPR. Acute congestion (AC, n = 36) participants developed only an EPR, while persistent congestion (PC, n = 38) participants developed both allergic responses. We interrogated blood samples collected before allergen exposure with genotyping and gene expression assays. Twenty-five SNPs located in ADCY3, AKT3, CACNA1S, CHRM3, CHRNB2, GNG4, and KCNQ4 had significantly different allele frequencies (P < 0.10) between PC and AC participants. PC participants had increased minor allele content (P = 0.009) in the 25 SNPs compared to AC participants. Two SNPs in AKT3 were associated with gene expression differences (FDR < 0.01) in PC participants. This study identified an association between the LPR and polymorphisms in the cholinergic synapse pathway genes, and developed a novel method to sub-phenotype AR using self-reported nasal congestion scores.
Collapse
Affiliation(s)
- Simranjit K. Samra
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Ashwini Rajasekaran
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Andrew J. Sandford
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Anne K. Ellis
- Departments of Medicine and Biomedical & Molecular Science, Queen's University, Kingston, ON, Canada
- Allergy Research Unit, Kingston General Hospital, Kingston, ON, Canada
| | - Scott J. Tebbutt
- Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Scott J. Tebbutt
| |
Collapse
|
3
|
Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, Akdis M, Akdis CA. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med 2021; 85:100995. [PMID: 34364680 DOI: 10.1016/j.mam.2021.100995] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
Asthma is a chronic disease of the airways, which affects more than 350 million people worldwide. It is the most common chronic disease in children, affecting at least 30 million children and young adults in Europe. Asthma is a complex, partially heritable disease with a marked heterogeneity. Its development is influenced both by genetic and environmental factors. The most common, as well as the most well characterized subtype of asthma is allergic eosinophilic asthma, which is characterized by a type 2 airway inflammation. The prevalence of asthma has substantially increased in industrialized countries during the last 60 years. The mechanisms underpinning this phenomenon are incompletely understood, however increased exposure to various environmental pollutants probably plays a role. Disease inception is thought to be enabled by a disadvantageous shift in the balance between protective and harmful lifestyle and environmental factors, including exposure to protective commensal microbes versus infection with pathogens, collectively leading to airway epithelial cell damage and disrupted barrier integrity. Epithelial cell-derived cytokines are one of the main drivers of the type 2 immune response against innocuous allergens, ultimately leading to infiltration of lung tissue with type 2 T helper (TH2) cells, type 2 innate lymphoid cells (ILC2s), M2 macrophages and eosinophils. This review outlines the mechanisms responsible for the orchestration of type 2 inflammation and summarizes the novel findings, including but not limited to dysregulated epithelial barrier integrity, alarmin release and innate lymphoid cell stimulation.
Collapse
Affiliation(s)
- Zsolt I Komlósi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary.
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Nóra Kovács
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Lung Health Hospital, Munkácsy Mihály Str. 70, 2045, Törökbálint, Hungary
| | - Gergő Szűcs
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad Sqr. 4, 1089, Budapest, Hungary; Department of Pulmonology, Semmelweis University, Tömő Str. 25-29, 1083, Budapest, Hungary
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, APC Microbiome Ireland, University College Cork, Ireland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), Hermann-Burchard Strasse 9, CH7265, Davos Wolfgand, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
4
|
Fang L, Roth M, S'ng CT, Tamm M, Han B, Hoang BX. Zinc salicylate reduces airway smooth muscle cells remodelling by blocking mTOR and activating p21 (Waf1/Cip1). J Nutr Biochem 2020; 89:108563. [PMID: 33326841 DOI: 10.1016/j.jnutbio.2020.108563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/22/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022]
Abstract
Asthma is characterized by chronic inflammation and tissue remodeling of the airways. Remodeling is resistant to pharmaceutical therapies. This study investigated the effect of zinc salicylate-methylsulfonylmethane (Zn-Sal-MSM) compared to zinc salicylate (Zn-Sal), or sodium salicylate (Na-Sal), or zinc chloride (ZnCl2) on remodeling parameters of human airway smooth muscle cells (ASMC). Human ASMC obtained from asthma patients (n=7) and non-asthma controls (n=7) were treated with one of the reagents. Cell proliferation and viability was determined by direct cell counts and MTT assay. The expression of and phosphorylation proteins was determined by Western-blotting, ELISA, immunofluorescence, and mass spectrometry. Extracellular matrix deposition by ELISA. Zn-Sal-MSM, Zn-Sal and Na-Sal (0.1-100 µg/mL) significantly reduced PDGF-BB-induced proliferation in a concentration dependent manner, while ZnCl2 was toxic. The reduced proliferation correlated with increased expression of the cell cycle inhibitor p21(Waf1/Cip1), and reduced activity of Akt, p70S6K, and Erk1/2. Zn-Sal-MSM, Zn-Sal, but not Na-Sal reduced the deposition of fibronectin and collagen type-I. Furthermore, Zn-Sal-MSM reduced the mitochondria specific COX4 expression. Mass spectrometry indicated that Zn-Sal-MSM modified the expression of several signaling proteins and zinc-dependent enzymes. In conclusion, Zn-Sal-MSM and Zn-Sal potentially prevent airway wall remodeling in asthma by inhibition of both the Erk1/2 and mTOR signaling pathways.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research/Pneumology, Department of Biomedicine/Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research/Pneumology, Department of Biomedicine/Internal Medicine, University and University Hospital Basel, Basel, Switzerland.
| | | | - Michael Tamm
- Pulmonary Cell Research/Pneumology, Department of Biomedicine/Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Bo Han
- Cordoba-Nimni Tissue Engineering and Drug Discovery Lab, Department of Surgery, University of Southern California, Los Angeles, California
| | - Ba Xuan Hoang
- Cordoba-Nimni Tissue Engineering and Drug Discovery Lab, Department of Surgery, University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disorder with substantial morbidity and mortality. BP is regarded as a disorder driven by IgG due to BP180 and BP230 IgG autoantibodies, yet, new advances highlight the function of eosinophils and IgE autoantibodies in BP. Evidence supports that eosinophils are involved in BP pathogenesis, notably, these include the presence of IL-5, eotaxin, and eosinophil-colony stimulating factor in blister fluid, peripheral blood eosinophilia is present in nearly 50% of affected patients, eosinophils are found against the dermo-epidermal junction (DEJ) when BP serum is present, metalloprotease-9 is secreted by eosinophils at blister sites, blister fluid of BP patients contains eosinophil granule proteins which are located along the lamina lucida of the BMZ in patients with BP and correspond with disease clinically, eosinophil extracellular traps (EET) have been linked to DEJ splitting, IL-5 activated eosinophils cause DEJ separation when BP serum is present, and eosinophils are requisite to drive anti-BP180 IgE mediated blistering of the skin. Yet, the mechanism whereby eosinophils contribute to the pathogenesis of BP remains to be explored. In this review, we examine the role of eosinophils in BP while offering a basis to explain the pathomechanisms of eosinophils in BP.
Collapse
Affiliation(s)
- Virginia A Jones
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Payal M Patel
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, Chicago, IL, USA -
| |
Collapse
|
6
|
Guseva D, Rüdrich U, Kotnik N, Gehring M, Patsinakidis N, Agelopoulos K, Ständer S, Homey B, Kapp A, Gibbs BF, Ponimaskin E, Raap U. Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis. Clin Exp Allergy 2020; 50:577-584. [PMID: 31925827 DOI: 10.1111/cea.13560] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity. OBJECTIVE The purpose of this study was to determine the anatomical localization of eosinophils in the skin of patients with AD with regard to peripheral nerves and to investigate whether eosinophils induce sprouting and neurite outgrowth in murine sensory neurons. METHODS Cryosections of skin derived from AD and control (NA) patients were subjected to immunofluorescence analysis with markers for eosinophils, BDNF and neuronal cells. Stimulated eosinophil supernatants were used for the treatment of cultured peripheral mouse dorsal root ganglia (DRG) neurons followed by morphometric analysis. RESULTS Dermal axon density and the proximity of eosinophils to nerve fibres were significantly higher in AD patients vs NA. Both neuronal projections and eosinophils expressed BDNF. Furthermore, activated eosinophil supernatants induced BDNF-dependent mouse DRG neuron branching. CONCLUSIONS AND CLINICAL RELEVANCE Our results indicate that BDNF-positive eosinophils are also localized in close proximity with nerve fibres in AD, suggesting a functional relationship between BDNF-expressing eosinophils and neuronal projections. These observations suggest that eosinophils may have considerable impact on pruritus by supporting sensory nerve branching.
Collapse
Affiliation(s)
- Daria Guseva
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Department of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Urda Rüdrich
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Nika Kotnik
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Manuela Gehring
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Nikolaos Patsinakidis
- University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| | - Konstantin Agelopoulos
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Bernhard Homey
- Department of Dermatology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Kapp
- Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany
| | - Bernhard F Gibbs
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany
| | - Evgeni Ponimaskin
- Department of Cellular Neurophysiology, Hannover Medical School, Hannover, Germany.,Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Ulrike Raap
- Division of Experimental Allergology and Immunodermatology, University of Oldenburg, Oldenburg, Germany.,University Clinic of Dermatology and Allergy, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
7
|
Kistemaker LEM, Prakash YS. Airway Innervation and Plasticity in Asthma. Physiology (Bethesda) 2019; 34:283-298. [PMID: 31165683 PMCID: PMC6863372 DOI: 10.1152/physiol.00050.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/22/2022] Open
Abstract
Airway nerves represent a mechanistically and therapeutically important aspect that requires better highlighting in the context of diseases such as asthma. Altered structure and function (plasticity) of afferent and efferent airway innervation can contribute to airway diseases. We describe established anatomy, current understanding of how plasticity occurs, and contributions of plasticity to asthma, focusing on target-derived growth factors (neurotrophins). Perspectives toward novel treatment strategies and future research are provided.
Collapse
Affiliation(s)
- L E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen , Groningen , The Netherlands
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
8
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
9
|
Eduardo CRC, Alejandra TIG, Guadalupe DRKJ, Herminia VRG, Lenin P, Enrique BV, Evandro BM, Oscar B, Iván GPM. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J Neuroimmunol 2019; 327:22-35. [PMID: 30683425 DOI: 10.1016/j.jneuroim.2019.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
The expression of elements of the cholinergic system has been demonstrated in non-neuronal cells, such as immune cells, where acetylcholine modulates innate and adaptive responses. However, the study of the non-neuronal cholinergic system has focused on lymphocyte cholinergic mechanisms, with less attention to its role of innate cells. Considering this background, the aims of this review are 1) to review information regarding the cholinergic components of innate immune system cells; 2) to discuss the effect of cholinergic stimuli on cell functions; 3) and to describe the importance of cholinergic stimuli on host immunocompetence, in order to set the base for the design of intervention strategies in the biomedical field.
Collapse
Affiliation(s)
- Covantes-Rosales Carlos Eduardo
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Toledo-Ibarra Gladys Alejandra
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Díaz-Resendiz Karina Janice Guadalupe
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico
| | - Ventura-Ramón Guadalupe Herminia
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico
| | - Pavón Lenin
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Becerril-Villanueva Enrique
- Instituto Nacional de Psiquiatría "Ramón de la Fuente", Laboratorio de Psicoinmunología, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 México City, DF, Mexico
| | - Bauer Moisés Evandro
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto de Pesquisas Biomédicas, Laboratório de Imunologia do Envelhecimento, 90610-000 Porto Alegre, RS, Brazil
| | - Bottaso Oscar
- Universidad Nacional de Rosario-Consejo Nacional de Investigaciones Científicas y Técnicas (UNR-CONICET), Instituto de Inmunología Clínica y Experimental de Rosario, Rosario, Argentina
| | - Girón-Pérez Manuel Iván
- Universidad Autónoma de Nayarit, Secretaría de Investigación y Posgrado, Laboratorio de Inmunotoxicología, Boulevard Tepic-Xalisco s/n, Cd de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, Mexico; Centro Nayarita de Innovación y Transferencia de Tecnología A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria-Unidad Nayarit, Calle Tres s/n. Cd Industrial, Tepic, Nayarit, Mexico.
| |
Collapse
|
10
|
Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, Fryer AD, Costello RW, Jacoby DB. Eosinophils increase airway sensory nerve density in mice and in human asthma. Sci Transl Med 2018; 10:eaar8477. [PMID: 30185653 PMCID: PMC6592848 DOI: 10.1126/scitranslmed.aar8477] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
Abstract
In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.
Collapse
Affiliation(s)
- Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Gregory D Scott
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Emily D Blum
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Katherine M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
Amber KT, Valdebran M, Kridin K, Grando SA. The Role of Eosinophils in Bullous Pemphigoid: A Developing Model of Eosinophil Pathogenicity in Mucocutaneous Disease. Front Med (Lausanne) 2018; 5:201. [PMID: 30042946 PMCID: PMC6048777 DOI: 10.3389/fmed.2018.00201] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune blistering disease which carries a significant mortality and morbidity. While historically BP has been characterized as an IgG driven disease mediated by anti-BP180 and BP230 IgG autoantibodies, developments in recent years have further elucidated the role of eosinophils and IgE autoantibodies. In fact, eosinophil infiltration and eosinophilic spongiosis are prominent features in BP. Several observations support a pathogenic role of eosinophils in BP: IL-5, eotaxin, and eosinophil-colony stimulating factor are present in blister fluid; eosinophils line the dermo-epidermal junction (DEJ) in the presence of BP serum, metalloprotease-9 is released by eosinophils at the site of blisters; eosinophil degranulation proteins are found on the affected basement membrane zone as well as in serum corresponding with clinical disease; eosinophil extracellular DNA traps directed against the basement membrane zone are present, IL-5 activated eosinophils cause separation of the DEJ in the presence of BP serum; and eosinophils are the necessary cell required to drive anti-BP180 IgE mediated skin blistering. Still, it is likely that eosinophils contribute to the pathogenesis of BP in numerous other ways that have yet to be explored based on the known biology of eosinophils. We herein will review the role of eosinophils in BP and provide a framework for understanding eosinophil pathogenic mechanisms in mucocutaneous disease.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Manuel Valdebran
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Khalaf Kridin
- Department of Dermatology, Rambam Healthcare Campus, Haifa, Israel
| | - Sergei A Grando
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Departments of Dermatology and Biological Chemistry, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
Bosmans G, Shimizu Bassi G, Florens M, Gonzalez-Dominguez E, Matteoli G, Boeckxstaens GE. Cholinergic Modulation of Type 2 Immune Responses. Front Immunol 2017; 8:1873. [PMID: 29312347 PMCID: PMC5742746 DOI: 10.3389/fimmu.2017.01873] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.
Collapse
Affiliation(s)
- Goele Bosmans
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gabriel Shimizu Bassi
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Morgane Florens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Erika Gonzalez-Dominguez
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Guy E Boeckxstaens
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Hennigan K, Conroy PJ, Walsh MT, Amin M, O'Kennedy R, Ramasamy P, Gleich GJ, Siddiqui Z, Glynn S, McCabe O, Mooney C, Harvey BJ, Costello RW, McBryan J. Eosinophil peroxidase activates cells by HER2 receptor engagement and β1-integrin clustering with downstream MAPK cell signaling. Clin Immunol 2016; 171:1-11. [PMID: 27519953 PMCID: PMC5070911 DOI: 10.1016/j.clim.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/02/2016] [Accepted: 08/06/2016] [Indexed: 01/21/2023]
Abstract
Eosinophils account for 1–3% of peripheral blood leukocytes and accumulate at sites of allergic inflammation, where they play a pathogenic role. Studies have shown that treatment with mepolizumab (an anti-IL-5 monoclonal antibody) is beneficial to patients with severe eosinophilic asthma, however, the mechanism of precisely how eosinophils mediate these pathogenic effects is uncertain. Eosinophils contain several cationic granule proteins, including Eosinophil Peroxidase (EPO). The main significance of this work is the discovery of EPO as a novel ligand for the HER2 receptor. Following HER2 activation, EPO induces activation of FAK and subsequent activation of β1-integrin, via inside-out signaling. This complex results in downstream activation of ERK1/2 and a sustained up regulation of both MUC4 and the HER2 receptor. These data identify a receptor for one of the eosinophil granule proteins and demonstrate a potential explanation of the proliferative effects of eosinophils. Eosinophil peroxidase (EPO) is confirmed as a ligand for the HER2 receptor. EPO activation of HER2 leads to activation of FAK, ERK and β1 integrin. EPO induces a sustained upregulation of MUC4 and HER2. Possible mechanism for the proliferative effects of eosinophils is uncovered.
Collapse
Affiliation(s)
- Kerrie Hennigan
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Paul J Conroy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Marie-Therese Walsh
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Mohamed Amin
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Richard O'Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin 9, Ireland
| | - Patmapriya Ramasamy
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gerald J Gleich
- Department of Dermatology, University of Utah, Salt Lake City, USA
| | - Zeshan Siddiqui
- Graduate Entry Medical School, University of Limerick, Ireland
| | - Senan Glynn
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Olive McCabe
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Catherine Mooney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Richard W Costello
- Department of Medicine Respiratory Research Division, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| | - Jean McBryan
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
14
|
Akasheh N, Walsh MT, Costello RW. Eosinophil peroxidase induces expression of cholinergic genes via cell surface neural interactions. Mol Immunol 2014; 62:37-45. [PMID: 24937179 DOI: 10.1016/j.molimm.2014.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 01/21/2023]
Abstract
Eosinophils localize to and release their granule proteins in close association with nerves in patients with asthma and rhinitis. These conditions are associated with increased neural function. In this study the effect of the individual granule proteins on cholinergic neurotransmitter expression was investigated. Eosinophil peroxidase (EPO) upregulated choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) gene expression. Fluorescently labeled EPO was seen to bind to the IMR-32 cell surface. Both Poly-L-Glutamate (PLG) and Heparinase-1 reversed the up-regulatory effect of EPO on ChAT and VAChT expression and prevented EPO adhesion to the cell surface. Poly-L-arginine (PLA) had no effect on expression of either gene, suggesting that charge is necessary but insufficient to alter gene expression. EPO induced its effects via the activation of NF-κB. MEK inhibition led to reversal of all up-regulatory effects of EPO. These data indicate a preferential role of EPO signaling via a specific surface receptor that leads to neural plasticity.
Collapse
Affiliation(s)
- Nadim Akasheh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
15
|
Daoud A, Xie Z, Ma Y, Wang T, Tan G. Changes of T-helper type 1/2 cell balance by anticholinergic treatment in allergic mice. Ann Allergy Asthma Immunol 2014; 112:249-55. [PMID: 24428969 DOI: 10.1016/j.anai.2013.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/16/2013] [Accepted: 12/08/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND Anticholinergic drugs or vidian neurectomy can alleviate the symptoms of allergic rhinitis. OBJECTIVE To show that inhibition of the cholinergic nerve influences the balance of T-helper type 1 and 2 cells in allergic rhinitis mice. METHODS Twenty-four mice were randomly allocated to 1 of 4 groups: control, model, model with ipratropium bromide treatment, and model with 6-hydroxydopamine treatment. Allergic model-treated mice were sensitized with ovalbumin. Evaluation of allergic symptoms was recorded according to a symptom score. Ovalbumin serum IgE was measured by enzyme-linked immunosorbent assay. Expression of interleukin-4, interferon-γ, forkhead box P3, substance P, and vasoactive intestinal peptides was detected by immunohistochemistry and imaging analysis. RESULTS Symptoms in allergic mice were significantly alleviated by ipratropium bromide. Ovalbumin serum IgE and eosinophils of nasal mucosa were significantly decreased. Interleukin-4 expression level was significantly higher in the allergic model group than in the control group and significantly decreased by ipratropium bromide (P < .05). In contrast, the expression of forkhead box P3 was lower in the allergic model group than in the control group and increased with treatment by ipratropium bromide (P < .05). Conversely, interferon-γ expression was not changed by anticholinergic treatment in the nasal mucosa of allergic mice. Expression of substance P and vasoactive intestinal peptide was significantly increased in allergic mice and decreased by ipratropium bromide. Sympathetic denervation did not change the expression of interleukin-4, interferon-γ, forkhead box P3, substance P, and vasoactive intestinal peptide. CONCLUSION inhibition of the cholinergic nerve not only alleviated symptoms of allergic rhinitis by inhibiting the impulse of the parasympathetic nerve but also modulated the T-helper type 2-predominant immune reaction, expression of neuropeptides, and related inflammation factors.
Collapse
Affiliation(s)
- Ahmed Daoud
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuozheng Xie
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanhong Ma
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Tiansheng Wang
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China
| | - Guolin Tan
- Department of Otolaryngology-Head Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Baroody FM, Detineo M, Naclerio RM. Unilateral nasal allergic reactions increase bilateral sinus eosinophil infiltration. J Appl Physiol (1985) 2013; 115:1262-7. [PMID: 23970539 DOI: 10.1152/japplphysiol.00547.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that unilateral nasal challenge with antigen causes an increase in the number of eosinophils in the ipsilateral maxillary sinus. Here we aimed to determine whether there was an eosinophil response in the contralateral maxillary sinus after unilateral nasal challenge with antigen. Twenty subjects with a history of seasonal allergic rhinitis and a positive nasal challenge to ragweed or grass allergens were studied outside of their allergy season. Catheters were placed in both maxillary sinuses and the subjects were challenged with antigen via the left nostril. The subjects recorded nasal symptoms before and after each allergen challenge and hourly for 8 h afterward. We performed nasal lavages of the nose and sinuses at the same time as symptoms were recorded. The lavages were analyzed for the number of eosinophils and levels of albumin. Subjects showed a symptomatic response to challenge accompanied by an influx of eosinophils into the nose and increased vascular permeability. The number of eosinophils increased in both maxillary sinuses. The total change from diluent in eosinophils during the late phase response was higher in the ipsilateral maxillary sinus (median = 8,505; range = 0-100,360) compared with the contralateral sinus (median = 1,596; range = -13,527-93,373; P = 0.03). We conclude that eosinophils increase in both maxillary sinuses after unilateral nasal challenge. We speculate that a central neurologic reflex initiated in the nose by the nasal challenge contributes to the bilateral eosinophil response in the maxillary sinuses. We further speculate that, since there are more eosinophils in the ipsilateral compared with the contralateral maxillary sinus, there is also an axonal reflex into the ipsilateral maxillary sinus that contributed to the eosinophil response.
Collapse
Affiliation(s)
- Fuad M Baroody
- Section of Otolaryngology-Head and Neck Surgery, The University of Chicago Medical Center and The Pritzker School of Medicine, The University of Chicago, Illinois
| | | | | |
Collapse
|
17
|
Thornton MA, Akasheh N, Walsh MT, Moloney M, Sheahan PO, Smyth CM, Walsh RM, Morgan RM, Curran DR, Walsh MT, Gleich GJ, Costello RW. Eosinophil recruitment to nasal nerves after allergen challenge in allergic rhinitis. Clin Immunol 2013; 147:50-57. [PMID: 23518598 DOI: 10.1016/j.clim.2013.02.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 02/04/2023]
Abstract
In allergen challenged animal models, eosinophils localize to airway nerves leading to vagally-mediated hyperreactivity. We hypothesized that in allergic rhinitis eosinophils recruited to nasal nerves resulted in neural hyperreactivity. Patients with persistent allergic rhinitis (n=12), seasonal allergic rhinitis (n=7) and controls (n=10) were studied. Inferior nasal turbinate biopsies were obtained before, 8 and 48h after allergen challenge. Eight hours after allergen challenge eosinophils localized to nerves in both rhinitis groups; this was sustained through 48h. Bradykinin challenge, with secretion collection on the contralateral side, was performed to demonstrate nasal nerve reflexes. Twenty fourhours after allergen challenge, bradykinin induced a significant increase in secretions, indicating nasal hyperreactivity. Histological studies showed that nasal nerves expressed both vascular cell adhesion molecule-1 (VCAM-1) and chemokine (C-C motif) ligand 26 (CCL-26). Hence, after allergen challenge eosinophils are recruited and retained at nerves and so may be a mechanism for neural hyperreactivity.
Collapse
Affiliation(s)
- Margaret A Thornton
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Nadim Akasheh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland.
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Michael Moloney
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Patrick O Sheahan
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Claire M Smyth
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Rory McConn Walsh
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Ross M Morgan
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - David R Curran
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Michael T Walsh
- Department of Otolaryngology, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| | - Gerald J Gleich
- Department of Dermatology, School of Medicine, Salt Lake City, Utah, 84132, USA
| | - Richard W Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Smurfit Building, Beaumont Hospital, Dublin 9, Ireland
| |
Collapse
|
18
|
Verbout NG, Jacoby DB. Muscarinic receptor agonists and antagonists: effects on inflammation and immunity. Handb Exp Pharmacol 2012:403-27. [PMID: 22222708 DOI: 10.1007/978-3-642-23274-9_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we will review what is known about muscarinic regulation of immune cells and the contribution of immune cell muscarinic receptors to inflammatory disease and immunity. In particular, immune cell expression of cholinergic machinery, muscarinic receptor subtypes and functional consequences of agonist stimulation will be reviewed. Lastly, this chapter will discuss the potential therapeutic effects of selective antagonists on immune cell function and inflammatory disease in recent animal studies and human clinical trials.
Collapse
Affiliation(s)
- Norah G Verbout
- School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
19
|
Yu S, Ouyang A. Effect of synthetic cationic protein on mechanoexcitability of vagal afferent nerve subtypes in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 2011; 301:G1052-8. [PMID: 21960520 PMCID: PMC3233783 DOI: 10.1152/ajpgi.00015.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eosinophilic esophagitis is characterized by increased infiltration and degranulation of eosinophils in the esophagus. Whether eosinophil-derived cationic proteins regulate esophageal sensory nerve function is still unknown. Using synthetic cationic protein to investigate such effect, we performed extracellular recordings from vagal nodose or jugular neurons in ex vivo esophageal-vagal preparations with intact nerve endings in the esophagus. Nerve excitabilities were determined by comparing action potentials evoked by esophageal distensions before and after perfusion of synthetic cationic protein poly-L-lysine (PLL) with or without pretreatment with poly-L-glutamic acid (PLGA), which neutralized cationic charges of PLL. Perfusion with PLL did not evoke action potentials in esophageal nodose C fibers but increased their responses to esophageal distension. This potentiation effect lasted for 30 min after washing out of PLL. Pretreatment with PLGA significantly inhibited PLL-induced mechanohyperexcitability of esophageal nodose C fibers. In esophageal nodose Aδ fibers, perfusion with PLL did not evoke action potentials. In contrast to nodose C fibers, both the spontaneous discharges and the responses to esophageal distension in nodose Aδ fibers were decreased by perfusion with PLL, which can be restored after washing out PLL for 30-60 min. Pretreatment with PLGA attenuated PLL-induced decrease in spontaneous discharge and mechanoexcitability of esophageal nodose Aδ fibers. In esophageal jugular C fibers, PLL neither evoked action potentials nor changed their responses to esophageal distension. Collectively, these data demonstrated that synthetic cationic protein did not evoke action potential discharges of esophageal vagal afferents but had distinctive sensitization effects on their responses to esophageal distension.
Collapse
Affiliation(s)
- Shaoyong Yu
- 1Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and
| | - Ann Ouyang
- 2Department of Medicine, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
20
|
Abstract
Inflammatory bowel diseases (IBD) are characterized by the invasion of leukocytes into the intestinal mucosa. However, a mixed inflammatory picture is observed that includes neutrophils, lymphocytes, monocytes, and eosinophils. To this day, the role of eosinophils in health and in disease remains unclear. Investigations into their function stem primarily from allergic diseases, asthma, and parasitic infections. This makes it even more difficult to discern a role for the fascinating eosinophil in IBDs because, unlike the lung or the skin, eosinophils reside in normal intestinal mucosa and increase in disease states; consequently, an intricate system must regulate their migration and numbers. These granulocytes are equipped with the machinery to participate in gastrointestinal (GI) inflammation and in the susceptible microenvironment, they may initiate or perpetuate an inflammatory response. A significant body of literature characterizes eosinophils present in the GI microenvironment where they have the potential to interact with other resident cells, thus promoting intestinal remodeling, mucus production, epithelial barrier, cytokine production, angiogenesis, and neuropeptide release. A number of lines of evidence support both potential beneficial and deleterious roles of eosinophils in the gut. Although studies from the gut and other mucosal organs suggest eosinophils affect mucosal GI inflammation, definitive roles for eosinophils in IBDs await discovery.
Collapse
|
21
|
Costello RW, Maloney M, Atiyeh M, Gleich G, Walsh MT. Mechanism of sphingosine 1-phosphate- and lysophosphatidic acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells. Int J Mol Sci 2011; 12:3237-49. [PMID: 21686182 PMCID: PMC3116188 DOI: 10.3390/ijms12053237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 12/11/2022] Open
Abstract
The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.
Collapse
Affiliation(s)
- Richard W. Costello
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Michael Maloney
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Mazin Atiyeh
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
| | - Gerald Gleich
- Department of Dermatology, University of Utah, Salt Lake City, UT 84132, USA; E-Mail:
| | - Marie-Therese Walsh
- Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; E-Mails: (R.W.C.); (M.M.); (M.A.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +353-1-8093803; Fax: +353-1-8093765
| |
Collapse
|
22
|
Wallon C, Persborn M, Jönsson M, Wang A, Phan V, Lampinen M, Vicario M, Santos J, Sherman PM, Carlson M, Ericson AC, McKay DM, Söderholm JD. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 2011; 140:1597-607. [PMID: 21277851 DOI: 10.1053/j.gastro.2011.01.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/23/2010] [Accepted: 01/13/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Altered intestinal barrier function has been implicated in the pathophysiology of ulcerative colitis (UC) in genetic, functional, and epidemiological studies. Mast cells and corticotropin-releasing factor (CRF) regulate the mucosal barrier in human colon. Because eosinophils are often increased in colon tissues of patients with UC, we assessed interactions among mast cells, CRF, and eosinophils in the mucosal barrier of these patients. METHODS Transmucosal fluxes of protein antigens (horseradish peroxidase) and paracellular markers ((51)Cr-EDTA, fluorescein isothiocyanate-dextran 4000) were studied in noninflamed, colonic mucosal biopsy samples collected from 26 patients with UC and 53 healthy volunteers (controls); samples were mounted in Ussing chambers. We also performed fluorescence and electron microscopy of human tissue samples, assessed isolated eosinophils, and performed mechanistic studies using in vitro cocultured eosinophils (15HL-60), mast cells (HMC-1), and a colonic epithelial cell line (T84). RESULTS Colon tissues from patients with UC had significant increases in permeability to protein antigens compared with controls. Permeability was blocked by atropine (a muscarinic receptor antagonist), α-helical CRF(9-41) (a CRF receptor antagonist), and lodoxamide (a mast-cell stabilizer). Eosinophils were increased in number in UC tissues (compared with controls), expressed the most M2 and M3 muscarinic receptors of any mucosal cell type, and had immunoreactivity to CRF. In coculture studies, carbachol activation of eosinophils caused production of CRF and activation of mast cells, which increased permeability of T84 epithelial cells to macromolecules. CONCLUSIONS We identified a neuroimmune intercellular circuit (from cholinergic nerves, via eosinophils to mast cells) that mediates colonic mucosal barrier dysfunction in patients with UC. This circuit might exacerbate mucosal inflammation.
Collapse
Affiliation(s)
- Conny Wallon
- Department of Clinical and Experimental Medicine, Division of Surgery, Linköping University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Walsh MT, Connell K, Sheahan AM, Gleich GJ, Costello RW. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation. Am J Respir Cell Mol Biol 2011; 45:946-52. [PMID: 21454806 DOI: 10.1165/rcmb.2010-0454oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.
Collapse
Affiliation(s)
- Marie-Therese Walsh
- Department of Medicine, Education and Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Eosinophils are potent innate immune cells that home to the gastrointestinal tract where they participate in host immunity to luminal pathogens, and help to maintain intestinal epithelial homeostasis. However, these cells are now recognized to have key functions in the pathogenesis of numerous other disorders of the gastrointestinal tract, including primary eosinophilic gastrointestinal disease, common functional conditions, such as dyspepsia, and also in gastrointestinal disorders in patients with allergic disease. We are just beginning to understand the potential pathological role of eosinophils in gastrointestinal disease, and it is increasingly likely that gastroenterologists and histopathologists will need to account for the presence of gastrointestinal eosinophils and relate their presence to gastrointestinal symptoms. This Review discusses the role of gastrointestinal eosinophils in health and disease, including their associations with functional and allergic disorders.
Collapse
|
25
|
Sherwin RP, Richters V. Topographical distribution of bronchial eosinophilia: significance for biopsy diagnosis. Virchows Arch 2009; 455:77-85. [PMID: 19495790 DOI: 10.1007/s00428-009-0790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/08/2009] [Accepted: 05/08/2009] [Indexed: 11/27/2022]
Abstract
Field-by-field (0.324 x 0.09 microM) counts of eosinophils were applied to the lamina propria of cartilaginous bronchi from 47 Los Angeles and 22 Miami residents 11 to 30 years of age who died suddenly from violence. A highly variable topographical distribution was found that appeared to be due mainly to variations in confluent eosinophil-positive fields and "hot spots" (>or=3 eosinophils per field). Since biopsy is the gold standard for the diagnosis of bronchial eosinophilia, there is a need to resolve the problem of non-uniformity. New measurements applicable to biopsy diagnosis are presented having potential usefulness for providing insight into the severity and topographical distribution of eosinophilia within bronchi that are the sites of biopsy. The additional finding of a 30.4% incidence of moderate to marked eosinophilia (>1.5 eosinophils/mm reticular basement membrane) suggests a high level of asthma or asthmatic-like disease in the young subjects of this study.
Collapse
Affiliation(s)
- Russell P Sherwin
- Department of Pathology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | |
Collapse
|
26
|
Verbout NG, Jacoby DB, Gleich GJ, Fryer AD. Atropine-enhanced, antigen challenge-induced airway hyperreactivity in guinea pigs is mediated by eosinophils and nerve growth factor. Am J Physiol Lung Cell Mol Physiol 2009; 297:L228-37. [PMID: 19447892 DOI: 10.1152/ajplung.90540.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although anticholinergic therapy inhibits bronchoconstriction in asthmatic patients and antigen-challenged animals, administration of atropine 1 h before antigen challenge significantly potentiates airway hyperreactivity and eosinophil activation measured 24 h later. This potentiation in airway hyperreactivity is related to increased eosinophil activation and is mediated at the level of the airway nerves. Since eosinophils produce nerve growth factor (NGF), which is known to play a role in antigen-induced airway hyperreactivity, we tested whether NGF mediates atropine-enhanced, antigen challenge-induced hyperreactivity. Antibody to NGF (Ab NGF) was administered to sensitized guinea pigs with and without atropine pretreatment (1 mg/kg iv) 1 h before challenge. At 24 h after challenge, animals were anesthetized, vagotomized, paralyzed, and ventilated. Electrical stimulation of both vagus nerves caused bronchoconstriction that was increased in challenged animals. Atropine pretreatment potentiated antigen challenge-induced hyperreactivity. Ab NGF did not affect eosinophils or inflammatory cells in any group, nor did it prevent hyperreactivity in challenged animals that were not pretreated with atropine. However, Ab NGF did prevent atropine-enhanced, antigen challenge-induced hyperreactivity and eosinophil activation (assessed by immunohistochemistry). This effect was specific to NGF, since animals given control IgG remained hyperreactive. These data suggest that anticholinergic therapy amplifies eosinophil interactions with airway nerves via NGF. Therefore, therapeutic strategies that target both eosinophil activation and NGF-mediated inflammatory processes in allergic asthma are likely to be beneficial.
Collapse
Affiliation(s)
- Norah G Verbout
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, 97239, USA
| | | | | | | |
Collapse
|
27
|
Brauer MM. Cellular and molecular mechanisms underlying plasticity in uterine sympathetic nerves. Auton Neurosci 2008; 140:1-16. [DOI: 10.1016/j.autneu.2008.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/14/2008] [Accepted: 02/19/2008] [Indexed: 12/15/2022]
|
28
|
Raap U, Wardlaw AJ. A new paradigm of eosinophil granulocytes: neuroimmune interactions. Exp Dermatol 2008; 17:731-8. [PMID: 18505411 DOI: 10.1111/j.1600-0625.2008.00741.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Eosinophil granulocytes have long been regarded as potent effector cells with the potential to release an array of inflammatory mediators involved in cytotoxicity to helminths and tissue destruction in chronic inflammatory diseases such as asthma. However, it has become evident that eosinophils are also involved in regulatory mechanisms modulating local tissue immune responses. Eosinophils take part in remodelling and repair mechanisms and contribute to the localized innate and acquired immune response as well as systemic adaptive immunity. In addition, eosinophils are involved in neuroimmune interactions modulating the functional activity of peripheral nerves. Neuromediators can also modulate the functional activity of eosinophils, revealing bidirectional interactions between the two cell types. Eosinophils are tissue-resident cells and have been found in close vicinity of peripheral nerves. This review describes neuroimmune interactions between eosinophil granulocytes and peripheral nerves and highlights why eosinophils are important in allergic diseases such as asthma.
Collapse
Affiliation(s)
- Ulrike Raap
- Department of Dermatology and Allergology, Hannover Medical School, Hannover, Germany.
| | | |
Collapse
|
29
|
Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 2008; 38:709-50. [PMID: 18384431 DOI: 10.1111/j.1365-2222.2008.02958.x] [Citation(s) in RCA: 568] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of diverse inflammatory responses, as well as modulators of innate and adaptive immunity. In this review, the biology of eosinophils is summarized, focusing on transcriptional regulation of eosinophil differentiation, characterization of the growing properties of eosinophil granule proteins, surface proteins and pleiotropic mediators, and molecular mechanisms of eosinophil degranulation. New views on the role of eosinophils in homeostatic function are examined, including developmental biology and innate and adaptive immunity (as well as their interaction with mast cells and T cells) and their proposed role in disease processes including infections, asthma, and gastrointestinal disorders. Finally, strategies for targeted therapeutic intervention in eosinophil-mediated mucosal diseases are conceptualized.
Collapse
|
30
|
Proskocil BJ, Bruun DA, Lorton JK, Blensly KC, Jacoby DB, Lein PJ, Fryer AD. Antigen sensitization influences organophosphorus pesticide-induced airway hyperreactivity. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:381-8. [PMID: 18335107 PMCID: PMC2265045 DOI: 10.1289/ehp.10694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 01/02/2008] [Indexed: 05/11/2023]
Abstract
BACKGROUND Recent epidemiologic studies have identified organophosphorus pesticides (OPs) as environmental factors potentially contributing to the increase in asthma prevalence over the last 25 years. In support of this hypothesis, we have demonstrated that environmentally relevant concentrations of OPs induce airway hyperreactivity in guinea pigs. OBJECTIVES Sensitization to allergen is a significant contributing factor in asthma, and we have shown that sensitization changes virus-induced airway hyperreactivity from an eosinophil-independent mechanism to one mediated by eosinophils. Here, we determine whether sensitization similarly influences OP-induced airway hyperreactivity. METHODS Nonsensitized and ovalbumin-sensitized guinea pigs were injected subcutaneously with the OP parathion (0.001-1.0 mg/kg). Twenty-four hours later, animals were anesthetized and ventilated, and bronchoconstriction was measured in response to either vagal stimulation or intravenous acetylcholine. Inflammatory cells and acetylcholinesterase activity were assessed in tissues collected immediately after physiologic measurements. RESULTS Ovalbumin sensitization decreased the threshold dose for parathion-induced airway hyperreactivity and exacerbated parathion effects on vagally induced bronchoconstriction. Pretreatment with antibody to interleukin (IL)-5 prevented parathion-induced hyperreactivity in sensitized but not in nonsensitized guinea pigs. Parathion did not increase the number of eosinophils in airways or the number of eosinophils associated with airway nerves nor did it alter eosinophil activation as assessed by major basic protein deposition. CONCLUSIONS Antigen sensitization increases vulnerability to parathion-induced airway hyperreactivity and changes the mechanism to one that is dependent on IL-5. Because sensitization to allergens is characteristic of 50% of the general population and 80% of asthmatics (including children), these findings have significant implications for OP risk assessment, intervention, and treatment strategies.
Collapse
Affiliation(s)
- Becky J Proskocil
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Bianchimano P, Frías AI, Richeri A, Brauer MM. Effects of dexamethasone on estrogen- and pregnancy-induced plasticity in rat uterine sympathetic nerves. Cell Tissue Res 2007; 330:413-25. [PMID: 17901987 DOI: 10.1007/s00441-007-0444-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/22/2007] [Indexed: 11/30/2022]
Abstract
Estrogen and glucocorticoids are known to evoke opposing effects on the uterus. We analyzed the effects of dexamethasone (DEX) on uterine sympathetic denervation elicited by short- and long-term exposure to estrogen of intact prepubertal rats. We also studied the effects of DEX on the physiological degeneration of uterine sympathetic nerves at term pregnancy. Changes in innervation were assessed quantitatively by using computer-assisted methods on uterine cryostat tissue sections stained for tyrosine hydroxylase. At 24 h following treatment of prepubertal rats (25 days of age) with 1 microg or 2.5 microg estrogen, marked increases in uterine size and reductions in the percentage nerve area were observed. Co-administration of DEX (4 mg/kg) attenuated both these short-term estrogen-induced effects. Treatment of 19-day-old rats with a single dose of 25 mug estrogen provoked, at 26 days of age, a 54% reduction in the total nerve area. This reduction was abolished by the co-administration of nine doses of DEX (0.5 mg/kg) at 18-26 days of age. Treatment of rats with the same regime of DEX alone increased the total nerve area by 46% of the control values. Studies of control pregnant rats revealed the unexpected presence of intrauterine nerve fibers at term. Treatment of pregnant rats with six doses of DEX (4 mg/kg) at 16-21 days of age had no effects on the density of uterine sympathetic nerves. These results suggest that DEX has growth-promoting effects on immature uterine sympathetic nerves and may antagonize the degenerative effects elicited by long-term exposure to estrogen.
Collapse
Affiliation(s)
- P Bianchimano
- Laboratorio de Biología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | | | | | | |
Collapse
|
32
|
Feng JT, Hu CP, Li XZ. Dorsal root ganglion: the target of acupuncture in the treatment of asthma. Adv Ther 2007; 24:598-602. [PMID: 17660170 DOI: 10.1007/bf02848784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recently, high levels of neurotrophic factors have been found in bronchial asthma; these factors include nerve growth factor, brain-derived neurotrophic factor, and leukemia inhibitory factor, among others. Neurotrophic factors are first synthesized in bronchial epithelial cells, immune cells, and other cells in the airway; they are then taken up by the synapse and are finally transported to dorsal root ganglia (C7-T5). Increased neurotrophic factors in dorsal root ganglia promote the synthesis and release of substance P. As a result, substance P causes a series of reactions such as contraction of airway smooth muscles, secretion of mucous fluids, seepage of capillary vessels, release of mediators of inflammation, and aggravation of airway hyperreactivity. It is interesting to note that the anatomic locations of dorsal root ganglia (C7-T5) are similar to a series of acupuncture points in traditional Chinese medicine. These points are all situated on 2 sides of the midspinal line, and most of them belong to Back-shu acupuncture points. In traditional Chinese medicine, Back-shu points can be used to treat patients with bronchial asthma through acupuncture and moxibustion. Is it a coincidence, or is there a real connection? These points possess similar neurotonia, physical function, and therapeutic effects; the functional area of Back-shu is composed of these points. When these points are pricked with a needle along the lower border of the spinous process, dorsal root ganglia and spinal nerves are stimulated; this can help to regulate the synthesis and release of neurotransmitters. It is hypothesized that dorsal root ganglia may be the targets of acupuncture in the treatment of asthma; in this process, acupuncture has an inhibitory effect on the uptake of neurotrophic factors, or it inhibits the synthesis and release of substance P in dorsal root ganglia. As a result, airway neurogenic inflammation in asthma is relieved.
Collapse
Affiliation(s)
- Jun Tao Feng
- Department of Respiratory Medicine, Xiangya Hospital of Central South University, Hunan, China
| | | | | |
Collapse
|
33
|
Lee JJ, Furuta GT. Upper gastrointestinal tract eosinophilic disorders: pathobiology and management. Curr Gastroenterol Rep 2007; 8:439-42. [PMID: 17105680 DOI: 10.1007/s11894-006-0032-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Patients with eosinophilic esophagitis present with symptoms similar to those from gastroesophageal reflux disease along with dense esophageal eosinophilia (normal gastric and duodenal biopsies) that persist despite aggressive acid blockade. The dramatic increase in prevalence of eosinophilic esophagitis over the past several years provides clinicians with a new explanation for previously unexplained dysphagia, food impaction, vomiting, and abdominal pain. As a product of this recognition, an increasing number of basic and translational studies are building a new understanding of the pathogenesis of esophageal eosinophilia. This review addresses recent studies that define clinical features, genetic predisposition, pathogenetic mechanisms, and treatment options for eosinophilic esophagitis.
Collapse
Affiliation(s)
- Jessica J Lee
- Harvard Medical School, Children's Hospital Boston, 300 Longwood Avenue, Hunnewell Ground Floor, Boston, MA 02115, USA
| | | |
Collapse
|
34
|
Taylor CT, Keely SJ. The autonomic nervous system and inflammatory bowel disease. Auton Neurosci 2007; 133:104-14. [PMID: 17234460 DOI: 10.1016/j.autneu.2006.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/19/2006] [Indexed: 12/22/2022]
Abstract
Crohn's disease and ulcerative colitis, collectively known as inflammatory bowel disease (IBD), are chronic, recurring, inflammatory conditions of the intestine. The precise mechanisms underlying the pathogenesis of IBD are not yet clear but they are believed to involve a number of precipitating factors, most notably genetic susceptibility and environmental influences. The autonomic nervous system (ANS) has long been known as a critical regulator of intestinal function and much evidence now exists to suggest that it also plays an important role in the development of IBD. Dramatic changes in the ANS in IBD are apparent from the cellular to the molecular level ultimately leading to altered communication between the ANS and effector cells of the intestine. This review aims to synthesize the current understanding of the pathogenesis of IBD with a particular emphasis on the role that the ANS plays in the progression of these diseases.
Collapse
Affiliation(s)
- Cormac T Taylor
- School of Medicine and Medical Science, UCD Conway Institute, University College Dublin, Ireland
| | | |
Collapse
|
35
|
|
36
|
Abstract
PURPOSE OF REVIEW Eosinophilic inflammation of the gastrointestinal tract is either increasing in frequency or being better recognized. Whichever is the case, clinical needs to meet this new challenge include establishing diagnostic criteria, identifying the natural history and determining effective, tolerable treatments. RECENT FINDINGS During the last 5 years, the emergence of eosinophilic esophagitis stimulated many case series; the new frontiers relate to understanding disease pathogenesis and maintenance treatments. Eosinophilic gastrointestinal diseases involving the rest of the gastrointestinal tract pose new challenges in understanding the role of eosinophils in intestinal dysmotility and protein loss. SUMMARY This review will focus on new clinical developments in the field of eosinophilic gastrointestinal diseases and the contribution of basic studies in understanding eosinophils impact on gastrointestinal inflammation.
Collapse
Affiliation(s)
- Glenn T Furuta
- Harvard Medical School, Children's Hospital Boston, Boston, Massachusetts 02115, USA.
| |
Collapse
|
37
|
Abstract
BACKGROUND Eosinophilic oesophagitis is a clinicopathological disease affecting both children and adults that is characterized by symptoms of gastro-oesophageal reflux disease (feeding refusal, vomiting, heartburn, dysphagia and food impaction) and dense oesophageal eosinophilia both of which are unresponsive to proton pump inhibition. AIM To present a review of the recent literature examining the pathogenesis and treatments of eosinophilic oesophagitis. METHODS We performed a PubMed search for eosinophilic oesophagitis, pathogenesis and treatments. RESULTS Translational and basic studies suggest that this disease is sparked by food or by aeroallergens. To date, effective treatments include systemic/topical corticosteroids, specific food elimination or an elemental diet. While several studies identified oesophageal strictures as potential complications of unbridled eosinophilia, the natural history of the disease is still not certain. Recent studies suggest a role for interleukin-5 and eotaxin-3 in the pathogenesis of eosinophilic oesophagitis and suggest an impact of future targeted therapeutic agents. CONCLUSIONS Eosinophilic oesophagitis represents a immune-mediated disease of undetermined pathogenesis. While many patients develop clinicopathological findings following ingestion of foods, others do not. Natural history studies will be critical to defining future treatment paradigms.
Collapse
Affiliation(s)
- G T Furuta
- Gastroenterology Division, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|