1
|
Zhao C, Taliento AE, Belkin EM, Fearns R, Lerou PH, Ai X, Bai Y. Infant RSV infection desensitizes β2-adrenergic receptor via CXCL11-CXCR7 signaling in airway smooth muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632772. [PMID: 39868223 PMCID: PMC11761401 DOI: 10.1101/2025.01.13.632772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rationale Airflow obstruction refractory to β2 adrenergic receptor (β2AR) agonists is an important clinical feature of infant respiratory syncytial virus (RSV) bronchiolitis, with limited treatment options. This resistance is often linked to poor drug delivery and potential viral infection of airway smooth muscle cells (ASMCs). Whether RSV inflammation causes β2AR desensitization in infant ASMCs is unknown. Objectives To investigate the interaction of RSV inflammation with the β2AR signaling pathway in infant ASMCs. Methods Infant precision-cut lung slices (PCLSs) and mouse pup models of RSV infection were subjected to airway physiological assays. Virus-free, conditioned media from RSV-infected infant bronchial epithelial cells in air-liquid interface (ALI) culture and nasopharyngeal aspirates (NPA) from infants with severe RSV bronchiolitis were collected and applied to infant PCLSs and ASMCs. Cytokines in these samples were profiled and assessed for the effects on β2AR expression, cell surface distribution, and relaxant function in ASMCs. Measurements and Main Results Conditioned media and NPA induced similar resistance to β2AR agonists in ASMCs as RSV infection. Cytokine profiling identified CXCL11 as one of the most elevated signals following RSV infection. CXCL11 activated its receptor CXCR7 in a complex with β2AR in ASMCs to promote β2AR phosphorylation, internalization, and degradation. Blockade of CXCR7 partially restored airway relaxation in response to β2AR agonists in infant PCLSs and mouse pup models of RSV infection. Conclusions The CXCL11-CXCR7 pathway plays a critical role in β2AR desensitization in ASMCs during RSV infection and represents a potential therapeutic target in alleviating airflow obstruction in infant RSV bronchiolitis.
Collapse
|
2
|
Manti S, Gambadauro A, Galletta F, Ruggeri P, Piedimonte G. Update on the Role of β2AR and TRPV1 in Respiratory Diseases. Int J Mol Sci 2024; 25:10234. [PMID: 39408565 PMCID: PMC11477158 DOI: 10.3390/ijms251910234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Respiratory diseases (RDs) constitute a common public health problem both in industrialized and developing countries. The comprehension of the pathophysiological mechanisms underlying these conditions and the development of new therapeutic strategies are critical for improving the quality of life of affected patients. β2-adrenergic receptor (β2AR) and transient receptor potential vanilloid 1 (TRPV1) are both involved in physiological responses in the airways. β2AR is implicated in bronchodilation, mucociliary clearance, and anti-inflammatory effects, while TRPV1 is involved in the mediation of pain and cough reflexes. In RDs, such as respiratory infections, asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, the concentration and expression of these receptors can be altered, leading to significant consequences. In this review, we provided an update on the literature about the role of β2AR and TRPV1 in these conditions. We reported how the diminished or defective expression of β2AR during viral infections or prolonged therapy with β2-agonists can increase the severity of these pathologies and impact the prognosis. Conversely, the role of TRPV1 was pivotal in neuroinflammation, and its modulation could lead to innovative treatment strategies in specific patients. We indicate future perspectives and potential personalized treatments in RDs through a comprehensive analysis of the roles of these receptors in the physiological and pathological mechanisms of these pathologies.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical and Dental Sciences, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
3
|
Manti S, Piedimonte G. An overview on the RSV-mediated mechanisms in the onset of non-allergic asthma. Front Pediatr 2022; 10:998296. [PMID: 36204661 PMCID: PMC9530042 DOI: 10.3389/fped.2022.998296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection is recognized as an important risk factor for wheezing and asthma, since it commonly affects babies during lung development. While the role of RSV in the onset of atopic asthma is widely recognized, its impact on the onset of non-atopic asthma, mediated via other and independent causal pathways, has long been also suspected, but the association is less clear. Following RSV infection, the release of local pro-inflammatory molecules, the dysfunction of neural pathways, and the compromised epithelial integrity can become chronic and influence airway development, leading to bronchial hyperreactivity and asthma, regardless of atopic status. After a brief review of the RSV structure and its interaction with the immune system and neuronal pathways, this review summarizes the current evidence about the RSV-mediated pathogenic pathways in predisposing and inducing airway dysfunction and non-allergic asthma development.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Pulmonology Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Pediatric Unit, Department of Human Pathology of Adult and Childhood Gaetano Barresi, University of Messina, Messina, Italy
| | - Giovanni Piedimonte
- Department of Pediatrics, Biochemistry and Molecular Biology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
4
|
Harford TJ, Rezaee F, Gupta MK, Bokun V, Naga Prasad SV, Piedimonte G. Respiratory syncytial virus induces β 2-adrenergic receptor dysfunction in human airway smooth muscle cells. Sci Signal 2021; 14:14/685/eabc1983. [PMID: 34074703 DOI: 10.1126/scisignal.abc1983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pharmacologic agonism of the β2-adrenergic receptor (β2AR) induces bronchodilation by activating the enzyme adenylyl cyclase to generate cyclic adenosine monophosphate (cAMP). β2AR agonists are generally the most effective strategy to relieve acute airway obstruction in asthmatic patients, but they are much less effective when airway obstruction in young patients is triggered by infection with respiratory syncytial virus (RSV). Here, we investigated the effects of RSV infection on the abundance and function of β2AR in primary human airway smooth muscle cells (HASMCs) derived from pediatric lung tissue. We showed that RSV infection of HASMCs resulted in proteolytic cleavage of β2AR mediated by the proteasome. RSV infection also resulted in β2AR ligand-independent activation of adenylyl cyclase, leading to reduced cAMP synthesis compared to that in uninfected control cells. Last, RSV infection caused stronger airway smooth muscle cell contraction in vitro due to increased cytosolic Ca2+ concentrations. Thus, our results suggest that RSV infection simultaneously induces loss of functional β2ARs and activation of multiple pathways favoring airway obstruction in young patients, with the net effect of counteracting β2AR agonist-induced bronchodilation. These findings not only provide a potential mechanism for the reported lack of clinical efficacy of β2AR agonists for treating virus-induced wheezing but also open the path to developing more precise therapeutic strategies.
Collapse
Affiliation(s)
- Terri J Harford
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Manveen K Gupta
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Vladimir Bokun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sathyamangla V Naga Prasad
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
5
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Abstract
β2-adrenoceptor agonists, often used in combination with corticosteroids, have been extensively used for the treatment of asthma. However, concerns have been raised regarding their adverse effects and safety including poor asthma control, life-threatening exacerbations, exacerbations that often require hospitalization, and asthma-related deaths. The question as to whether these adverse effects relate to the loss of their bronchoprotective action remains an interesting possibility. In the chapter, we will review the experimental evidence that describes the different potential factors and associated mechanisms that can blunt the therapeutic action of β2-adrenoceptor agonists in asthma. We show here evidence that various key inflammatory cytokines, growth factors, some respiratory viruses, certain allergens, unknown factors present in serum from atopic asthmatics have the capacity to impair β2-adrenoceptor function in airway smooth muscle, the main target of these drugs. More importantly, we present our latest research describing the role played by mast cells in impairing β2-adrenoceptor function. Although no definitive conclusion could be made regarding the implication of one single mechanism, receptor uncoupling, or receptor desensitization due to phosphorylation represents the main inhibitory pathways associated with a loss of β2-adrenoceptor function in airway smooth muscle. Targeting the pathways leading to β2-adrenoceptor dysfunction will likely provide novel therapies to improve the efficacy of β2-agonists in asthma.
Collapse
|
7
|
Zhou X, Dang YJ, Wang GF, Jin XQ. Effects of Aspergillus fumigatus on glucocorticoid receptor and β2-adrenergic receptor expression in a rat model of asthma. Exp Lung Res 2017; 43:197-207. [PMID: 28696809 DOI: 10.1080/01902148.2017.1339142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE Conventional inhaled corticosteroids or β2-adrenergic receptor agonists do not work well in some asthmatic populations while empirical antifungal therapy has obvious impact on those patients. The study was designed to investigate whether short-term exposure to Aspergillus fumigatus (A. fumigatus) could decrease glucocorticoid receptor (GCR) and β2-adrenergic receptor (ADRB2) expression in lung tissue of asthmatic rats. MATERIALS AND METHODS A rat model of chronic asthma was first established by ovalbumin sensitization and challenge. Rats with chronic asthma were then exposed to short-term application of A. fumigatus spores. Airway hyper-responsiveness, eosinophil ratio in bronchoalveolar lavage (BAL) fluid and total IgE in serum were counted in these experimental animals. GCR and ADRB2 expression in the lung were detected and analyzed. Furthermore, the levels of toll-like receptors (TLRs) 2, 3 and 4 in lung tissue were measured. RESULTS Short-term exposure to A. fumigatus could down-regulate the expression of GCR, aggravate airway hyper-responsiveness and increase the level of TLR2 in rats with asthma. There were no obvious changes in the levels of ADRB2 expression, recruited eosinophils, total IgE, TLR3 and TLR4 after application of A. fumigatus in asthmatic rats. CONCLUSIONS These findings indicate that A. fumigatus exposure may be involved in glucocorticoids unresponsiveness by down-regulating the expression of GCR in asthmatics. The possibility of A. fumigatus colonization or infection should not be ignored in patients of steroid-resistant asthma.
Collapse
Affiliation(s)
- Xia Zhou
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Ya-Jie Dang
- b Department of Respiratory Medicine , Shanghai First People's Hospital Affiliated to Shanghai JiaoTong University , Shanghai , China
| | - Gui-Fang Wang
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| | - Xian-Qiao Jin
- a Department of Respiratory Medicine , Huashan Hospital Affiliated to Fudan University , Shanghai , China
| |
Collapse
|
8
|
Faksh A, Britt RD, Vogel ER, Thompson MA, Pandya HC, Martin RJ, Pabelick CM, Prakash YS. TLR3 activation increases chemokine expression in human fetal airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L202-11. [PMID: 26589477 DOI: 10.1152/ajplung.00151.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/14/2015] [Indexed: 11/22/2022] Open
Abstract
Viral infections, such as respiratory syncytial virus and rhinovirus, adversely affect neonatal and pediatric populations, resulting in significant lung morbidity, including acute asthma exacerbation. Studies in adults have demonstrated that human airway smooth muscle (ASM) cells modulate inflammation through their ability to secrete inflammatory cytokines and chemokines. The role of ASM in the developing airway during infection remains undefined. In our study, we used human fetal ASM cells as an in vitro model to examine the effect of Toll-like receptor (TLR) agonists on chemokine secretion. We found that fetal ASM express multiple TLRs, including TLR3 and TLR4, which are implicated in the pathogenesis of respiratory syncytial virus and rhinovirus infection. Cells were treated with TLR agonists, polyinosinic-polycytidylic acid [poly(I:C)] (TLR3 agonist), lipopolysaccharide (TLR4 agonist), or R848 (TLR7/8 agonist), and IL-8 and chemokine (C-C motif) ligand 5 (CCL5) secretion were evaluated. Interestingly, poly(I:C), but neither lipopolysaccharide nor R848, increased IL-8 and chemokine (C-C motif) ligand 5 secretion. Examination of signaling pathways suggested that the poly(I:C) effects in fetal ASM involve TLR and ERK signaling, in addition to another major inflammatory pathway, NF-κB. Moreover, there are variations between fetal and adult ASM with respect to poly(I:C) effects on signaling pathways. Pharmacological inhibition suggested that ERK pathways mediate poly(I:C) effects. Overall, our data show that poly(I:C) initiates activation of proinflammatory pathways in developing ASM, which may contribute to immune responses to infection and exacerbation of asthma.
Collapse
Affiliation(s)
- Arij Faksh
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth R Vogel
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Hitesh C Pandya
- Department of Pediatrics, University of Leicester, Leicester, United Kingdom; Department of Immunology, University of Leicester, Leicester, United Kingdom; and
| | - Richard J Martin
- Department of Pediatrics, Division of Neonatology, Rainbow Babies Children's Hospital, Case Western Reserve University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota;
| |
Collapse
|
9
|
Oliver BGG, Robinson P, Peters M, Black J. Viral infections and asthma: an inflammatory interface? Eur Respir J 2014; 44:1666-81. [PMID: 25234802 DOI: 10.1183/09031936.00047714] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Asthma is a chronic inflammatory disease of the airways in which the majority of patients respond to treatment with corticosteroids and β₂-adrenoceptor agonists. Acute exacerbations of asthma substantially contribute to disease morbidity, mortality and healthcare costs, and are not restricted to patients who are not compliant with their treatment regimens. Given that respiratory viral infections are the principal cause of asthma exacerbations, this review article will explore the relationship between viral infections and asthma, and will put forward hypotheses as to why virus-induced exacerbations occur. Potential mechanisms that may explain why current therapeutics do not fully inhibit virus-induced exacerbations, for example, β₂-adrenergic desensitisation and corticosteroid insensitivity, are explored, as well as which aspects of virus-induced inflammation are likely to be attenuated by current therapy.
Collapse
Affiliation(s)
- Brian G G Oliver
- School of Medical and Molecular Biosciences, University of Technology Sydney, Sydney, Australia Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Paul Robinson
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia
| | - Mathew Peters
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia Dept of Thoracic Medicine, Concord General Hospital, Concord, Australia
| | - Judy Black
- Woolcock Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Matsuse H, Kohno S. Leukotriene receptor antagonists pranlukast and montelukast for treating asthma. Expert Opin Pharmacother 2013; 15:353-63. [PMID: 24350802 DOI: 10.1517/14656566.2014.872241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The prevalence of bronchial asthma, which is a chronic inflammatory disorder of the airway, is increasing worldwide. Although inhaled corticosteroids (ICS) play a central role in the treatment of asthma, they cannot achieve good control for all asthmatics, and medications such as leukotriene receptor antagonists (LTRAs) with bronchodilatory and anti-inflammatory effects often serve as alternatives or add-on drugs. AREAS COVERED Clinical trials as well as basic studies of montelukast and pranlukast in animal models are ongoing. This review report clarifies the current status of these two LTRAs in the treatment of asthma and their future direction. EXPERT OPINION LTRAs could replace ICS as first-line medications for asthmatics who are refractory to ICS or cannot use inhalant devices. Further, LTRAs are recommended for asthmatics under specific circumstances that are closely associated with cysteinyl leukotrienes (cysLTs). Considering the low incidence of both severe adverse effects and the induction of tachyphylaxis, oral LTRAs should be more carefully considered for treating asthma in the clinical environment. Several issues such as predicted responses, effects of peripheral airway and airway remodeling and alternative administration routes remain to be clarified before LTRAs could serve a more effective role in the treatment of asthma.
Collapse
Affiliation(s)
- Hiroto Matsuse
- Nagasaki University School of Medicine, Second Department of Internal Medicine , 1-7-1 Sakamoto, Nagasaki 852-8501 , Japan +81 95 819 7273 ; +81 95 849 7285 ;
| | | |
Collapse
|
11
|
Yeganeh B, Xia C, Movassagh H, Koziol-White C, Chang Y, Al-Alwan L, Bourke JE, Oliver BGG. Emerging mediators of airway smooth muscle dysfunction in asthma. Pulm Pharmacol Ther 2012; 26:105-11. [PMID: 22776693 DOI: 10.1016/j.pupt.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma - namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17-derived cytokines (IL-17, IL-22) and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Matsuse H, Fukahori S, Tsuchida T, Kawano T, Tomari S, Matsuo N, Nishino T, Fukushima C, Kohno S. Effects of a short course of pranlukast combined with systemic corticosteroid on acute asthma exacerbation induced by upper respiratory tract infection. J Asthma 2012; 49:637-41. [PMID: 22746973 DOI: 10.3109/02770903.2012.685539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Upper respiratory tract infections (URIs) represent the most frequent cause of acute asthma exacerbation. Systemic corticosteroid (CS) is presently recommended for URI-induced asthma exacerbation, although it might inhibit cellular immunity against respiratory virus infection. OBJECTIVES To determine the effects of adding a short course (2 weeks) of a leukotriene receptor antagonist (LTRA) to systemic CS on URI-induced acute asthma exacerbation. METHODS Twenty-three adult asthmatics (mean age, 42.8 ± 9.8 y; Male:Female, 10:13) with URI-induced acute asthma exacerbation confirmed by a questionnaire and physical findings were randomly assigned to receive either oral prednisolone (PSL) alone or oral PSL plus the LTRA pranlukast (PRL) for 2 weeks (PSL + PRL). The cumulative doses of PSL and the amount of time required to clear asthma-related symptoms were determined. Levels of respiratory syncytial virus (RSV) RNA and influenza viral (IV) antigen in nasopharyngeal swabs were also determined. RESULTS Adding PRL significantly reduced the cumulative dose of PSL and tended to reduce the time required to clear asthma-related symptoms. Either RSV or IV was detected in about one-third of the patients. CONCLUSION The combination of an LTRA and CS might be more useful than CS alone for treating URI-induced acute exacerbation of asthma and reducing the cumulative CS dose.
Collapse
Affiliation(s)
- Hiroto Matsuse
- Second Department of Internal Medicine, University School of Medicine, 1-7-1 Sakamoto, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koziol-White CJ, Damera G, Panettieri RA. Targeting airway smooth muscle in airways diseases: an old concept with new twists. Expert Rev Respir Med 2011; 5:767-77. [PMID: 22082163 PMCID: PMC3276206 DOI: 10.1586/ers.11.77] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Airway smooth muscle (ASM) manifests a hyper-responsive phenotype in airway disorders such as asthma. ASM also modulates immune responses by secreting mediators and expressing cell-surface molecules that promote recruitment of inflammatory cells to the lungs. The aim of the current article is to highlight therapeutics that may modulate ASM responses in airway disorders and exacerbations.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | - Gautam Damera
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | - Reynold A Panettieri
- Pulmonary, Allergy and Critical Care Division, Airways Biology Initiative, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| |
Collapse
|
14
|
Koziol-White CJ, Panettieri RA. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev 2011; 242:178-85. [PMID: 21682745 DOI: 10.1111/j.1600-065x.2011.01022.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Airway smooth muscle (ASM) manifests a hyperresponsive phenotype in airway disorders such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. Current evidence also suggests that ASM modulates immune responses by secreting mediators and expressing cell surface molecules. Such processes amplify or dampen inflammation by inflammatory cells in the airways or by altering cellular responses to viruses, bacteria, or pathogens known to exacerbate airways diseases.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Airways Biology Initiative, Pulmonary, Allergy and Critical Care Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-3413, USA
| | | |
Collapse
|
15
|
Mac Sweeney R, Fischer H, McAuley DF. Nasal potential difference to detect Na+ channel dysfunction in acute lung injury. Am J Physiol Lung Cell Mol Physiol 2010; 300:L305-18. [PMID: 21112943 DOI: 10.1152/ajplung.00223.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Pulmonary fluid clearance is regulated by the active transport of Na(+) and Cl(-) through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na(+) channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na(+) channels and allow targeted therapy toward Na(+) channel function.
Collapse
Affiliation(s)
- R Mac Sweeney
- Respiratory Medicine Research Programme, Centre for Infection and Immunity, Queen’s University, Belfast, Northern Ireland
| | | | | |
Collapse
|
16
|
Traylor ZP, Yu ENZ, Davis IC. Respiratory syncytial virus induces airway insensitivity to beta-agonists in BALB/c mice. Am J Physiol Lung Cell Mol Physiol 2009; 298:L437-45. [PMID: 19965982 DOI: 10.1152/ajplung.00363.2009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Adrenergic agonists (beta-agonists) are commonly used to treat respiratory syncytial virus (RSV) bronchiolitis but are generally ineffective for unknown reasons. We have previously shown that RSV strain A2 inhibits bronchoalveolar epithelial responses to beta-agonists in a BALB/c mouse model by inducing heterologous keratinocyte cytokine (KC)/CXCR2-mediated desensitization of epithelial beta(2)-adrenergic receptors. The aim of the current study was to determine whether RSV also induces airway insensitivity to beta-agonists. Total lung resistance (R) was measured in anesthetized female BALB/c mice undergoing mechanical ventilation on a flexiVent computer-controlled piston ventilator. Data were analyzed using the single-compartment model. Infection with RSV A2 did not induce airway hyperresponsiveness to increasing doses of the nebulized cholinergic agonist methacholine (MCh) at any time point after RSV infection. Prenebulization with the beta-agonist terbutaline (100 muM) significantly attenuated bronchoconstrictive responses to 20 and 50 mg/ml MCh in uninfected mice and in mice infected with RSV 4-8 days postinfection (d.p.i.). However, in mice infected with replication-competent, but not UV-inactivated, RSV for 2 days, significant terbutaline insensitivity was found. Terbutaline insensitivity at 2 d.p.i. could be reversed by systemic preinfection treatment with neutralizing anti-CXCR2 antibodies, which reduced bronchoalveolar lavage (BAL) neutrophil counts but did not alter viral replication, BAL KC levels, or lung edema. Terbutaline insensitivity was also reversed by postinfection nebulization with neutralizing anti-KC or anti-CXCR2 antibodies and could be replicated in normal, uninfected mice by nebulization with recombinant KC. These data suggest that KC/CXCR2-mediated airway insensitivity to beta-agonists may underlie the modest utility of these drugs as bronchodilators in therapy for acute RSV bronchiolitis.
Collapse
Affiliation(s)
- Zachary P Traylor
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Rd., Columbus OH 43210, USA
| | | | | |
Collapse
|
17
|
Trian T, Moir LM, Ge Q, Burgess JK, Kuo C, King NJC, Reddel HK, Black JL, Oliver BG, McParland BE. Rhinovirus-induced exacerbations of asthma: How is the {beta}2-adrenoceptor implicated? Am J Respir Cell Mol Biol 2009; 43:227-33. [PMID: 19783788 DOI: 10.1165/rcmb.2009-0126oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rhinovirus (RV) infections are the major cause of asthma exacerbations in children and adults. Under normal circumstances, asthmatic airway obstruction improves spontaneously or characteristically briskly in response to inhaled beta(2)-adrenergic receptor (beta(2)AR) agonists. During virus-associated exacerbations, an impaired response to beta(2)AR agonists is observed; the reason for this is not known. The objective of this study was to determine the effect of RV infection on airway smooth muscle beta(2)AR function. The human cell line Beas-2B and primary human bronchial epithelial cells (HBECs) were infected with RV (multiplicity of infection = 1). After 1 or 5 days for primary and Beas-2B cells, respectively, cell culture supernatants were harvested, UV-irradiated to inactivate RV, and applied to human airway smooth muscle cells for 3 days to assess modifications of beta(2)AR function. RV conditioned medium from Beas-2B and HBECs decreased beta(2)AR agonist-induced cAMP by 50 and 65%, respectively (n = 5; P < 0.05). When cAMP was induced independently of the beta(2)AR using forskolin, no impairment was found. Using flow cytometry, we demonstrated that this decrease was likely the result of beta(2)AR desensitization because membrane but not total cell receptor beta(2)AR was decreased. Pretreatment of HBECs and Beas-2B cells but not human airway smooth muscle cells with the corticosteroids dexamethasone or fluticasone abolished virus-mediated beta(2)AR loss of function. This study shows that epithelial infection with RV induces a decrease of beta(2)AR function on airway smooth muscle cells, potentially explaining the clinical observation of loss of beta(2)AR agonist function during RV-induced asthma exacerbations.
Collapse
|
18
|
Epithelial sodium channels in the adult lung--important modulators of pulmonary health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 618:127-40. [PMID: 18269193 PMCID: PMC7122934 DOI: 10.1007/978-0-387-75434-5_10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Absorption of excess fluid from the airways and alveolar lumen requires active vectorial transepithelial transport of sodium ions (Na+) by alveolar type II and possibly type I cells. The rate-limiting step in this process is the activity of the heterotrimeric apical membrane epithelial Na+ channel (ENaC). Pharmacologic inhibitors and genetic manipulations that disrupt Na+ transport result in fluid accumulation within the lung and failure of gas exchange. The importance of Na+ transport in the lung is also demonstrated in conditions such as ARDS, where abnormal absorption of Na+ contributes to the pathophysiology of pulmonary disease. ENaC expression and function is influenced by diverse factors, such as oxygen tension, glucocorticoids, and cytoskeletal proteins. In addition, ENaC dysfunction has been shown to be induced by purinergic nucleotide activation of P2Y receptors (in paramyxoviral bronchiolitis) and reactive species (in acute lung injury). Finally, beta-adrenergic agonists have been shown experimentally to reverse defects in ENaC function, and improve hypoxemia and pulmonary edema, and may provide a novel therapeutic modality for ARDS, although some viral lung pathogens appear to induce insensitivity to their actions.
Collapse
|
19
|
Moore PE. Exploration of the beta2-adrenergic receptor regulatory regions: the next step in the holy grail of asthma pharmacogenetics research. Am J Physiol Lung Cell Mol Physiol 2007; 294:L187-9. [PMID: 18065655 DOI: 10.1152/ajplung.00494.2007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Yang IA, Ng T, Molenaar P, Fong KM. Beta2-adrenoceptor polymorphisms and obstructive airway diseases: important issues of study design. Clin Exp Pharmacol Physiol 2007; 34:1029-36. [PMID: 17714090 DOI: 10.1111/j.1440-1681.2007.04731.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Asthma and chronic obstructive pulmonary disease (COPD) are chronic airway diseases characterized by airflow obstruction. The beta(2)-adrenoceptor mediates bronchodilatation in response to exogenous and endogenous beta-adrenoceptor agonists. 2. Single nucleotide polymorphisms in the beta(2)-adrenoceptor gene (ADRB2) cause amino acid changes (e.g. Arg16Gly, Gln27Glu) that potentially alter receptor function. Recently, a large cohort study found no association between asthma susceptibility and beta(2)-adrenoceptor polymorphisms. In contrast, asthma phenotypes, such as asthma severity and bronchial hyperresponsiveness, have been associated with beta(2)-adrenoceptor polymorphisms. Of importance to asthma management, coding region polymorphisms may alter the response to short-acting and long-acting beta-adrenoceptor agonists, which are commonly prescribed asthma treatments. 3. Optimizing study design would enhance the robustness of genetic association studies of ADRB2 polymorphisms in airway diseases. Characteristics of high-quality studies include suitable study design and subject selection, optimal study of polymorphisms and haplotypes, disease outcomes of relevance, adequate sample size, adjustment for confounding factors, supportive functional data and appropriate analysis, interpretation and replication. Enhancing these study design factors will provide high-quality evidence regarding the biological and clinical importance of beta(2)-adrenoceptor pharmacogenomics in asthma and COPD.
Collapse
Affiliation(s)
- Ian A Yang
- Department of Thoracic Medicine, The Prince Charles Hospital, and School of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
21
|
Clerici C. A new mechanism for respiratory syncytial virus-induced beta2-adrenergic receptor insensitivity. Am J Physiol Lung Cell Mol Physiol 2007; 293:L279-80. [PMID: 17545486 DOI: 10.1152/ajplung.00205.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Davis IC, Lazarowski ER, Chen FP, Hickman-Davis JM, Sullender WM, Matalon S. Post-infection A77-1726 blocks pathophysiologic sequelae of respiratory syncytial virus infection. Am J Respir Cell Mol Biol 2007; 37:379-86. [PMID: 17541010 PMCID: PMC2084468 DOI: 10.1165/rcmb.2007-0142oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite respiratory syncytial virus (RSV) bronchiolitis remaining the most common cause of lower respiratory tract disease in infants worldwide, treatment has progressed little in the past 30 years. The aim of our study was to determine whether post-infection administration of de novo pyrimidine synthesis inhibitors could prevent the reduction in alveolar fluid clearance (AFC) and hypoxemia that occurs at Day 2 after intranasal infection of BALB/c mice with RSV. BALB/c mice were infected intranasally with RSV strain A2. AFC was measured in anesthetized, ventilated mice after instillation of 5% bovine serum albumin into the dependent lung. Post-infection systemic treatment with leflunomide has no effect on AFC. However, when added to the AFC instillate, leflunomide's active metabolite, A77-1726, blocks RSV-mediated inhibition of AFC at Day 2. This block is reversed by uridine (which allows pyrimidine synthesis via the scavenger pathway) and not recapitulated by genistein (which mimics the tyrosine kinase inhibitor effects of A77-1726), indicating that the effect is specific for the de novo pyrimidine synthesis pathway. More importantly, when administered intranasally at Day 1, A77-1726, but not its vehicle dimethyl sulfoxide, maintains its beneficial effect on AFC and lung water content until Day 2. Intranasal instillation of A77-1726 at Day 1 also reduces bronchoalveolar lavage nucleotide levels, lung inflammation, and hypoxemia at Day 2 without impairing viral replication at Day 2 or viral clearance at Day 8. Post-infection intranasal or aerosolized treatment with pyrimidine synthesis inhibitors may provide symptomatic relief from the pathophysiologic sequelae of impaired AFC in children with RSV bronchiolitis.
Collapse
Affiliation(s)
- Ian C Davis
- Department of Anesthesiology, University of Alabama at Birmingham, BMR II, Birmingham, AL 35205-3703, USA
| | | | | | | | | | | |
Collapse
|
23
|
Davis IC, Xu A, Gao Z, Hickman-Davis JM, Factor P, Sullender WM, Matalon S. Respiratory syncytial virus induces insensitivity to beta-adrenergic agonists in mouse lung epithelium in vivo. Am J Physiol Lung Cell Mol Physiol 2007; 293:L281-9. [PMID: 17435077 PMCID: PMC2084466 DOI: 10.1152/ajplung.00458.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and children worldwide. We wished to determine whether intratracheal administration of beta-agonists improved alveolar fluid clearance (AFC) across the distal respiratory epithelium of RSV-infected mice. Following intranasal infection with RSV strain A2, AFC was measured in anesthetized, ventilated BALB/c mice by instillation of 5% BSA into the dependent lung. We found that direct activation of protein kinase A by forskolin or 8-bromo-cAMP increased AFC at day 2 after infection with RSV. In contrast, short- and long-acting beta-agonists had no effect at either day 2 or day 4. Insensitivity to beta-agonists was not a result of elevated plasma catecholamines or lung epithelial cell beta-adrenergic receptor degradation. Instead, RSV-infected mice had significantly higher levels of phosphorylated PKCzeta in the membrane fractions of their lung epithelial cells. In addition, insensitivity to beta-agonists was mediated in a paracrine fashion by KC (the murine homolog of CXCL8) and reversed by inhibition of either PKCzeta or G protein-coupled receptor kinase 2 (GRK2). These results indicate that insufficient response to beta-agonists in RSV may be caused, at least in part, by impaired beta-adrenergic receptor signaling, as a consequence of GRK2-mediated uncoupling of beta-adrenergic receptors from adenylyl cyclase.
Collapse
Affiliation(s)
- Ian C. Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Anna Xu
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Zhiqian Gao
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Judy M. Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Phillip Factor
- Department of Pulmonary Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wayne M. Sullender
- Department of Pediatrics & Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Physiology & Biophysics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|