1
|
Huang Y, Li G, Chen Z, Chen M, Zhai W, Li D, Xu Q. Exosomal Drug Delivery Systems: A Novel Therapy Targeting PD-1 in Septic-ALI. Stem Cell Rev Rep 2024; 20:2253-2267. [PMID: 39235552 DOI: 10.1007/s12015-024-10784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The cytokine storm triggered by sepsis can lead to the development of acute lung injury (ALI). Human umbilical cord Mesenchymal stem cells derived exosomes (HucMSCs-EXOs) have been demonstrated to possess immunosuppressive and anti-inflammatory properties. Programmed cell death receptor 1 (PD-1) plays a crucial role in maintaining the inflammatory immune homeostasis. The aim of this study is to investigate the synergistic therapeutic effect of EXOs loaded with anti-PD-1 peptide on septic-ALI. METHODS This study prepares a novel EXOs-based drug, named MEP, by engineering modification of HucMSCs-EXOs, which are non-immunogenic extracellular vesicles, loaded with anti-PD-1 peptide. The therapeutic effect and potential mechanism of MEP on septic-ALI are elucidated through in vivo and in vitro experiments, providing experimental evidence for the treatment of septic acute lung injury with MEP. RESULTS We found that, compared to individual components (anti-PD-1 peptide or EXOs), MEP treatment can more effectively improve the lung injury index of septic-ALI mice, significantly reduce the expression levels of inflammatory markers CRP and PCT, as well as pro-inflammatory cytokines TNF-α and IL-1β in serum, decrease lung cell apoptosis, and significantly increase the expression of anti-inflammatory cytokine IL-10 and CD68+ macrophages. In vitro, MEP co-culture promotes the proliferation of CD206+ macrophages, increases the M2/M1 macrophage ratio, and attenuates the inflammatory response. GEO data analysis and qRT-PCR validation show that MEP reduces the expression of inflammasome-related genes and M1 macrophage marker iNOS. CONCLUSION In both in vitro and in vivo settings, MEP demonstrates superior therapeutic efficacy compared to individual components in the context of septic-ALI.
Collapse
Affiliation(s)
- Yuanlan Huang
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Gang Li
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Zeqi Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Mengying Chen
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Weibin Zhai
- Department of Blood Transfusion, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China
| | - Dan Li
- Special Food Equipment Research Laboratory, Naval Specialty Medical Center, Naval Medical University, Shanghai, 200050, People's Republic of China.
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, People's Republic of China.
- Basic Medical Center for Pulmonary Disease, Naval Medical University, 800, Xiangyin Road, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
2
|
Sharma M, Shetty SS, Soi S, Radhakrishnan R. Myofibroblasts persist through immune privilege mechanisms to mediate oral submucous fibrosis: Uncovering the pathogenesis. J Oral Biol Craniofac Res 2024; 14:773-781. [PMID: 39502133 PMCID: PMC11535754 DOI: 10.1016/j.jobcr.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Immune privilege is the ability to tolerate foreign antigens without eliciting an inflammatory immune response. Several mechanisms explain a structure's immune privilege status, which is regulated by innate and adaptive immune responses. The role of myofibroblasts in perpetuating fibrosis by acquiring an immune privileged phenotype against the backdrop of oral submucous fibrosis (OSF) is evolving. Myofibroblasts persist through the Fas/FasL autocrine pathway and induce apoptosis in epithelial cells, explaining the juxtaposition of apoptotic cells in areas of fibrosis. However, increased matrix stiffness, in addition to activating TGF-β, reduces Fas surface expression in myofibroblasts, increasing their resistance to apoptosis. The reciprocal amplification loop between the immune checkpoint proteins programmed death-ligand 1 (PD-L1) and TGF-β involves the YAP-TAZ and SMAD2,3 pathways and dramatically enhances profibrotic signalling. Increased matrix stiffness also enhances cMYC expression, which subsequently amplifies PD-L1 levels on myofibroblasts. The increase in PD-L1 on the myofibroblast microengineers the phenotype of CD4+ T cells homing to fibrotic areas by acting on the programmed cell death protein 1 (PD-1) receptor on the T-cell surface, converting these cells from antifibrotic cells to profibrotic cells that produce IL-17A and TGF-β. This manuscript provides mechanistic insight into how myofibroblasts avoid apoptosis in OSFs by evading the immune system. Targeting an immune-privileged phenotype in myofibroblasts with FAS-FASL pathway-dependent characteristics is an ideal strategy for reversing OSF.
Collapse
Affiliation(s)
- Mohit Sharma
- Department of Oral Pathology, SGT Dental College Hospital & Research Institute, Gurugram, Haryana, 122505, India
| | - Smitha Sammith Shetty
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sonal Soi
- Department of Conservative Dentistry and Endodontics, Manav Rachna Dental College, Faridabad, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| |
Collapse
|
3
|
Fan W, Gui B, Zhou X, Li L, Chen H. A narrative review on lung injury: mechanisms, biomarkers, and monitoring. Crit Care 2024; 28:352. [PMID: 39482752 PMCID: PMC11526606 DOI: 10.1186/s13054-024-05149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/26/2024] [Indexed: 11/03/2024] Open
Abstract
Lung injury is closely associated with the heterogeneity, severity, mortality, and prognosis of various respiratory diseases. Effective monitoring of lung injury is crucial for the optimal management and improved outcomes of patients with lung diseases. This review describes acute and chronic respiratory diseases characterized by significant lung injury and current clinical tools for assessing lung health. Furthermore, we summarized the mechanisms of lung cell death observed in these diseases and highlighted recently identified biomarkers in the plasma indicative of injury to specific cell types and scaffold structure in the lung. Last, we propose an artificial intelligence-driven lung injury monitoring model to assess disease severity, and predict mortality and prognosis, aiming to achieve precision and personalized medicine.
Collapse
Affiliation(s)
- Wenping Fan
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China
| | - Biyu Gui
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, 300350, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China.
- Tianjin Institute of Respiratory Diseases, Tianjin, 300350, China.
| |
Collapse
|
4
|
Lai Y, Wei X, Ye T, Hang L, Mou L, Su J. Interrelation Between Fibroblasts and T Cells in Fibrosing Interstitial Lung Diseases. Front Immunol 2021; 12:747335. [PMID: 34804029 PMCID: PMC8602099 DOI: 10.3389/fimmu.2021.747335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a heterogeneous group of diseases characterized by varying degrees of inflammation and fibrosis of the pulmonary interstitium. The interrelations between multiple immune cells and stromal cells participate in the pathogenesis of ILDs. While fibroblasts contribute to the development of ILDs through secreting extracellular matrix and proinflammatory cytokines upon activation, T cells are major mediators of adaptive immunity, as well as inflammation and autoimmune tissue destruction in the lung of ILDs patients. Fibroblasts play important roles in modulating T cell recruitment, differentiation and function and conversely, T cells can balance fibrotic sequelae with protective immunity in the lung. A more precise understanding of the interrelation between fibroblasts and T cells will enable a better future therapeutic design by targeting this interrelationship. Here we highlight recent work on the interactions between fibroblasts and T cells in ILDs, and consider the implications of these interactions in the future development of therapies for ILDs.
Collapse
Affiliation(s)
- Yunxin Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinru Wei
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lilin Hang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ling Mou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Wallach-Dayan SB, Petukhov D, Ahdut-HaCohen R, Richter-Dayan M, Breuer R. sFasL-The Key to a Riddle: Immune Responses in Aging Lung and Disease. Int J Mol Sci 2021; 22:ijms22042177. [PMID: 33671651 PMCID: PMC7926921 DOI: 10.3390/ijms22042177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
- Correspondence:
| | - Dmytro Petukhov
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| | - Mark Richter-Dayan
- Department of Emergency Medicine, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah Medical Center, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (D.P.); (R.B.)
| |
Collapse
|
6
|
Konikov-Rozenman J, Breuer R, Kaminski N, Wallach-Dayan SB. CMH-Small Molecule Docks into SIRT1, Elicits Human IPF-Lung Fibroblast Cell Death, Inhibits Ku70-deacetylation, FLIP and Experimental Pulmonary Fibrosis. Biomolecules 2020; 10:biom10070997. [PMID: 32630842 PMCID: PMC7408087 DOI: 10.3390/biom10070997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 02/07/2023] Open
Abstract
Regenerative capacity in vital organs is limited by fibrosis propensity. Idiopathic pulmonary fibrosis (IPF), a progressive lung disease linked with aging, is a classic example. In this study, we show that in flow cytometry, immunoblots (IB) and in lung sections, FLIP levels can be regulated, in vivo and in vitro, through SIRT1 activity inhibition by CMH (4-(4-Chloro-2-methylphenoxy)-N-hydroxybutanamide), a small molecule that, as we determined here by structural biology calculations, docked into its nonhistone substrate Ku70-binding site. Ku70 immunoprecipitations and immunoblots confirmed our theory that Ku70-deacetylation, Ku70/FLIP complex, myofibroblast resistance to apoptosis, cell survival, and lung fibrosis in bleomycin-treated mice, are reduced and regulated by CMH. Thus, small molecules associated with SIRT1-mediated regulation of Ku70 deacetylation, affecting FLIP stabilization in fibrotic-lung myofibroblasts, may be a useful strategy, enabling tissue regeneration.
Collapse
Affiliation(s)
- Jenya Konikov-Rozenman
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
- Department of Pathology and Laboratory Medicine, 670 Albany St, 4th Floor, Boston University School of Medicine, Boston, MA 02118, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, POB 208057, 300 Cedar Street TAC-441 South, New Haven, CT 06520-8057, USA;
| | - Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah–Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (J.K.-R.); (R.B.)
- Correspondence: ; Tel.: +972-2-6776622
| |
Collapse
|
7
|
Bulvik R, Breuer R, Dvir-Ginzberg M, Reich E, Berkman N, Wallach-Dayan SB. SIRT1 Deficiency, Specifically in Fibroblasts, Decreases Apoptosis Resistance and Is Associated with Resolution of Lung-Fibrosis. Biomolecules 2020; 10:biom10070996. [PMID: 32630813 PMCID: PMC7407379 DOI: 10.3390/biom10070996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to normal regenerating tissue, resistance to Fas- and FasL-positive T cell-induced apoptosis were detected in myofibroblasts from fibrotic-lungs of humans and mice following bleomycin (BLM) exposure. In this study we show, decreased FLIP expression in lung-tissues with resolution of BLM-induced fibrosis and in isolated-lung fibroblasts, with decreased resistance to apoptosis. Using a FLIP-expression vector or a shFLIP-RNA, we further confirmed the critical need for FLIP to regain/lose susceptibility of fibrotic-lung myofibroblast to Fas-induced apoptosis. Our study further show that FLIP is regulated by SIRT1 (Sirtuin 1) deacetylase. Chimeric mice, with SIRT1-deficiency in deacetylase domain (H355Y-Sirt1y/y), specifically in mesenchymal cells, were not only protected from BLM-induced lung fibrosis but, as assessed following Ku70 immunoprecipitation, had also decreased Ku70-deacetylation, decreasedKu70/FLIP complex, and decreased FLIP levels in their lung myofibroblasts. In addition, myofibroblasts isolated from lungs of BLM-treated miR34a-knockout mice, exposed to a miR34a mimic, which we found here to downregulate SIRT1 in the luciferase assay, had a decreased Ku70-deacetylation indicating decrease in SIRT1 activity. Thus, SIRT1 may mediate, miR34a-regulated, persistent FLIP levels by deacetylation of Ku70 in lung myofibroblasts, promoting resistance to cell-death and lung fibrosis.
Collapse
Affiliation(s)
- Raanan Bulvik
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (R.B.); (R.B.); (N.B.)
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (R.B.); (R.B.); (N.B.)
- Department of Pathology and Laboratory Medicine, 670 Albany St, 4th Floor, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, POB 12065, Jerusalem 9112102, Israel; (M.D.-G.); (E.R.)
| | - Eli Reich
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, POB 12065, Jerusalem 9112102, Israel; (M.D.-G.); (E.R.)
| | - Neville Berkman
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (R.B.); (R.B.); (N.B.)
| | - Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 91120, Israel; (R.B.); (R.B.); (N.B.)
- Correspondence: ; Tel.: +972-2-6776622
| |
Collapse
|
8
|
Bulvik R, Biton M, Berkman N, Breuer R, Wallach-Dayan SB. Forefront: MiR-34a-Knockout Mice with Wild Type Hematopoietic Cells, Retain Persistent Fibrosis Following Lung Injury. Int J Mol Sci 2020; 21:2228. [PMID: 32210149 PMCID: PMC7139923 DOI: 10.3390/ijms21062228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRs) are known to limit gene expression at the post-transcriptional level and have important roles in the pathogenesis of various conditions, including acute lung injury (ALI) and fibrotic diseases such as idiopathic pulmonary fibrosis (IPF). In this study, we found increased levels of miR-34 at times of fibrosis resolution following injury, in myofibroblasts from Bleomycin-treated mouse lungs, which correlates with susceptibility to cell death induced by immune cells. On the contrary, a substantial downregulation of miR-34 was detected at stages of evolution, when fibroblasts resist cell death. Concomitantly, we found an inverse correlation between miR-34 levels with that of the survival molecule FLICE-like inhibitory protein (FLIP) in lung myofibroblasts from humans with IPF and the experimental model. Forced upregulation of miR-34 with miR-34 mimic in human IPF fibrotic-lung myofibroblasts led to decreased cell survival through downregulation of FLIP. Using chimeric miR-34 knock-out (KO)-C57BL/6 mice with miR34KO myofibroblasts but wild-type (WT) hematopoietic cells, we found, in contrast to WT mice, increased and persistent FLIP levels with a more severe fibrosis and with no signs of resolution as detected in pathology and collagen accumulation. Moreover, a mimic of miR-34a decreased FLIP expression and susceptibility to cell death was regained in miR-34KO fibroblasts. Through this study, we show for the first time an inverse correlation between miR-34a and FLIP expression in myofibroblasts, which affects survival, and accumulation in lung fibrosis. Reprogramming fibrotic-lung myofibroblasts to regain susceptibility to cell-death by specifically increasing their miR34a and downregulating FLIP, may be a useful strategy, enabling tissue regeneration following lung injury.
Collapse
Affiliation(s)
- Raanan Bulvik
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 9112102, Israel
| | - Moshe Biton
- The Lautenberg Center for Immunology and Cancer Research, Institute of Medical Research Israel-Canada, Hadassah Hebrew University Medical Center, Jerusalem 9112102, Israel
| | - Neville Berkman
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 9112102, Israel
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 9112102, Israel
- Department of Pathology and Laboratory Medicine, 670 Albany St, 4th Floor, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shulamit B. Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah—Hebrew University Medical Center, POB 12000, Jerusalem 9112102, Israel
| |
Collapse
|
9
|
Matrix Metalloproteinases Retain Soluble FasL-mediated Resistance to Cell Death in Fibrotic-Lung Myofibroblasts. Cells 2020; 9:cells9020411. [PMID: 32053892 PMCID: PMC7072292 DOI: 10.3390/cells9020411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
A prominent feature of obstructed tissue regeneration following injury in general, and fibrotic lung tissue in particular, is fibroblast proliferation and accumulation. The Fas/FasL apoptotic pathway has been shown to be involved in human idiopathic pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis in rodents. We previously showed that in normal injury repair, myofibroblasts' accumulation is followed by their decline by FasL+ T cell-induced cell death. In pathological lung fibrosis, myofibroblasts resist cell death and accumulate. Like other members of the tumor necrosis factor (TNF) family, membrane-bound FasL can be cleaved from the cell surface to generate a soluble form (sFasL). Metalloproteinases (MMPs) are known to convert the membrane-bound form of FasL to sFasL. MMP-7 knockout (KO) mice were shown to be protected from bleomycin (BLM)-induced lung fibrosis. In this study, we detected increased levels of sFasL in their blood serum, as in the lungs of patients with IPF, and IPF-lung myofibroblast culture medium. In this study, using an MMP-inhibitor, we showed that sFasL is decreased in cultures of IPF-lung myofibroblasts and BLM-treated lung myofibroblasts, and in the blood serum of MMP-7KO mice. Moreover, resistant fibrotic-lung myofibroblasts, from the lungs of humans with IPF and of BLM-treated mice, became susceptible to T-cell induced cell death in a co-culture following MMP-inhibition- vs. control-treatment or BLM-treated MMP-7KO vs. wild-type mice, respectively. sFasL may be an unrecognized mechanism for MMP-7-mediated decreased tissue regeneration following injury and the evolution of lung fibrosis.
Collapse
|
10
|
Petukhov D, Richter-Dayan M, Fridlender Z, Breuer R, Wallach-Dayan SB. Increased Regeneration Following Stress-Induced Lung Injury in Bleomycin-Treated Chimeric Mice with CD44 Knockout Mesenchymal Cells. Cells 2019; 8:E1211. [PMID: 31591327 PMCID: PMC6829612 DOI: 10.3390/cells8101211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/24/2023] Open
Abstract
CD44, an adhesion-molecule promoting cell-migration, is shown here to increase in stress conditions following bleomycin-induced apoptosis in alveolar epithelial cells (AECs), a main target of lung injury. In vivo, it inhibits tissue regeneration and leads to fibrosis. We show that some AECs survive by the ataxia-telangiectasia mutated kinase/ATM pathway, and undergo a CD44-mediated epithelial-mesenchymal transdifferentiation (EMT) with migratory capacities in vitro, and in vivo. We assessed apoptosis vs. proliferation of AECs following bleomycin, ATM/P53 signaling pathway in AECs, and CD44 involvement in EMT, cell motility and tissue regeneration in vitro and in vivo. Expression of survival genes, CD44, and ATM/p53 pathway was elevated in AECs surviving bleomycin injury, as were the markers of EMT (downregulation of E-cadherin, upregulation of N-cadherin and vimentin, nuclear translocation of β-catenin). Inhibition of CD44 decreased AECs transdifferentiation. Bleomycin-treated chimeric CD44KO-mice had decreased EMT markers, ATM, and mesenchymal cells (α-SMA+) accumulation in lung, increased surfactant-b, diminished lung mesenchymal cell motility, and increased lung tissue regenerative capacity following bleomycin injury, as indicated by lung collagen content and semiquantitave morphological index scoring. Thus, AECs surviving lung injury are plastic and undergo ATM-mediated, CD44-dependent transdifferentiation, preventing tissue regeneration and promoting fibrosis. Synthetic or natural compounds that downregulate CD44 may improve tissue regeneration following injury.
Collapse
Affiliation(s)
- Dmytro Petukhov
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Qiryat Hadassah, Jerusalem 91120, Israel.
| | - Mark Richter-Dayan
- Department of Emergency Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Qiryat Hadassah, Jerusalem 91120, Israel.
| | - Zvi Fridlender
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Qiryat Hadassah, Jerusalem 91120, Israel.
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Qiryat Hadassah, Jerusalem 91120, Israel.
- Department of Pathology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| | - Shulamit B Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah-Hebrew University Medical Center, PO Box 12000, Qiryat Hadassah, Jerusalem 91120, Israel.
| |
Collapse
|
11
|
Abstract
Regulated cell death is a major mechanism to eliminate damaged, infected, or superfluous cells. Previously, apoptosis was thought to be the only regulated cell death mechanism; however, new modalities of caspase-independent regulated cell death have been identified, including necroptosis, pyroptosis, and autophagic cell death. As an understanding of the cellular mechanisms that mediate regulated cell death continues to grow, there is increasing evidence that these pathways are implicated in the pathogenesis of many pulmonary disorders. This review summarizes our understanding of regulated cell death as it pertains to the pathogenesis of chronic obstructive pulmonary disease, asthma, idiopathic pulmonary fibrosis, acute respiratory distress syndrome, and pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Maor Sauler
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Isabel S Bazan
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| | - Patty J Lee
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
12
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
13
|
Dodi AE, Ajayi IO, Chang C, Beard M, Ashley SL, Huang SK, Thannickal VJ, Tschumperlin DJ, Sisson TH, Horowitz JC. Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respir Res 2018; 19:91. [PMID: 29747634 PMCID: PMC5946418 DOI: 10.1186/s12931-018-0801-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 12/28/2022] Open
Abstract
Background Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-β1 and substrate stiffness affect fibroblast Fas expression are not well understood. Methods Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young’s moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-β1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. Results Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-β1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-β1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-β1. Conclusions Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses. Electronic supplementary material The online version of this article (10.1186/s12931-018-0801-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amos E Dodi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Iyabode O Ajayi
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Christine Chang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Meghan Beard
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Shanna L Ashley
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Steven K Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama, Birmingham, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Thomas H Sisson
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6303 MSRB 3, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
14
|
Kim YI, Shin HW, Chun YS, Cho CH, Koh J, Chung DH, Park JW. Epithelial cell-derived cytokines CST3 and GDF15 as potential therapeutics for pulmonary fibrosis. Cell Death Dis 2018; 9:506. [PMID: 29724997 PMCID: PMC5938700 DOI: 10.1038/s41419-018-0530-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
Abstract
While wound healing is completed, the epithelium functions to normalize the interstitial context by eliminating fibroblasts excited during matrix reconstruction. If not, tissues undergo pathologic fibrosis. Pulmonary fibrosis is a fatal and hardly curable disorder. We here tried to identify epithelium-derived cytokines capable of ameliorating pulmonary fibrosis. Human lung fibroblasts were inactivated in epithelial cell-conditioned media. Cystatin C (CST3) and growth differentiation factor 15 (GDF15) were found to be enriched in the conditioned media and to inhibit the growth and activation of lung fibroblasts by inactivating the TGF–Smad pathway. In mouse and human lungs with interstitial fibrosis, CST3 and GDF15 expressions were markedly reduced, and the restoration of these cytokines alleviated the fibrotic changes in mouse lungs. These results suggest that CST3 and GDF15 are bona fide regulators to prevent excessive proliferation and activation of fibroblasts in injured lungs. These cytokines could be potential therapeutics for ameliorating interstitial lung fibrosis.
Collapse
Affiliation(s)
- Young-Im Kim
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Woo Shin
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yang-Sook Chun
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea.,Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Jong-Wan Park
- Department of Biomedical Sciences, BK21-plus Education Program, Seoul National University College of Medicine, Seoul, Korea. .,Department of Pharmacology, Seoul National University College of Medicine, Seoul, Korea. .,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.
Collapse
|
16
|
Yazdani S, Bansal R, Prakash J. Drug targeting to myofibroblasts: Implications for fibrosis and cancer. Adv Drug Deliv Rev 2017; 121:101-116. [PMID: 28720422 DOI: 10.1016/j.addr.2017.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/21/2022]
Abstract
Myofibroblasts are the key players in extracellular matrix remodeling, a core phenomenon in numerous devastating fibrotic diseases. Not only in organ fibrosis, but also the pivotal role of myofibroblasts in tumor progression, invasion and metastasis has recently been highlighted. Myofibroblast targeting has gained tremendous attention in order to inhibit the progression of incurable fibrotic diseases, or to limit the myofibroblast-induced tumor progression and metastasis. In this review, we outline the origin of myofibroblasts, their general characteristics and functions during fibrosis progression in three major organs: liver, kidneys and lungs as well as in cancer. We will then discuss the state-of-the art drug targeting technologies to myofibroblasts in context of the above-mentioned organs and tumor microenvironment. The overall objective of this review is therefore to advance our understanding in drug targeting to myofibroblasts, and concurrently identify opportunities and challenges for designing new strategies to develop novel diagnostics and therapeutics against fibrosis and cancer.
Collapse
Affiliation(s)
- Saleh Yazdani
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Ruchi Bansal
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Jai Prakash
- Targeted Therapeutics Division, Department of Biomaterials, Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; ScarTec Therapeutics BV, Enschede, The Netherlands.
| |
Collapse
|
17
|
Andres DK, Keyser BM, Melber AA, Benton BJ, Hamilton TA, Kniffin DM, Martens ME, Ray R. Apoptotic cell death in rat lung following mustard gas inhalation. Am J Physiol Lung Cell Mol Physiol 2017; 312:L959-L968. [DOI: 10.1152/ajplung.00281.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022] Open
Abstract
To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3, and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 h after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased fivefold between 6 and 24 h, decreasing to the unexposed-control level at 48 h. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked ( P < 0.01) at 24 h; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 h. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L and mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. At 24 h after SM exposure, sFas-L increased significantly in both BALF cells ( P < 0.01) and BALF ( P < 0.05). However, mFas-L increased only in BALF cells between 24 and 48 h ( P < 0.1 and P < 0.001, respectively). Fas-R increased only in BALF cells by 6 h ( P < 0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspase-3 and -9 antibodies and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining as early as 6 h in the proximal trachea and bronchi, but not before 48 h in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.
Collapse
Affiliation(s)
- Devon K. Andres
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Brian M. Keyser
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Ashley A. Melber
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Betty J. Benton
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Tracey A. Hamilton
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Denise M. Kniffin
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Margaret E. Martens
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| | - Radharaman Ray
- Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Aberdeen, Maryland
| |
Collapse
|
18
|
Predescu SA, Zhang J, Bardita C, Patel M, Godbole V, Predescu DN. Mouse Lung Fibroblast Resistance to Fas-Mediated Apoptosis Is Dependent on the Baculoviral Inhibitor of Apoptosis Protein 4 and the Cellular FLICE-Inhibitory Protein. Front Physiol 2017; 8:128. [PMID: 28352235 PMCID: PMC5348516 DOI: 10.3389/fphys.2017.00128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
A characteristic feature of idiopathic pulmonary fibrosis (IPF) is accumulation of apoptotic resistant fibroblasts/myofibroblasts in the fibroblastic foci. As caveolin (Cav)-null mice develop pulmonary fibrosis (PF), we hypothesized that the participating fibroblasts display an apoptosis-resistant phenotype. To test this hypothesis and identify the molecular mechanisms involved we isolated lung fibroblasts from Cav-null mice and examined the expression of several inhibitors of apoptosis (IAPs), of c-FLIP, of Bcl-2 proteins and of the death receptor CD95/Fas. We found significant increase in XIAP and c-FLIP constitutive protein expression with no alteration of Bcl-2 and lower levels of CD95/Fas. The isolated fibroblasts were then treated with the CD95/Fas ligand (FasL) to induce apoptosis. While the morphological and biochemical alterations induced by FasL were similar in wild-type (wt) and Cav-null mouse lung fibroblasts, the time course and the extent of the alterations were greater in the Cav-null fibroblasts. Several salient features of Cav-null fibroblasts response such as loss of membrane potential, fragmentation of the mitochondrial continuum concurrent with caspase-8 activation, and subsequent Bid cleavage, prior to caspase-3 activation were detected. Furthermore, M30 antigen formation, phosphatidylserine expression and DNA fragmentation were caspase-3 dependent. SiRNA-mediated silencing of XIAP and c-FLIP, individually or combined, enhanced the sensitivity of lung fibroblasts to FasL-induced apoptosis. Pharmacological inhibition of Bcl-2 had no effect. Together our findings support a mechanism in which CD95/Fas engagement activates caspase-8, inducing mitochondrial apoptosis through Bid cleavage. XIAP and c-FLIP fine tune this process in a cell-type specific manner.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Jian Zhang
- Department of Biological Sciences, Columbia University New York, NY, USA
| | - Cristina Bardita
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Monal Patel
- Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Varun Godbole
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| | - Dan N Predescu
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Rush University, Medical College Chicago, IL, USA
| |
Collapse
|
19
|
McMillan DH, van der Velden JL, Lahue KG, Qian X, Schneider RW, Iberg MS, Nolin JD, Abdalla S, Casey DT, Tew KD, Townsend DM, Henderson CJ, Wolf CR, Butnor KJ, Taatjes DJ, Budd RC, Irvin CG, van der Vliet A, Flemer S, Anathy V, Janssen-Heininger YM. Attenuation of lung fibrosis in mice with a clinically relevant inhibitor of glutathione- S-transferase π. JCI Insight 2016; 1:85717. [PMID: 27358914 PMCID: PMC4922427 DOI: 10.1172/jci.insight.85717] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating lung disease characterized by excessive collagen production and fibrogenesis. Apoptosis in lung epithelial cells is critical in IPF pathogenesis, as heightened loss of these cells promotes fibroblast activation and remodeling. Changes in glutathione redox status have been reported in IPF patients. S-glutathionylation, the conjugation of glutathione to reactive cysteines, is catalyzed in part by glutathione-S-transferase π (GSTP). To date, no published information exists linking GSTP and IPF to our knowledge. We hypothesized that GSTP mediates lung fibrogenesis in part through FAS S-glutathionylation, a critical event in epithelial cell apoptosis. Our results demonstrate that GSTP immunoreactivity is increased in the lungs of IPF patients, notably within type II epithelial cells. The FAS-GSTP interaction was also increased in IPF lungs. Bleomycin- and AdTGFβ-induced increases in collagen content, α-SMA, FAS S-glutathionylation, and total protein S-glutathionylation were strongly attenuated in Gstp-/- mice. Oropharyngeal administration of the GSTP inhibitor, TLK117, at a time when fibrosis was already apparent, attenuated bleomycin- and AdTGFβ-induced remodeling, α-SMA, caspase activation, FAS S-glutathionylation, and total protein S-glutathionylation. GSTP is an important driver of protein S-glutathionylation and lung fibrosis, and GSTP inhibition via the airways may be a novel therapeutic strategy for the treatment of IPF.
Collapse
Affiliation(s)
- David H. McMillan
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Jos L.J. van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Karolyn G. Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Xi Qian
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Robert W. Schneider
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Martina S. Iberg
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - James D. Nolin
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Sarah Abdalla
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Dylan T. Casey
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Kenneth D. Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Danyelle M. Townsend
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Colin J. Henderson
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - C. Roland Wolf
- Division of Cancer Research, University of Dundee, Dundee, United Kingdom
| | - Kelly J. Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Douglas J. Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | - Stevenson Flemer
- Department of Chemistry, University of Vermont, Burlington, Vermont, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont, USA
| | | |
Collapse
|
20
|
Kulkarni T, de Andrade J, Zhou Y, Luckhardt T, Thannickal VJ. Alveolar epithelial disintegrity in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2016; 311:L185-91. [PMID: 27233996 DOI: 10.1152/ajplung.00115.2016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by progressive decline in lung function, resulting in significant morbidity and mortality. Current concepts of the pathogenesis of IPF primarily center on dysregulated epithelial cell repair and altered epithelial-mesenchymal communication and extracellular matrix deposition following chronic exposure to cigarette smoke or environmental toxins. In recent years, increasing attention has been directed toward the role of the intercellular junctional complex in determining the specific properties of epithelia in pulmonary diseases. Additionally, recent genomewide association studies suggest that specific genetic variants predictive of epithelial cell dysfunction may confer susceptibility to the development of sporadic idiopathic pulmonary fibrosis. A number of genetic disorders linked to pulmonary fibrosis and familial interstitial pneumonias are associated with loss of epithelial integrity. However, the potential links between extrapulmonary clinical syndromes associated with defects in epithelial cells and the development of pulmonary fibrosis are not well understood. Here, we report a case of hereditary mucoepithelial dysplasia that presented with pulmonary fibrosis and emphysema on high-resolution computed tomography. This case illustrates a more generalizable concept of epithelial disintegrity in the development of fibrotic lung diseases, which is explored in greater detail in this review article.
Collapse
Affiliation(s)
- Tejaswini Kulkarni
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joao de Andrade
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tracy Luckhardt
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
21
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
22
|
Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response. Mediators Inflamm 2015; 2015:942179. [PMID: 26300593 PMCID: PMC4537759 DOI: 10.1155/2015/942179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/31/2015] [Accepted: 04/21/2015] [Indexed: 02/07/2023] Open
Abstract
Lung fibrosis is characterized by abnormal accumulation of fibroblasts in the interstitium of the alveolar space. Two populations of myofibroblasts, distinguished by Thy1 expression, are detected in human and murine lungs. Accumulation of Thy1-negative (Thy1(-)) myofibroblasts was shown in the lungs of humans with idiopathic pulmonary fibrosis (IPF) and of bleomycin-treated mice. We aimed to identify genetic changes in lung myofibroblasts following Thy1 crosslinking and assess the impact of specific lung myofibroblast Thy1-deficiency, in vivo, in bleomycin-injured mouse lungs. Thy1 increased in mouse lung lymphocytes following bleomycin injury but decreased in myofibroblasts when fibrosis was at the highest point (14 days), as assessed by immunohistochemistry. Using gene chip analysis, we detected that myofibroblast Thy1 crosslinking mediates downregulation of genes promoting cell proliferation, survival, and differentiation, and reduces production of extracellular matrix (ECM) components, while concurrently mediating the upregulation of genes known to foster inflammation and immunological functions. Chimeric Thy1-deficient mice with Thy1(+) lymphocytes and Thy1(-) myofibroblasts showed fibrosis similar to wild-type mice and an increased number of CD4/CD25 regulatory T cells, with a concomitant decrease in inflammation. Lung myofibroblasts downregulate Thy1 expression to increase their proliferation but to diminish the in vivo inflammatory milieu. Inflammation is not essential for evolution of fibrosis as was previously stated.
Collapse
|
23
|
Todd NW, Atamas SP, Luzina IG, Galvin JR. Permanent alveolar collapse is the predominant mechanism in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2015; 9:411-8. [PMID: 26165208 DOI: 10.1586/17476348.2015.1067609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alveolar epithelial cell loss and impaired epithelial cell regeneration are currently accepted as central initiating events in idiopathic pulmonary fibrosis (IPF), but subsequent downstream effects remain uncertain. The most accepted downstream effect is aberrant and dysregulated mesenchymal cell proliferation and excess extracellular matrix (ECM) accumulation. However, biochemical and imaging studies have perhaps somewhat surprisingly indicated little increase in total lung collagen and lung tissue, and have rather shown a substantial decrease in lung aeration and lung air volume. Loss of tissue aeration is a consequence of alveolar collapse, which occurs in IPF as a result of apposition and septal incorporation of denuded basal lamina. Permanent alveolar collapse is well-documented following epithelial injury, has the ability to mimic interstitial fibrosis radiologically and histologically, and is a better supported explanation than dysregulated fibroblast proliferation and excess ECM accumulation for the constellation of findings in patients with IPF.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
24
|
Arish N, Cohen PY, Golan-Gerstl R, Fridlender Z, Dayan MR, Zisman P, Breuer R, Wallach-Dayan SB. Overexpression of Telomerase Protects Human and Murine Lung Epithelial Cells from Fas- and Bleomycin-Induced Apoptosis via FLIP Upregulation. PLoS One 2015; 10:e0126730. [PMID: 25951185 PMCID: PMC4423936 DOI: 10.1371/journal.pone.0126730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
High doses of bleomycin administered to patients with lymphomas and other tumors lead to significant lung toxicity in general, and to apoptosis of epithelial cells, in particular. Apoptosis of alveolar epithelium is an important step in the pathogenesis of bleomycin-induced pulmonary fibrosis. The Fas-FasL pathway is one of the main apoptotic pathways involved. Telomerase is a ribonucleoprotein RNA-dependent DNA polymerase complex consisting of an RNA template and a catalytic protein, telomerase reverse transcriptase (TERT). Telomerase also possess extra-telomeric roles, including modulation of transcription of anti-apoptotic genes, differentiation signals, and more. We hypothesized that telomerase overexpression affects Fas-induced epithelial cell apoptosis by an extra-telomeric role such as regulation of anti-apoptotic genes, specifically FLICE-like inhibitory protein (FLIP). Telomerase in mouse (MLE) and human (A549) lung epithelial cell lines was upregulated by transient transfection using cDNA hTERT expression vector. Telomerase activity was detected using a real-time PCR-based system. Bleomycin, and bleomycin-induced Fas-mediated apoptosis following treatment with anti-Fas activating mAb or control IgG, were assessed by Annexin V staining, FACS analysis, and confocal microscopy; caspase cleavage by Western blot; FLIP or Fas molecule detection by Western blot and flow cytometry. hTERT transfection of lung epithelial cells resulted in a 100% increase in their telomerase activity. Fas-induced lung epithelial cell apoptosis was significantly reduced in hTERT-transfected cells compared to controls in all experiments. Lung epithelial cells with increased telomerase activity had higher levels of FLIP expression but membrane Fas expression was unchanged. Upregulation of hTERT+ in human lung epithelial cells and subsequent downregulation of FLIP by shFLIP-RNA annulled hTERT-mediated resistance to apoptosis. Telomerase-mediated FLIP overexpression may be a novel mechanism to confer protection from apoptosis in bleomycin-exposed human lung epithelial cells.
Collapse
Affiliation(s)
- Nissim Arish
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Pazit Y. Cohen
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Regina Golan-Gerstl
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Fridlender
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Richter Dayan
- Department of Emergency Medicine, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Philip Zisman
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Raphael Breuer
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- Department of Pathology, Boston University School of Medicine, Boston, MA, United States of America
| | - Shulamit B. Wallach-Dayan
- Laboratory for Lung Cellular & Molecular Biology, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
25
|
Wallach-Dayan SB, Elkayam L, Golan-Gerstl R, Konikov J, Zisman P, Dayan MR, Arish N, Breuer R. Cutting edge: FasL(+) immune cells promote resolution of fibrosis. J Autoimmun 2015; 59:67-76. [PMID: 25812467 DOI: 10.1016/j.jaut.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 01/07/2023]
Abstract
Immune cells, particularly those expressing the ligand of the Fas-death receptor (FasL), e.g. cytotoxic T cells, induce apoptosis in 'undesirable' self- and non-self-cells, including lung fibroblasts, thus providing a means of immune surveillance. We aimed to validate this mechanism in resolution of lung fibrosis. In particular, we elucidated whether FasL(+) immune cells possess antifibrotic capabilities by induction of FasL-dependent myofibroblast apoptosis and whether antagonists of membrane (m) and soluble (s) FasL can inhibit these capabilities. Myofibroblast interaction with immune cells and its FasL-dependency, were investigated in vitro in coculture with T cells and in vivo, following transplantation into lungs of immune-deficient syngeneic Rag-/- as well as allogeneic SCID mice, and into lungs and air pouches of FasL-deficient (gld) mice, before and after reconstitution of the mice with wild-type (wt), FasL(+) immune cells. We found that myofibroblasts from lungs resolving fibrosis undergo FasL-dependent T cell-induced apoptosis in vitro and demonstrate susceptibility to in vivo immune surveillance in lungs of reconstituted, immune- and FasL-deficient, mice. However, immune-deficient Rag-/- and SCID mice, and gld-mice with FasL-deficiency, endure the accumulation of transplanted myofibroblasts in their lungs with subsequent development of fibrosis. Concomitantly, gld mice, in contrast to chimeric FasL-deficient mice with wt immune cells, accumulated transplanted myofibroblasts in the air pouch model. In humans we found that myofibroblasts from fibrotic lungs secrete sFasL and resist T cell-induced apoptosis, whereas normal lung myofibroblasts are susceptible to apoptosis but acquire resistance upon addition of anti-s/mFasL to the coculture. Immune surveillance, particularly functional FasL(+) immune cells, may represent an important extrinsic component in myofibroblast apoptosis and serve as a barrier to fibrosis. Factors interfering with Fas/FasL-immune cell-myofibroblast interaction such as sFasL secreted by fibrotic-lung myofibroblasts, may abrogate immune surveillance during fibrosis. Annulling these factors may pave a new direction to control human lung fibrosis.
Collapse
Affiliation(s)
- Shulamit B Wallach-Dayan
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Liron Elkayam
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Regina Golan-Gerstl
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Jenya Konikov
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Philip Zisman
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Mark Richter Dayan
- Department of Emergency Medicine, Shaare Zedek Medical Center, Jerusalem, Israel.
| | - Nissim Arish
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| | - Raphael Breuer
- Lung Cellular and Molecular Biology Laboratory, Institute of Pulmonary Medicine, Hadassah - Hebrew University Medical Center, Jerusalem, Israel; Department of Pathology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
26
|
Keyser BM, Andres DK, Holmes WW, Paradiso D, Appell A, Letukas VA, Benton B, Clark OE, Gao X, Ray P, Anderson DR, Ray R. Mustard Gas Inhalation Injury. Int J Toxicol 2014; 33:271-281. [DOI: 10.1177/1091581814532959] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mustard gas (sulfur mustard [SM], bis-[2-chloroethyl] sulfide) is a vesicating chemical warfare agent and a potential chemical terrorism agent. Exposure of SM causes debilitating skin blisters (vesication) and injury to the eyes and the respiratory tract; of these, the respiratory injury, if severe, may even be fatal. Therefore, developing an effective therapeutic strategy to protect against SM-induced respiratory injury is an urgent priority of not only the US military but also the civilian antiterrorism agencies, for example, the Homeland Security. Toward developing a respiratory medical countermeasure for SM, four different classes of therapeutic compounds have been evaluated in the past: anti-inflammatory compounds, antioxidants, protease inhibitors and antiapoptotic compounds. This review examines all of these different options; however, it suggests that preventing cell death by inhibiting apoptosis seems to be a compelling strategy but possibly dependent on adjunct therapies using the other drugs, that is, anti-inflammatory, antioxidant, and protease inhibitor compounds.
Collapse
Affiliation(s)
- Brian M. Keyser
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Devon K. Andres
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Wesley W. Holmes
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Danielle Paradiso
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Ashley Appell
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Valerie A. Letukas
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Betty Benton
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Offie E. Clark
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Xiugong Gao
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Prabhati Ray
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Dana R. Anderson
- Analytical Toxicology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Radharaman Ray
- Research Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
27
|
Chakraborty S, Chopra P, Hak A, Dastidar SG, Ray A. Hepatocyte growth factor is an attractive target for the treatment of pulmonary fibrosis. Expert Opin Investig Drugs 2013; 22:499-515. [PMID: 23484858 DOI: 10.1517/13543784.2013.778972] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pulmonary fibrosis (PF) is a progressive fatal disorder and is characterized by alveolar epithelial injury, myofibroblast proliferation, and extracellular matrix remodeling, resulting in irreversible distortion of lung's architecture. Available therapies are associated with side effects and show restricted efficacy. Therefore, there is an urgent need to find a therapeutic solution to PF. Therapeutic strategies interfering myofibroblast expansion, apoptosis of epithelial and endothelial cells might be beneficial for treatment of PF. Hepatocyte growth factor (HGF), a pleiotropic growth factor, plays an important role in lung development, inflammation, repair, and regeneration. In animal model of PF, administration of recombinant HGF protein or ectopic HGF expression ameliorates fibrosis. AREAS COVERED The focus of this review is to highlight HGF as a promising therapeutic approach for the treatment of PF. The review discusses the currently available treatment option for PF as well as highlights the possible beneficial effect of HGF as a drug target. EXPERT OPINION HGF with its anti-fibrotic effect provides a promising new therapeutic approach by protecting lung from fibrotic remodeling and also promoting normal regeneration of lung. The development of HGF mimetics may provide a potential attractive therapy for treatment of this devastating and complex disease.
Collapse
Affiliation(s)
- Sushmita Chakraborty
- Daiichi Sankyo Life Science Research Centre in India (RCI), Department of Biology, Haryana, India
| | | | | | | | | |
Collapse
|
28
|
Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 2013; 4:e621. [PMID: 23640463 PMCID: PMC3674355 DOI: 10.1038/cddis.2013.146] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the recruitment of fibroblasts to areas of injury is critical for wound healing, their subsequent apoptosis is necessary in order to prevent excessive scarring. Fibroproliferative diseases, such as pulmonary fibrosis, are often characterized by fibroblast resistance to apoptosis, but the mechanism(s) for this resistance remains elusive. Here, we employed a murine model of pulmonary fibrosis and cells from patients with idiopathic pulmonary fibrosis (IPF) to explore epigenetic mechanisms that may be responsible for the decreased expression of Fas, a cell surface death receptor whose expression has been observed to be decreased in pulmonary fibrosis. Murine pulmonary fibrosis was elicited by intratracheal injection of bleomycin. Fibroblasts cultured from bleomycin-treated mice exhibited decreased Fas expression and resistance to Fas-mediated apoptosis compared with cells from saline-treated control mice. Although there were no differences in DNA methylation, the Fas promoter in fibroblasts from bleomycin-treated mice exhibited decreased histone acetylation and increased histone 3 lysine 9 trimethylation (H3K9Me3). This was associated with increased histone deacetylase (HDAC)-2 and HDAC4 expression. Treatment with HDAC inhibitors increased Fas expression and restored susceptibility to Fas-mediated apoptosis. Fibroblasts from patients with IPF likewise exhibited decreased histone acetylation and increased H3K9Me3 at the Fas promoter and increased their expression of Fas in the presence of an HDAC inhibitor. These findings demonstrate the critical role of histone modifications in the development of fibroblast resistance to apoptosis in both a murine model and in patients with pulmonary fibrosis and suggest novel approaches to therapy for progressive fibroproliferative disorders.
Collapse
|
29
|
Zhou Y, Huang X, Hecker L, Kurundkar D, Kurundkar A, Liu H, Jin TH, Desai L, Bernard K, Thannickal VJ. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest 2013; 123:1096-108. [PMID: 23434591 DOI: 10.1172/jci66700] [Citation(s) in RCA: 342] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/13/2012] [Indexed: 12/14/2022] Open
Abstract
Matrix stiffening and myofibroblast resistance to apoptosis are cardinal features of chronic fibrotic diseases involving diverse organ systems. The interactions between altered tissue biomechanics and cellular signaling that sustain progressive fibrosis are not well defined. In this study, we used ex vivo and in vivo approaches to define a mechanotransduction pathway involving Rho/Rho kinase (Rho/ROCK), actin cytoskeletal remodeling, and a mechanosensitive transcription factor, megakaryoblastic leukemia 1 (MKL1), that coordinately regulate myofibroblast differentiation and survival. Both in an experimental mouse model of lung fibrosis and in human subjects with idiopathic pulmonary fibrosis (IPF), we observed activation of the Rho/ROCK pathway, enhanced actin cytoskeletal polymerization, and MKL1 cytoplasmic-nuclear shuttling. Pharmacologic disruption of this mechanotransduction pathway with the ROCK inhibitor fasudil induced myofibroblast apoptosis through a mechanism involving downregulation of BCL-2 and activation of the intrinsic mitochondrial apoptotic pathway. Treatment with fasudil during the postinflammatory fibrotic phase of lung injury or genetic ablation of Mkl1 protected mice from experimental lung fibrosis. These studies indicate that targeting mechanosensitive signaling in myofibroblasts to trigger the intrinsic apoptosis pathway may be an effective approach for treatment of fibrotic disorders.
Collapse
Affiliation(s)
- Yong Zhou
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:241-76. [PMID: 23092186 DOI: 10.1146/annurev-pathol-020712-163930] [Citation(s) in RCA: 455] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary "effector" cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis.
Collapse
Affiliation(s)
- Jeremy S Duffield
- Division of Nephrology, Center for Lung Biology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98019, USA
| | | | | | | |
Collapse
|
31
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
32
|
Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 2012; 13:8293-8307. [PMID: 22942703 PMCID: PMC3430234 DOI: 10.3390/ijms13078293] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 11/16/2022] Open
Abstract
The mechanisms underlying the pathogenesis of idiopathic pulmonary fibrosis (IPF) involve multiple pathways, such as inflammation, epithelial mesenchymal transition, coagulation, oxidative stress, and developmental processes. The small GTPase, RhoA, and its target protein, Rho-kinase (ROCK), may interact with other signaling pathways known to contribute to pulmonary fibrosis. This study aimed to determine the beneficial effects and mechanisms of fasudil, a selective ROCK inhibitor, on bleomycin-induced pulmonary fibrosis in mice. Our results showed that the Aschcroft score and hydroxyproline content of the bleomycin-treated mouse lung decreased in response to fasudil treatment. The number of infiltrated inflammatory cells in the bronchoalveolar lavage fluid (BALF) was attenuated by fasudil. In addition, fasudil reduced the production of transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), alpha-smooth muscle actin (α-SMA), and plasminogen activator inhibitor-1 (PAI-1) mRNA and protein expression in bleomycin-induced pulmonary fibrosis. These findings suggest that fasudil may be a potential therapeutic candidate for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Chunguo Jiang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Hui Huang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Jia Liu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Yanxun Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
| | - Zhiwei Lu
- Department of Respiratory Medicine, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China; E-Mail:
| | - Zuojun Xu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; E-Mails: (C.J.); (H.H.); (J.L.); (Y.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-69155039; Fax: +86-10-69155039
| |
Collapse
|
33
|
Oxidative processing of latent Fas in the endoplasmic reticulum controls the strength of apoptosis. Mol Cell Biol 2012; 32:3464-78. [PMID: 22751926 DOI: 10.1128/mcb.00125-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241-252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis.
Collapse
|
34
|
Waszak P, Alphonse R, Vadivel A, Ionescu L, Eaton F, Thébaud B. Preconditioning enhances the paracrine effect of mesenchymal stem cells in preventing oxygen-induced neonatal lung injury in rats. Stem Cells Dev 2012; 21:2789-97. [PMID: 22533467 DOI: 10.1089/scd.2010.0566] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a main complication of extreme prematurity. Bone marrow derived-mesenchymal stem cells (BM-MSC) prevent lung injury in an O(2)-induced model of BPD. The low level of lung BM-MSC engraftment suggests alternate mechanisms-beyond cell replacement-to account for their therapeutic benefit. We hypothesized that BM-MSC prevent O(2)-induced BPD through a paracrine-mediated mechanism and that preconditioning of BM-MSC would further enhance this paracrine effect. To this end, conditioned medium (CM) from BM-MSC (MSCcm) or preconditioned CM harvested after 24 h of BM-MSC exposure to 95% O(2) (MSC-O2cm) were administrated for 21 days to newborn rats exposed to 95% O(2) from birth until postnatal day (P)14. Rat pups exposed to hyperoxia had fewer and enlarged air spaces and exhibited signs of pulmonary hypertension (PH), assessed by echo-Doppler, right ventricular hypertrophy, and pulmonary artery medial wall thickness. Daily intraperitoneal administration of both CM preserved alveolar growth. MSC-O2cm exerted the most potent therapeutic benefit and also prevented PH. CM of lung fibroblasts (control cells) had no effect. MSCcm had higher antioxidant capacity than control fibroblast CM. Preconditioning did not increase the antioxidant capacity in MSC-O2cm but produced higher levels of the naturally occurring antioxidant stanniocalcin-1 in MSC-O2cm. Ex vivo preconditioning enhances the paracrine effect of BM-MSC and opens new therapeutic options for cell-based therapies. Ex vivo preconditioning may also facilitate the discovery of MSC-derived repair molecules.
Collapse
Affiliation(s)
- Paul Waszak
- Department of Pediatrics, Faculty of Medicine and Dentistry, Women and Children’s Health Research Institute, Cardiovascular Research Center, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
35
|
Golan-Gerstl R, Wallach-Dayan SB, Zisman P, Cardoso WV, Goldstein RH, Breuer R. Cellular FLICE-like inhibitory protein deviates myofibroblast fas-induced apoptosis toward proliferation during lung fibrosis. Am J Respir Cell Mol Biol 2012; 47:271-9. [PMID: 22582174 DOI: 10.1165/rcmb.2010-0284rc] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A prominent feature of fibrotic tissue in general and of lungs in particular is fibroblast proliferation and accumulation. In patients overcoming fibrosis, apoptosis limits this excessive cell growth. We have previously shown resistance to Fas-induced apoptosis of primary lung fibroblasts from mice with bleomycin-induced lung fibrosis, their escape from immune surveillance, and continued accumulation in spite of overexpression of the Fas death receptor. Cellular FLICE-like inhibitory protein (c-FLIP) is a regulator of cell death receptor-induced apoptosis in many cell types. We aimed to determine c-FLIP levels in myofibroblasts from fibrotic lungs and to directly assess c-FLIP's role in apoptosis and proliferation of primary lung myofibroblasts. c-FLIP levels were determined by apoptosis gene array, flow cytometry, Western blot, and immunofluorescence before and after down-regulation with a specific small interfering RNA. Apoptosis was assessed by caspase cleavage in Western blot and by Annexin V affinity labeling after FACS and tissue immunofluorescence. Proliferation was assessed by BrdU uptake, also using FACS and immunofluorescence. We show that myofibroblasts from lungs of humans with idiopathic pulmonary fibrosis and from bleomycin-treated versus normal saline-treated mice up-regulate c-FLIP levels. Using the animal model, we show that fibrotic lung myofibroblasts divert Fas signaling from apoptosis to proliferation and that this requires signaling by TNF receptor-associated factor (TRAF) and NF-κB. c-FLIP down-regulation reverses the effect of Fas activation, causing increased apoptosis, decreased proliferation, and diminished recruitment of TRAF to the DISC complex. This indicates that c-FLIP is essential for myofibroblast accumulation and may serve as a potential target to manipulate tissue fibrosis.
Collapse
Affiliation(s)
- Regina Golan-Gerstl
- Lung Cellular and Molecular Laboratory, Institute of Pulmonary Medicine, Hadassah University Hospital, POB 12000, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Anathy V, Roberson EC, Guala AS, Godburn KE, Budd RC, Janssen-Heininger YMW. Redox-based regulation of apoptosis: S-glutathionylation as a regulatory mechanism to control cell death. Antioxid Redox Signal 2012; 16:496-505. [PMID: 21929356 PMCID: PMC3304251 DOI: 10.1089/ars.2011.4281] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Redox-based signaling governs a number of important pathways in tissue homeostasis. Consequently, deregulation of redox-controlled processes has been linked to a number of human diseases. Among the biological processes regulated by redox signaling, apoptosis or programmed cell death is a highly conserved process important for tissue homeostasis. Apoptosis can be triggered by a wide variety of stimuli, including death receptor ligands, environmental agents, and cytotoxic drugs. Apoptosis has also been implicated in the etiology of many human diseases. RECENT ADVANCES Recent discoveries demonstrate that redox-based changes are required for efficient activation of apoptosis. Among these redox changes, alterations in the abundant thiol, glutathione (GSH), and the oxidative post-translational modification, protein S-glutathionylation (PSSG) have come to the forefront as critical regulators of apoptosis. CRITICAL ISSUES Although redox-based changes have been documented in apoptosis and disease pathogenesis, the mechanistic details, whereby redox perturbations intersect with pathogenic processes, remain obscure. FUTURE DIRECTIONS Further research will be needed to understand the context in which of the members of the death receptor pathways undergo ligand dependent oxidative modifications. Additional investigation into the interplay between oxidative modifications, redox enzymes, and apoptosis pathway members are also critically needed to improve our understanding how redox-based control is achieved. Such analyses will be important in understanding the diverse chronic diseases. In this review we will discuss the emerging paradigms in our current understanding of redox-based regulation of apoptosis with an emphasis on S-glutathionylation of proteins and the enzymes involved in this important post-translational modification.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology, University of Vermont College of Medicine, Burlington, 05405, USA
| | | | | | | | | | | |
Collapse
|
37
|
Apoptosis modulation as a promising target for treatment of systemic sclerosis. Int J Rheumatol 2011; 2011:495792. [PMID: 21912551 PMCID: PMC3170778 DOI: 10.1155/2011/495792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 12/22/2022] Open
Abstract
Diffuse systemic sclerosis (SSc) is a fatal autoimmune disease characterized by an excessive ECM deposition inducing a loss of function of skin and internal organs. Apoptosis is a key mechanism involved in all the stages of the disease: vascular damage, immune dysfunction, and fibrosis. The purpose of this paper is to gather new findings in apoptosis related to SSc, to highlight relations between apoptosis and fibrosis, and to identify new therapeutic targets.
Collapse
|
38
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
39
|
Hecker L, Thannickal VJ. Nonresolving fibrotic disorders: idiopathic pulmonary fibrosis as a paradigm of impaired tissue regeneration. Am J Med Sci 2011; 341:431-4. [PMID: 21613929 DOI: 10.1097/maj.0b013e31821a9d66] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pathogenesis idiopathic pulmonary of fibrosis and related fibrosis lung disorders are complex and poorly understood. This likely involves cellular mechanisms that result in loss of cellular homeostasis leading to aberrant alveolar wall remodeling through the excessive deposition of connective tissue matrices. Impaired tissue regeneration and dysregulation of cell death in lung fibroblasts and epithelial cells appear to be important in the initiation and progression of these disorders. This review summarizes current understanding in this area to stimulate research into the development of novel therapeutic strategies that prevent, halt or reverse the progression of lung fibrosis.
Collapse
Affiliation(s)
- Louise Hecker
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA.
| | | |
Collapse
|
40
|
Wynes MW, Edelman BL, Kostyk AG, Edwards MG, Coldren C, Groshong SD, Cosgrove GP, Redente EF, Bamberg A, Brown KK, Reisdorph N, Keith RC, Frankel SK, Riches DWH. Increased cell surface Fas expression is necessary and sufficient to sensitize lung fibroblasts to Fas ligation-induced apoptosis: implications for fibroblast accumulation in idiopathic pulmonary fibrosis. THE JOURNAL OF IMMUNOLOGY 2011; 187:527-37. [PMID: 21632719 DOI: 10.4049/jimmunol.1100447] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is associated with the accumulation of collagen-secreting fibroblasts and myofibroblasts in the lung parenchyma. Many mechanisms contribute to their accumulation, including resistance to apoptosis. In previous work, we showed that exposure to the proinflammatory cytokines TNF-α and IFN-γ reverses the resistance of lung fibroblasts to apoptosis. In this study, we investigate the underlying mechanisms. Based on an interrogation of the transcriptomes of unstimulated and TNF-α- and IFN-γ-stimulated primary lung fibroblasts and the lung fibroblast cell line MRC5, we show that among Fas-signaling pathway molecules, Fas expression was increased ∼6-fold in an NF-κB- and p38(mapk)-dependent fashion. Prevention of the increase in Fas expression using Fas small interfering RNAs blocked the ability of TNF-α and IFN-γ to sensitize fibroblasts to Fas ligation-induced apoptosis, whereas enforced adenovirus-mediated Fas overexpression was sufficient to overcome basal resistance to Fas-induced apoptosis. Examination of lung tissues from IPF patients revealed low to absent staining of Fas in fibroblastic cells of fibroblast foci. Collectively, these findings suggest that increased expression of Fas is necessary and sufficient to overcome the resistance of lung fibroblasts to Fas-induced apoptosis. Our findings also suggest that approaches aimed at increasing Fas expression by lung fibroblasts and myofibroblasts may be therapeutically relevant in IPF.
Collapse
Affiliation(s)
- Murry W Wynes
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Janssen-Heininger YMW, Aesif SW, van der Velden J, Guala AS, Reiss JN, Roberson EC, Budd RC, Reynaert NL, Anathy V. Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease. Ann N Y Acad Sci 2010; 1203:23-8. [PMID: 20716279 DOI: 10.1111/j.1749-6632.2010.05553.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissue fibrosis is believed to be a manifestation of dysregulated repair following injury, in association with impaired reepithelialization, and aberrant myofibroblast activation and proliferation. Numerous pathways have been linked to the pathogenesis of fibrotic lung disease, including the death receptor Fas, which contributes to apoptosis of lung epithelial cells. A redox imbalance also has been implicated in disease pathogenesis, although mechanistic details whereby oxidative changes intersect with profibrotic signaling pathways remain elusive. Oxidation of cysteines in proteins, such as S-glutathionylation (PSSG), is known to act as a regulatory event that affects protein function. This manuscript will discuss evidence that S-glutathionylation regulates death receptor induced apoptosis, and the potential implications for cysteine oxidations in the pathogenesis of in fibrotic lung disease.
Collapse
|
42
|
Abstract
Lung epithelium is the primary site of lung damage in various lung diseases. Epithelial cell death has been considered to be the initial event in lung injury and is followed by remodeling processes. When the degree of lung injury is mild, damaged tissue will be repaired normally, whereas excess cell death may lead to irreparable lung damage and remodeling processes. The survival and recovery of epithelial and endothelial cells, and the resolution of inflammatory cells appear to be key for normal tissue repair. We review the recent advances in the understanding of mechanisms of cell death following lung injury in various lung diseases and discuss its regulation by novel strategies. Further understanding of mechanisms of cell death and its regulation may lead to the development of effective treatments against lung injury.
Collapse
Affiliation(s)
- Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | | | | |
Collapse
|
43
|
Lopez AD, Avasarala S, Grewal S, Murali AK, London L. Differential role of the Fas/Fas ligand apoptotic pathway in inflammation and lung fibrosis associated with reovirus 1/L-induced bronchiolitis obliterans organizing pneumonia and acute respiratory distress syndrome. THE JOURNAL OF IMMUNOLOGY 2010; 183:8244-57. [PMID: 20007588 DOI: 10.4049/jimmunol.0901958] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bronchiolitis obliterans organizing pneumonia (BOOP) and acute respiratory distress syndrome (ARDS) are two clinically and histologically distinct syndromes sharing the presence of an inflammatory and fibrotic component. Apoptosis via the Fas/Fas ligand (FasL) pathway plays an important role in the development of acute lung injury and fibrosis characteristic of these and other pulmonary inflammatory and fibrotic syndromes. We evaluated the role of apoptosis via the Fas/FasL pathway in the development of pulmonary inflammation and fibrosis in reovirus 1/L-induced BOOP and ARDS. CBA/J mice were intranasally inoculated with saline, 1 x 10(6) (BOOP), or 1 x 10(7) (ARDS) PFU reovirus 1/L, and evaluated at various days postinoculation for in situ apoptosis by TUNEL analysis and Fas/FasL expression. Our results demonstrate the presence of apoptotic cells and up-regulation of Fas/FasL expression in alveolar epithelium and in infiltrating cells during the inflammatory and fibrotic stages of both reovirus 1/L-induced ARDS and BOOP. Treatment of mice with the caspase 8 inhibitor, zIETD-fmk, inhibited apoptosis, inflammation, and fibrotic lesion development in reovirus 1/L-induced BOOP and ARDS. However, CBA/KlJms-Fas(lpr-cg)/J mice, which carry a point mutation in the Fas cytoplasmic region that abolishes the ability of Fas to transduce an apoptotic signal, do not develop pulmonary inflammation and fibrotic lesions associated with reovirus 1/L-induced BOOP, but still develop inflammation and fibrotic lesions associated with reovirus 1/L-induced ARDS. These results suggest a differential role for the Fas/FasL apoptotic pathway in the development of inflammation and fibrotic lesions associated with BOOP and ARDS.
Collapse
Affiliation(s)
- Andrea D Lopez
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
44
|
Song JS, Kang CM, Rhee CK, Yoon HK, Kim YK, Moon HS, Park SH. EFFECTS OF ELASTASE INHIBITOR ON THE EPITHELIAL CELL APOPTOSIS IN BLEOMYCIN-INDUCED PULMONARY FIBROSIS. Exp Lung Res 2009; 35:817-29. [DOI: 10.3109/01902140902912527] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
Fujibayashi T, Hashimoto N, Jijiwa M, Hasegawa Y, Kojima T, Ishiguro N. Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model. BMC Pulm Med 2009; 9:45. [PMID: 19758434 PMCID: PMC2749802 DOI: 10.1186/1471-2466-9-45] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 09/16/2009] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND To determine whether oral administration of geranylgeranylacetone (GGA), a nontoxic anti-ulcer drug that is an inducer of heat shock protein (HSP) 70, protects against drug-induced lung injury/fibrosis in vivo. METHODS We used a bleomycin (BLM)-induced lung fibrosis model in which mice were treated with oral 600 mg/kg of GGA before and after BLM administration. Inflammation and fibrosis were evaluated by histological scoring, hydroxyproline content in the lung and inflammatory cell count, and quantification by ELISA of macrophage inflammatory protein-2 (MIP-2) in bronchoalveolar lavage fluid. Apoptosis was evaluated by the TUNEL method. The induction of HSP70 in the lung was examined with western blot analysis and its localization was determined by immunohistochemistry. RESULTS We confirmed the presence of inflammation and fibrosis in the BLM-induced lung injury model and induction of HSP70 by oral administration of GGA. GGA prevented apoptosis of cellular constituents of lung tissue, such as epithelial cells, most likely related to the de novo induction of HSP70 in the lungs. GGA-treated mice also showed less fibrosis of the lungs, associated with the findings of suppression of both production of MIP-2 and inflammatory cell accumulation in the injured lung, compared with vehicle-treated mice. CONCLUSION GGA had a protective effect on drug-induced lung injury/fibrosis. Disease-modifying antirheumatic drugs such as methotrexate, which are indispensable for the treatment of rheumatoid arthritis, often cause interstitial lung diseases, an adverse event that currently cannot be prevented. Clinical use of GGA for drug-induced pulmonary fibrosis might be considered in the future.
Collapse
Affiliation(s)
- Takayoshi Fujibayashi
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Cha SI, Groshong SD, Frankel SK, Edelman BL, Cosgrove GP, Terry-Powers JL, Remigio LK, Curran-Everett D, Brown KK, Cool CD, Riches DWH. Compartmentalized expression of c-FLIP in lung tissues of patients with idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol 2009; 42:140-8. [PMID: 19372246 DOI: 10.1165/rcmb.2008-0419oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Increased apoptosis of alveolar epithelial cells and impaired apoptosis of myofibroblasts have been linked to the pathogenesis of idiopathic pulmonary fibrosis/usual interstitial pneumonia (IPF/UIP). Fas, a death receptor of the TNF-receptor superfamily, has been implicated in apoptosis of both cell types, though the mechanisms are poorly understood. The goals of this study were: (1) to examine the localization of Fas-associated death-domain-like IL-1beta-converting enzyme inhibitory protein (c-FLIP), an NF-kappaB-dependent regulator of Fas-signaling, in lung tissues from IPF/UIP patients and control subjects; and (2) to compare c-FLIP expression with epithelial cell and myofibroblast apoptosis, proliferation, and NF-kappaB activation. c-FLIP expression was restricted to airway epithelial cells in control lung tissues. In contrast, in patients with IPF/UIP, c-FLIP was also expressed by alveolar epithelial cells in areas of injury and fibrosis, but was absent from myofibroblasts in fibroblastic foci and from alveolar epithelial cells in uninvolved areas of lung tissue. Quantification of apoptosis and proliferation revealed an absence of apoptotic or proliferating cells in fibroblastic foci and low levels of apoptosis and proliferation by alveolar epithelial cells. Quantification of NF-kappaB expression and nuclear translocation revealed strong staining and translocation in alveolar epithelial cells and weak staining and minimal nuclear translocation in myofibroblasts. These findings suggest that: (1) c-FLIP expression is induced in the abnormal alveolar epithelium of patients with IPF/UIP, (2) the resistance of myofibroblasts to apoptosis in patients with IPF/UIP occurs independently of c-FLIP expression, and (3) increased NF-kappaB activation and c-FLIP expression by the alveolar epithelium may be linked.
Collapse
Affiliation(s)
- Seung-Ick Cha
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Makris D, Vrekoussis T, Izoldi M, Alexandra K, Katerina D, Dimitris T, Michalis A, Tzortzaki E, Siafakas NM, Tzanakis N. Increased apoptosis of neutrophils in induced sputum of COPD patients. Respir Med 2009; 103:1130-5. [PMID: 19329291 DOI: 10.1016/j.rmed.2009.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 02/10/2009] [Accepted: 03/02/2009] [Indexed: 10/21/2022]
Abstract
AIM The aim of the current study was to evaluate apoptosis in induced sputum neutrophils and to investigate the relationship between the number of apoptotic cells and clinical parameters in COPD patients. METHODS Twenty-four COPD ex-smoker patients and 10 healthy controls were included in the study. All subjects underwent clinical evaluation and sputum induction. Sputum cell in situ apoptosis was identified using white light microscopy and TUNEL assay technique. Apoptosis of neutrophils obtained by sputum induction was expressed as apoptotic rate (AR=percentage of apoptotic neutrophils over the number of neutrophils measured). RESULTS TUNEL assay revealed statistically significant higher AR in COPD patients than controls (p=0.004). Patients with FEV(1)<50%pred had significantly higher median (IQR) AR (%) compared to patients with FEV(1)>or=50% [26.3 (16-29) vs 13.1 (8.6-21), p=0.01]. No significant association was found between the number of apoptotic cells and age, symptoms or medication used. CONCLUSION The significantly increased apoptotic rate of neutrophils that were found in COPD patients with advanced disease compared to controls might reflect either a deregulation of apoptosis of neutrophils or, a reduced clearance of apoptotic neutrophils from the airways. The pathophysiologic significance of the observed phenomenon has to be further explored.
Collapse
Affiliation(s)
- Demosthenes Makris
- Department of Thoracic Medicine, University of Crete, Medical School, Heraklion, Crete, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Calabrese F, Giacometti C, Lunardi F, Valente M. Morphological and molecular markers in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2008; 2:505-20. [PMID: 20477214 DOI: 10.1586/17476348.2.4.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive, lethal, interstitial lung disease with no proven effective therapy other than lung transplantation. A definitive diagnosis of the disease requires surgical lung biopsy to show a histological appearance of usual interstitial pneumonia. The main histological features include temporal and spatial heterogeneity, fibroblastic foci, extracellular matrix deposition with vessel remodeling and honeycomb changes. There are some morphological aspects that have recently been taken into account as possible prognostic markers for disease progression. Although the cellular and molecular pathways driving disease pathogenesis are complex and not fully delineated, increasing evidence suggests that a key event is ongoing alveolar epithelial injury in association with an abnormal host repair response. Inflammation seems to play a less important role and remains largely debated while increased attention has been on the role of noninflammatory structural cells, such as fibroblasts, epithelial cells and endothelial cells. The modifications and interactions among these cells are complex and regulated by various molecular factors. This article reviews the morphology of the disease, focusing on some new facets and on the principal molecular factors involved in the different aspects of parenchymal remodeling.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Diagnostic Medical Sciences and Special Therapies, University of Padua Medical School, Via Gabelli, 61 Padua, Italy.
| | | | | | | |
Collapse
|
49
|
Cohen PY, Breuer R, Wallach-Dayan SB. Thy1 up-regulates FasL expression in lung myofibroblasts via Src family kinases. Am J Respir Cell Mol Biol 2008; 40:231-8. [PMID: 18676775 DOI: 10.1165/rcmb.2007-0348oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that myofibroblasts from lungs with bleomycin-induced fibrosis overexpress FasL molecules. Two subpopulations of fibroblasts, distinguished by their expression of Thy1 molecules, have been shown in the lungs of both mice and humans. Thy1-mediated FasL induction has been reported in T cells through the use of anti-Thy1 (G7). We therefore sought to determine whether FasL expression in lung myofibroblasts is associated with and/or dependent on Thy1 expression, and to examine the underlying mechanism of regulation. We show that myofibroblast Thy1 expression is associated with increased FasL expression. Moreover, we directly show that Thy1 activation induces FasL up-regulation. Initially, Thy1 activation causes translocation of FasL to the membrane surface, and later induces de novo synthesis of FasL at the mRNA and protein levels. In contrast to Thy1 activation, TNF-alpha and IFN-gamma do not induce FasL myofibroblast up-regulation. Using Src family kinase (SFKs) inhibitor (PP2), we show the general involvement of SFKs in Thy1 signal transduction leading to FasL up-regulation; and, using specific siRNA, we show the particular involvement of Fyn, one protein in the SFK family. These results demonstrate that Thy1 in myofibroblasts is not just a marker, but is a functional protein that transmits signals into the cell, up-regulating its FasL expression.
Collapse
Affiliation(s)
- Pazit Y Cohen
- Head, Institute for Pulmonary Medicine, Hadassah-Hebrew University Medical Center, POB 12000, Jerusalem, Israel
| | | | | |
Collapse
|
50
|
Strutz F. The great escape--myofibroblasts in fibrosis and the immune system. Nephrol Dial Transplant 2008; 23:2477-9. [DOI: 10.1093/ndt/gfn171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|