1
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2024. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology.
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
2
|
Jogdeo CM, Panja S, Kanvinde S, Kapoor E, Siddhanta K, Oupický D. Advances in Lipid-Based Codelivery Systems for Cancer and Inflammatory Diseases. Adv Healthc Mater 2023; 12:e2202400. [PMID: 36453542 PMCID: PMC10023350 DOI: 10.1002/adhm.202202400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Indexed: 12/03/2022]
Abstract
Combination therapy targeting multiple therapeutic targets is a favorable strategy to achieve better therapeutic outcomes in cancer and inflammatory diseases. Codelivery is a subfield of drug delivery that aims to achieve combined delivery of diverse therapeutic cargoes within the same delivery system, thereby ensuring delivery to the same site and providing an opportunity to tailor the release kinetics as desired. Among the wide range of materials being investigated in the design of codelivery systems, lipids have stood out on account of their low toxicity, biocompatibility, and ease of formulation scale-up. This review highlights the advances of the last decade in lipid-based codelivery systems focusing on the codelivery of drug-drug, drug-nucleic acid, nucleic acid-nucleic acid, and protein therapeutic-based combinations for targeted therapy in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Chinmay M. Jogdeo
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Sudipta Panja
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Shrey Kanvinde
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Ekta Kapoor
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Kasturi Siddhanta
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - David Oupický
- Center for Drug Delivery and NanomedicineDepartment of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaNE68198USA
| |
Collapse
|
3
|
Dziadkowiak E, Baczyńska D, Wieczorek M, Olbromski M, Moreira H, Mrozowska M, Budrewicz S, Dzięgiel P, Barg E, Koszewicz M. miR-31-5p as a Potential Circulating Biomarker and Tracer of Clinical Improvement for Chronic Inflammatory Demyelinating Polyneuropathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2305163. [PMID: 37077658 PMCID: PMC10110370 DOI: 10.1155/2023/2305163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 04/21/2023]
Abstract
Background MicroRNAs are endogenous, small noncoding RNA molecules that play a pivotal role in the regulation of gene expression. MicroRNAs are involved in many biological processes such as proliferation, cell differentiation, neovascularization, and apoptosis. Studies on microRNA expression may contribute to a better understanding of the pathomechanism of chronic inflammatory demyelinating polyneuropathy (CIDP) and consequently enable the development of new therapeutic measures using antisense miRNAs (antagomirs). In this study, we evaluated the level of miR-31-5p in the serum of patients with CIDP and its correlation with the miR-31-5p level and clinical presentation and electrophysiological and biochemical parameters. Methods The study group consisted of 48 patients, mean age 61.60 ± 11.76, who fulfilled the diagnostic criteria of a typical variant of CIDP. The expression of miR-31-5p in patient serum probes was investigated by droplet digital PCR. The results were correlated with neurophysiological findings and the patient's clinical and biochemical parameters. Results The mean copy number of miRNA-31 in 100 μl serum was 1288.64 ± 2001.02 in the CIDP group of patients, while in the control group, it was 3743.09 ± 4026.90. There was a significant positive correlation (0.426) between IgIV treatment duration and miR-31-5p expression. Patients without IgIV treatment showed significantly lower levels of miR-31 compared to the treated group (259.44 ± 304.02 vs. 1559.48 ± 2168.45; p = 0.002). The group of patients with body weight > 80 kg showed statistically significantly lower levels of miRNA-31-5p than the patients with lower body weight (934.37 ± 1739.66 vs. 1784.62 ± 2271.62, respectively; p = 0.014). Similarly, the patients with elevated cerebrospinal fluid (CSF) protein levels had significantly higher miRNA-31-5p expression than those with normal protein levels (1393.93 ± 1932.27 vs. 987.38 ± 2364.10, respectively; p = 0.044). Conclusion The results may support the hypothesis that miR-31-5p is strongly involved in the autoimmune process in CIDP. The positive correlation between higher miR-31-5p levels and duration of IVIg treatment may be an additional factor explaining the efficacy of prolonged IVIg therapy in CIDP.
Collapse
Affiliation(s)
- Edyta Dziadkowiak
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, Wroclaw, Poland
| | - Małgorzata Wieczorek
- Faculty of Earth Sciences and Environmental Management, University of Wroclaw, Uniwersytecki 1, 50-137 Wroclaw, Poland
| | - Mateusz Olbromski
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Monika Mrozowska
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Sławomir Budrewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubinskiego 6a, 50-368 Wroclaw, Poland
| | - Ewa Barg
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Magdalena Koszewicz
- Department of Neurology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Suvarna V, Deshmukh K, Murahari M. miRNA and antisense oligonucleotide-based α-synuclein targeting as disease-modifying therapeutics in Parkinson's disease. Front Pharmacol 2022; 13:1034072. [PMID: 36506536 PMCID: PMC9728483 DOI: 10.3389/fphar.2022.1034072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is the synaptic protein majorly involved in neuronal dysfunction and death and it is well known for the last two decades as a hallmark of Parkinson's disease. Alpha-synuclein is involved in neurodegeneration mediated through various neurotoxic pathways, majorly including autophagy or lysosomal dysregulation, mitochondrial disruption, synaptic dysfunction, and oxidative stress. Moreover, the alpha-synuclein aggregation has been associated with the development of several neurodegenerative conditions such as various forms of Parkinson's disease. The recent discovery in oligonucleotide chemistry has developed potential alpha-synuclein targeting molecules for the treatment of neurodegenerative diseases. The present review article focuses on recent advances in the applications of oligonucleotides acting via alpha-synuclein targeting mechanisms and their implication in combating Parkinson's disease. Moreover, the article emphasizes the potential of miRNAs, and antisense oligonucleotides and the challenges associated with their use in the therapeutical management of Parkinson's disease.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kajal Deshmukh
- Department of Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India,*Correspondence: Manikanta Murahari,
| |
Collapse
|
5
|
Khan I, Preeti K, Fernandes V, Khatri DK, Singh SB. Role of MicroRNAs, Aptamers in Neuroinflammation and Neurodegenerative Disorders. Cell Mol Neurobiol 2022; 42:2075-2095. [PMID: 33934227 DOI: 10.1007/s10571-021-01093-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Exploring the microRNAs and aptamers for their therapeutic role as biological drugs has expanded the horizon of its applicability against various human diseases, explicitly targeting the genetic materials. RNA-based therapeutics are widely being explored for the treatment and diagnosis of multiple diseases, including neurodegenerative disorders (NDD). Latter includes microRNA, aptamers, ribozymes, and small interfering RNAs (siRNAs), which control the gene expression mainly at the transcriptional strata. One RNA transcript translates into different protein types; hence, therapies targeted at the transcriptional sphere may have prominent and more extensive effects than alternative therapeutics. Unlike conventional gene therapy, RNAs, upon delivery, can either altogether abolish or alter the synthesis of the protein of interest, therefore, regulating their activities in a controlled and diverse manner. NDDs like Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, Prion disease, and others are characterized by deposition of misfolded protein such as amyloid-ß, tau, α-synuclein, huntingtin and prion proteins. Neuroinflammation, one of the perquisites for neurodegeneration, is induced during neurodegenerative pathogenesis. In this review, we discuss microRNAs and aptamers' role as two different RNA-based approaches for their unique ability to regulate protein production at the transcription level, hence offering many advantages over other biologicals. The microRNA acts either by alleviating the malfunctioning RNA expression or by working as a replacement to lost microRNA. On the contrary, aptamer act as a chemical antibody and forms an aptamer-target complex.
Collapse
Affiliation(s)
- Islauddin Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, Hyderabad, Telangana, 500037, India.
| |
Collapse
|
6
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
7
|
Valverde A, Seal A, Nares S, Shukla D, Naqvi AR. Human herpesvirus-encoded MicroRNA in host-pathogen interaction. Adv Biol Regul 2021; 82:100829. [PMID: 34560402 DOI: 10.1016/j.jbior.2021.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/28/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Human herpesviruses (HHV) are ubiquitous, linear dsDNA viruses that establish lifelong latency, disrupted by sporadic reactivation. HHV have evolved diverse ingenious mechanisms to evade robust host defenses. Incorporation of unique stem loop sequences that generate viral microRNAs (v-miRs) exemplifies one such evolutionary adaptation in HHV. These noncoding RNAs can control cellular and viral transcriptomes highlighting their ability in shaping host-HHV interactions. We summarize recent developments in functional characterization of HHV-encoded miRNAs in shaping the outcome of host-pathogen interaction. Non-immunogenic dissemination of v-miRs through exosomes confer added advantage to HHV in incessant modulation of host microenvironment. This review delineates the mechanistic role of v-miRs in facilitating viral persistence and tropism by targeting genes associated with cellular (apoptosis, angiogenesis, cell migration, etc.) and viral life cycle (latency, lytic and reactivation). Burgeoning evidences indicate plausible association of v-miRs in various immune-mediated diseases (nasopharyngeal carcinoma, neurological disorders, periodontal diseases, etc.) and herpesvirus-related malignancies indicating their broad-spectrum impact on host cellular pathways. We propose to exploit tisssue and systemic levels of v-miRs as diagnostic and prognostic markers for cancers and immune-mediated diseases. Therapeutic targeting of v-miRs will advance the promising outcomes of preclinical discoveries to bedside application.
Collapse
Affiliation(s)
- Araceli Valverde
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Alexandra Seal
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Salvador Nares
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States
| | - Deepak Shukla
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States; Department of Ophthalmology and Visual Sciences, University of Illinois Medical Center, Chicago, IL, United States
| | - Afsar Raza Naqvi
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, United States.
| |
Collapse
|
8
|
The Role of Oxidative Stress and the Importance of miRNAs as Potential Biomarkers in the Development of Age-Related Macular Degeneration. Processes (Basel) 2021. [DOI: 10.3390/pr9081328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Age-related macular degeneration (AMD) is the primary cause of blindness in developed countries. With the progressive aging of the population, AMD is a significant ophthalmological problem in the population over 50 years of age. The etiology of AMD is known to be based on various biochemical, immunological and molecular pathways and to be influenced by a range of genetic and environmental elements. This review provides an overview of the pathophysiological role of oxidative stress and free radicals in the retina with a special focus on the DNA repair efficiency and enzymatic antioxidant defense. It also presents a correlation between miRNA profile and AMD, and indicates their involvement in inflammation, angiogenesis, increased oxidation of cellular components, enzymatic antioxidant capacity and DNA repair efficiency, which play particularly important roles in AMD pathogenesis. Gene silencing by miRNAs can induce changes in antioxidant enzymes, leading to a complex interplay between redox imbalance by free radicals and miRNAs in modulating cellular redox homeostasis.
Collapse
|
9
|
Marini F, Brandi ML. Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy. Int J Mol Sci 2021; 22:ijms22147352. [PMID: 34298972 PMCID: PMC8306915 DOI: 10.3390/ijms22147352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare autosomal dominant inherited multiple cancer syndrome of neuroendocrine tissues. Tumors are caused by an inherited germinal heterozygote inactivating mutation of the MEN1 tumor suppressor gene, followed by a somatic loss of heterozygosity (LOH) of the MEN1 gene in target neuroendocrine cells, mainly at parathyroids, pancreas islets, and anterior pituitary. Over 1500 different germline and somatic mutations of the MEN1 gene have been identified, but the syndrome is completely missing a direct genotype-phenotype correlation, thus supporting the hypothesis that exogenous and endogenous factors, other than MEN1 specific mutation, are involved in MEN1 tumorigenesis and definition of individual clinical phenotype. Epigenetic factors, such as microRNAs (miRNAs), are strongly suspected to have a role in MEN1 tumor initiation and development. Recently, a direct autoregulatory network between miR-24, MEN1 mRNA, and menin was demonstrated in parathyroids and endocrine pancreas, showing a miR-24-induced silencing of menin expression that could have a key role in initiation of tumors in MEN1-target neuroendocrine cells. Here, we review the current knowledge on the post-transcriptional regulation of MEN1 and menin expression by miR-24, and its possible direct role in MEN1 syndrome, describing the possibility and the potential approaches to target and silence this miRNA, to permit the correct expression of the wild type menin, and thereby prevent the development of cancers in the target tissues.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/pharmacology
- Antagomirs/therapeutic use
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 9/genetics
- DNA Damage
- Feedback, Physiological
- Forecasting
- Gene Expression Regulation, Neoplastic
- Gene Regulatory Networks
- Genetic Therapy
- Humans
- MicroRNAs/genetics
- Molecular Targeted Therapy
- Multiple Endocrine Neoplasia Type 1/genetics
- Multiple Endocrine Neoplasia Type 1/metabolism
- Multiple Endocrine Neoplasia Type 1/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasms/genetics
- Neoplasms/metabolism
- Neoplasms/pathology
- Protein Isoforms/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- Rats
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
| | - Maria Luisa Brandi
- F.I.R.M.O., Italian Foundation for the Research on Bone Diseases, Via Reginaldo Giuliani 195/A, 50141 Florence, Italy
- Correspondence: or ; Tel.: +39-055-23-36-663
| |
Collapse
|
10
|
An Integrated Transcriptomic Approach to Identify Molecular Markers of Calcineurin Inhibitor Nephrotoxicity in Pediatric Kidney Transplant Recipients. Int J Mol Sci 2021; 22:ijms22115414. [PMID: 34063776 PMCID: PMC8196602 DOI: 10.3390/ijms22115414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023] Open
Abstract
Calcineurin inhibitors are highly efficacious immunosuppressive agents used in pediatric kidney transplantation. However, calcineurin inhibitor nephrotoxicity (CNIT) has been associated with the development of chronic renal allograft dysfunction and decreased graft survival. This study evaluated 37 formalin-fixed paraffin-embedded biopsies from pediatric kidney transplant recipients using gene expression profiling. Normal allograft samples (n = 12) served as negative controls and were compared to biopsies exhibiting CNIT (n = 11). The remaining samples served as positive controls to validate CNIT marker specificity and were characterized by other common causes of graft failure such as acute rejection (n = 7) and interstitial fibrosis/tubular atrophy (n = 7). MiRNA profiles served as the platform for data integration. Oxidative phosphorylation and mitochondrial dysfunction were the top molecular pathways associated with overexpressed genes in CNIT samples. Decreased ATP synthesis was identified as a significant biological function in CNIT, while key toxicology pathways included NRF2-mediated oxidative stress response and increased permeability transition of mitochondria. An integrative analysis demonstrated a panel of 13 significant miRNAs and their 33 CNIT-specific gene targets involved with mitochondrial activity and function. We also identified a candidate panel of miRNAs/genes, which may serve as future molecular markers for CNIT diagnosis as well as potential therapeutic targets.
Collapse
|
11
|
Mercurio S, Cauteruccio S, Manenti R, Candiani S, Scarì G, Licandro E, Pennati R. miR-7 Knockdown by Peptide Nucleic Acids in the Ascidian Ciona intestinalis. Int J Mol Sci 2019; 20:ijms20205127. [PMID: 31623150 PMCID: PMC6829576 DOI: 10.3390/ijms20205127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Peptide Nucleic Acids (PNAs) are synthetic mimics of natural oligonucleotides, which bind complementary DNA/RNA strands with high sequence specificity. They display numerous advantages, but in vivo applications are still rare. One of the main drawbacks of PNAs application is the poor cellular uptake that could be overcome by using experimental models, in which microinjection techniques allow direct delivery of molecules into eggs. Thus, in this communication, we investigated PNAs efficiency in miR-7 downregulation and compared its effects with those obtained with the commercially available antisense molecule, Antagomir (Dharmacon) in the ascidian Ciona intestinalis. Ascidians are marine invertebrates closely related to vertebrates, in which PNA techniques have not been applied yet. Our results suggested that anti-miR-7 PNAs were able to reach their specific targets in the developing ascidian embryos with high efficiency, as the same effects were obtained with both PNA and Antagomir. To the best of our knowledge, this is the first evidence that unmodified PNAs can be applied in in vivo knockdown strategies when directly injected into eggs.
Collapse
Affiliation(s)
- Silvia Mercurio
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Silvia Cauteruccio
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Simona Candiani
- Department of Earth Science, Environment and Life, Università degli Studi di Genova, 16126 Genova, Italy.
| | - Giorgio Scarì
- Department of Biosciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Emanuela Licandro
- Department of Chemistry, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Roberta Pennati
- Department of Environmental Science and Policy, Università degli Studi di Milano, 20133 Milano, Italy.
| |
Collapse
|
12
|
Reigada D, Calderón-García AÁ, Soto-Catalán M, Nieto-Díaz M, Muñoz-Galdeano T, Del Águila Á, Maza RM. MicroRNA-135a-5p reduces P2X 7 -dependent rise in intracellular calcium and protects against excitotoxicity. J Neurochem 2019; 151:116-130. [PMID: 30924927 DOI: 10.1111/jnc.14700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 01/01/2023]
Abstract
Excitotoxic cell death because of the massive release of glutamate and ATP contributes to the secondary extension of cellular and tissue loss following traumatic spinal cord injury (SCI). Evidence from blockage experiments suggests that over-expression and activation of purinergic receptors, especially P2X7 , produces excitotoxicity in neurodegenerative diseases and trauma of the central nervous system. We hypothesize that the down-regulation of specific miRNAs after the SCI contributes to the over-expression of P2X7 and that restorative strategies can be used to reduce the excitotoxic response. In the present study, we have employed bioinformatic analyses to identify microRNAs whose down-regulation following SCI can be responsible for P2X7 over-expression and excitotoxic activity. Additional luciferase assays validated microRNA-135a-5p (miR-135a) as a posttranscriptional modulator of P2X7 . Moreover, gene expression analysis in spinal cord samples from a rat SCI model confirmed that the decrease in miR-135a expression correlated with P2X7 over-expression after injury. Transfection of cultures of Neuro-2a neuronal cell line with a miR-135a inhibitory sequences (antagomiR-135a), simulating the reduction of miR-135a observed after SCI, resulted in the increase of P2X7 expression and the subsequent ATP-dependent rise in intracellular calcium concentration. Conversely, a restorative strategy employing miR-135a mimicked reduced P2X7 expression, attenuating the increase in intracellular calcium concentration that depends on this receptor and protecting cells from excitotoxic death. Therefore, we conclude that miR-135a is a potential therapeutic target for SCI and that restoration of its expression may reduce the deleterious effects of ATP-dependent excitotoxicity induced after a traumatic spinal cord injury.
Collapse
Affiliation(s)
- David Reigada
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Andrés Ángel Calderón-García
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain.,Instituto de Neurociencias de Castilla y León (INCYL), Faculty of Medicine, University of Salamanca. Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Manuel Soto-Catalán
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Teresa Muñoz-Galdeano
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| | - Ángela Del Águila
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Rodrigo M Maza
- Molecular Neuroprotection Group, Hospital Nacional de Parapléjicos, Servicio de Salud de Castilla La Mancha (SESCAM), Toledo, Spain
| |
Collapse
|
13
|
Wang Y, Yang HM, Cao W, Li YB, Wang ZY. Deep sequencing identification of miRNAs in pigeon ovaries illuminated with monochromatic light. BMC Genomics 2018; 19:446. [PMID: 29884125 PMCID: PMC5994017 DOI: 10.1186/s12864-018-4831-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/29/2018] [Indexed: 11/26/2022] Open
Abstract
Background The use of light of different wavelengths has grown popular in the poultry industry. An optimum wavelength is believed to improve pigeon egg production, but little is known about the role of microRNAs (miRNAs) in the effects of monochromatic light on ovarian pigeon function. Herein, we harvested ovaries from pigeons reared under monochromatic light of different wavelength and performed deep sequencing on various tissues using an Illumina Solexa high-throughput instrument. Results We obtained 66,148,548, 67,873,805, and 71,661,771 clean reads from ovaries of pigeons reared under red light (RL), blue light (BL), and white light (WL), respectively. We identified 1917 known miRNAs in nine libraries, of which 524 were novel. Three and five differentially expressed miRNAs were identified in BL vs. WL and RL vs. WL groups, respectively. Quantitative reverse transcription PCR was used to validate differentially expressed miRNAs (miR-200, miR-122, and miR-205b). In addition, 5824 target genes were annotated as differentially expressed miRNAs, most of which are involved in reproductive pathways including oestrogen signalling, cell cycle, and oocyte maturation. Notably, ovarian miR-205b expression was significantly negatively correlated with its target 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1). Conclusions miRNA–mRNA network analysis suggests that miR-205b targeting of HSD11B1 plays a key role in the effects of monochromatic light on pigeon egg production. These findings indicate that monochromatic light shortens the oviposition interval of pigeons, which may be useful for egg production and pigeon breeding. Electronic supplementary material The online version of this article (10.1186/s12864-018-4831-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Hai-Ming Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China.
| | - Wei Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Yang-Bai Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| | - Zhi-Yue Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province, 225009, People's Republic of China
| |
Collapse
|
14
|
Zhang L, Zhang X, Zhang X, Lu Y, Li L, Cui S. MiRNA-143 mediates the proliferative signaling pathway of FSH and regulates estradiol production. J Endocrinol 2017; 234:1-14. [PMID: 28649090 DOI: 10.1530/joe-16-0488] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022]
Abstract
MicroRNAs (MiRNAs) play important regulatory roles in many cellular processes. MiR-143 is highly enriched in the mouse ovary, but its roles and underlying mechanisms are not well understood. In the current study, we show that miR-143 is located in granulosa cells of primary, secondary and antral follicles. To explore the specific functions of miR-143, we transfected miR-143 inhibitor into primary cultured granulosa cells to study the loss of function of miR-143 and the results showed that miR-143 silencing significantly increased estradiol production and steroidogenesis-related gene expression. Moreover, our in vivo and in vitro studies showed that follicular stimulating hormone (FSH) significantly decreased miR-143 expression. This function of miR-143 is accomplished by its binding to the 3'-UTR of KRAS mRNA. Furthermore, our results demonstrated that miR-143 acts as a negative regulating molecule mediating the signaling pathway of FSH and affecting estradiol production by targeting KRAS. MiR-143 also negatively acts in regulating granulosa cells proliferation and cell cycle-related genes expression. These findings indicate that miR-143 plays vital roles in FSH-induced estradiol production and granulosa cell proliferation, providing a novel mechanism that involves miRNA in regulating granulosa cell functions.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - XiaoXin Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuejing Zhang
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - Yu Lu
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Sheng Cui
- State Key Laboratory of AgrobiotechnologyCollege of Biological Sciences, China Agricultural University, People's Republic of China
| |
Collapse
|
15
|
Monitoring integrity and localization of modified single-stranded RNA oligonucleotides using ultrasensitive fluorescence methods. PLoS One 2017; 12:e0173401. [PMID: 28278199 PMCID: PMC5344492 DOI: 10.1371/journal.pone.0173401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Short single-stranded oligonucleotides represent a class of promising therapeutics with diverse application areas. Antisense oligonucleotides, for example, can interfere with various processes involved in mRNA processing through complementary base pairing. Also RNA interference can be regulated by antagomirs, single-stranded siRNA and single-stranded microRNA mimics. The increased susceptibility to nucleolytic degradation of unpaired RNAs can be counteracted by chemical modification of the sugar phosphate backbone. In order to understand the dynamics of such single-stranded RNAs, we investigated their fate after exposure to cellular environment by several fluorescence spectroscopy techniques. First, we elucidated the degradation of four differently modified, dual-dye labeled short RNA oligonucleotides in HeLa cell extracts by fluorescence correlation spectroscopy, fluorescence cross-correlation spectroscopy and Förster resonance energy transfer. We observed that the integrity of the oligonucleotide sequence correlates with the extent of chemical modifications. Furthermore, the data showed that nucleolytic degradation can only be distinguished from unspecific effects like aggregation, association with cellular proteins, or intramolecular dynamics when considering multiple measurement and analysis approaches. We also investigated the localization and integrity of the four modified oligonucleotides in cultured HeLa cells using fluorescence lifetime imaging microscopy. No intracellular accumulation could be observed for unmodified oligonucleotides, while completely stabilized oligonucleotides showed strong accumulation within HeLa cells with no changes in fluorescence lifetime over 24 h. The integrity and accumulation of partly modified oligonucleotides was in accordance with their extent of modification. In highly fluorescent cells, the oligonucleotides were transported to the nucleus. The lifetime of the RNA in the cells could be explained by a balance between release of the oligonucleotides from endosomes, degradation by RNases and subsequent depletion from the cells.
Collapse
|
16
|
Guo L, Xu K, Yan H, Feng H, Wang T, Chai L, Xu G. MicroRNA expression signature and the therapeutic effect of the microRNA‑21 antagomir in hypertrophic scarring. Mol Med Rep 2017; 15:1211-1221. [PMID: 28075443 PMCID: PMC5367369 DOI: 10.3892/mmr.2017.6104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Hypertrophic scars (HS) area fibroproliferative disorder of the skin, which causes aesthetic and functional impairment. However, the molecular pathogenesis of this disease remains largely unknown and currently no efficient treatment exists. MicroRNAs (miRNAs) are involved in a variety of pathophysiological processes, however the role of miRNAs in HS development remains unclear. To investigate the miRNA expression signature of HS, microarray analysis was performed and 152 miRNAs were observed to be differentially expressed in HS tissue compared with normal skin tissues. Of the miRNAs identified, miRNA‑21 (miR‑21) was significantly increased in HS tissues and hypertrophic scar fibroblasts (HSFBs) as determined by reverse transcription‑quantitative polymerase chain reaction analysis. It was also observed that, when miR‑21 in HSFBs was blocked through use of an antagomir, the phenotype of fibrotic fibroblasts in vitro was reversed, as demonstrated by growth inhibition, induction of apoptosis and suppressed expression of fibrosis‑associated genes collagen type I α 1 chain (COL1A1), COL1A2 and fibronectin. Furthermore, miR‑21 antagomir administration significantly reduced the severity of HS formation and decreased collagen deposition in a rabbit ear HS model. The total scar area and scar elevation index were calculated and were demonstrated to be significantly decreased in the treatment group compared with control rabbits. These results indicated that the miR‑21 antagomir has a therapeutic effect on HS and suggests that targeting miRNAs may be a successful and novel therapeutic strategy in the treatment of fibrotic diseases that are difficult to treat with existing methods.
Collapse
Affiliation(s)
- Liang Guo
- Department of Plastic Surgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan, Hubei 430070, P.R. China
| | - Kai Xu
- Department of Plastic Surgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan, Hubei 430070, P.R. China
| | - Hongbo Yan
- Department of Plastic Surgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan, Hubei 430070, P.R. China
| | - Haifeng Feng
- Department of Plastic Surgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan, Hubei 430070, P.R. China
| | - Tao Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, P.R. China
| | - Linlin Chai
- Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, Chongqing 400038, P.R. China
- Correspondence to: Dr Linlin Chai, Department of Plastic and Reconstructive Surgery, Southwestern Hospital, Third Military Medical University, 29 Gaotanyan Main Street, Shapingba, Chongqing 400038, P.R. China, E-mail:
| | - Guozheng Xu
- Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, Wuhan, Hubei 430070, P.R. China
- Professor Guozheng Xu, Department of Neurosurgery, Wuhan General Hospital of Guangzhou Military Command of Chinese PLA, 627 Wuluo Street, Hongshan, Wuhan, Hubei 430070, P.R. China, E-mail:
| |
Collapse
|
17
|
Mercey O, Popa A, Cavard A, Paquet A, Chevalier B, Pons N, Magnone V, Zangari J, Brest P, Zaragosi LE, Ponzio G, Lebrigand K, Barbry P, Marcet B. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett 2017; 591:693-705. [PMID: 28192603 PMCID: PMC5363356 DOI: 10.1002/1873-3468.12595] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 01/13/2023]
Abstract
miR‐34/449 microRNAs are conserved regulators of multiciliated cell differentiation. Here, we evidence and characterize expression of two isomiR variant sequences from the miR‐34/449 family in human airway epithelial cells. These isomiRs differ from their canonical counterparts miR‐34b and miR‐449c by one supplemental uridine at their 5′‐end, leading to a one‐base shift in their seed region. Overexpression of canonical miR‐34/449 or 5′‐isomiR‐34/449 induces distinct gene expression profiles and biological effects. However, some target transcripts and functional activities are shared by both canonical microRNAs and isomiRs. Indeed, both repress important targets that result in cell cycle blockage and Notch pathway inhibition. Our findings suggest that 5′‐isomiR‐34/449 may represent additional mechanisms by which miR‐34/449 family finely controls several pathways to drive multiciliogenesis.
Collapse
Affiliation(s)
- Olivier Mercey
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Alexandra Popa
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Amélie Cavard
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Agnès Paquet
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Benoît Chevalier
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Nicolas Pons
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Virginie Magnone
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Joséphine Zangari
- CNRS, INSERM, IRCAN, FHU-OncoAge, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Patrick Brest
- CNRS, INSERM, IRCAN, FHU-OncoAge, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | | | - Gilles Ponzio
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Kevin Lebrigand
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Pascal Barbry
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| | - Brice Marcet
- CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
18
|
Zununi Vahed S, Salehi R, Davaran S, Sharifi S. Liposome-based drug co-delivery systems in cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1327-1341. [DOI: 10.1016/j.msec.2016.11.073] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
|
19
|
Ambrosino N, Casaburi R, Chetta A, Clini E, Donner CF, Dreher M, Goldstein R, Jubran A, Nici L, Owen CA, Rochester C, Tobin MJ, Vagheggini G, Vitacca M, ZuWallack R. 8th international conference on management and rehabilitation of chronic respiratory failure: the long summaries – part 1. Multidiscip Respir Med 2015. [PMCID: PMC4595244 DOI: 10.1186/s40248-015-0026-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This paper summarizes the Part 1 of the proceedings of the 8th International Conference on Management and Rehabilitation of Chronic Respiratory Failure, held in Pescara, Italy, on 7 and 8 May, 2015. It summarizes the contributions from numerous experts in the field of chronic respiratory disease and chronic respiratory failure. The outline follows the temporal sequence of presentations. This paper (Part 1) includes sections regarding: Advances in Asthma and COPD Therapy (Novel Therapeutic Targets for Asthma: Proteinases, Blood Biomarker Changes in COPD Patients); The problem of Hospital Re-Admission following Discharge after the COPD Exacerbation (Characteristics of the Hospitalized COPD Patient, Reducing Hospital Readmissions Following COPD Exacerbation).
Collapse
|
20
|
Di Gioia S, Trapani A, Castellani S, Carbone A, Belgiovine G, Craparo EF, Puglisi G, Cavallaro G, Trapani G, Conese M. Nanocomplexes for gene therapy of respiratory diseases: Targeting and overcoming the mucus barrier. Pulm Pharmacol Ther 2015; 34:8-24. [PMID: 26192479 DOI: 10.1016/j.pupt.2015.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/04/2015] [Accepted: 07/06/2015] [Indexed: 12/21/2022]
Abstract
Gene therapy, i.e. the delivery and expression of therapeutic genes, holds great promise for congenital and acquired respiratory diseases. Non-viral vectors are less toxic and immunogenic than viral vectors, although they are characterized by lower efficiency. However, they have to overcome many barriers, including inflammatory and immune mediators and cells. The respiratory and airway epithelial cells, the main target of these vectors, are coated with a layer of mucus, which hampers the effective reaching of gene therapy vectors carrying either plasmid DNA or small interfering RNA. This barrier is thicker in many lung diseases, such as cystic fibrosis. This review summarizes the most important advancements in the field of non-viral vectors that have been achieved with the use of nanoparticulate (NP) systems, composed either of polymers or lipids, in the lung gene delivery. In particular, different strategies of targeting of respiratory and airway lung cells will be described. Then, we will focus on the two approaches that attempt to overcome the mucus barrier: coating of the nanoparticulate system with poly(ethylene glycol) and treatment with mucolytics. Our conclusions are: 1) Ligand and physical targeting can direct therapeutic gene expression in specific cell types in the respiratory tract; 2) Mucopenetrating NPs are endowed with promising features to be useful in treating respiratory diseases and should be now advanced in pre-clinical trials. Finally, we discuss the development of such polymer- and lipid-based NPs in the context of in vitro and in vivo disease models, such as lung cancer, as well as in clinical trials.
Collapse
Affiliation(s)
- Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Annalucia Carbone
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy; Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 12, 20122 Milan, Italy
| | - Giuliana Belgiovine
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy
| | - Emanuela Fabiola Craparo
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanni Puglisi
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale A. Doria, 6, 95125 Catania, Italy
| | - Gennara Cavallaro
- Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biocompatible Polymers, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona, 4, 70125 Bari, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Viale L. Pinto 1, 71122 Foggia, Italy.
| |
Collapse
|
21
|
Rosli N, Christie MP, Moyle PM, Toth I. Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorg Med Chem 2015; 23:2470-9. [DOI: 10.1016/j.bmc.2015.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
|
22
|
Panganiban RP, Vonakis BM, Ishmael FT, Stellato C. Coordinated post-transcriptional regulation of the chemokine system: messages from CCL2. J Interferon Cytokine Res 2015; 34:255-66. [PMID: 24697203 DOI: 10.1089/jir.2013.0149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The molecular cross-talk between epithelium and immune cells in the airway mucosa is a key regulator of homeostatic immune surveillance and is crucially involved in the development of chronic lung inflammatory diseases. The patterns of gene expression that follow the sensitization process occurring in allergic asthma and chronic rhinosinusitis and those present in the neutrophilic response of other chronic inflammatory lung diseases such as chronic obstructive pulmonary disease (COPD) are tightly regulated in their specificity. Studies exploring the global transcript profiles associated with determinants of post-transcriptional gene regulation (PTR) such as RNA-binding proteins (RBP) and microRNAs identified several of these factors as being crucially involved in controlling the expression of chemokines upon airway epithelial cell stimulation with cytokines prototypic of Th1- or Th2-driven responses. These studies also uncovered the participation of these pathways to glucocorticoids' inhibitory effect on the epithelial chemokine network. Unmasking the molecular mechanisms of chemokine PTR may likely uncover novel therapeutic strategies for the blockade of proinflammatory pathways that are pathogenetic for asthma, COPD, and other lung inflammatory diseases.
Collapse
Affiliation(s)
- Ronaldo P Panganiban
- 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine , Hershey, Pennsylvania
| | | | | | | |
Collapse
|
23
|
Dang K, Myers KA. The role of hypoxia-induced miR-210 in cancer progression. Int J Mol Sci 2015; 16:6353-72. [PMID: 25809609 PMCID: PMC4394536 DOI: 10.3390/ijms16036353] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/23/2022] Open
Abstract
Prolonged hypoxia, the event of insufficient oxygen, is known to upregulate tumor development and growth by promoting the formation of a neoplastic environment. The recent discovery that a subset of cellular microRNAs (miRs) are upregulated during hypoxia, where they function to promote tumor development, highlights the importance of hypoxia-induced miRs as targets for continued investigation. miRs are short, non-coding transcripts involved in gene expression and regulation. Under hypoxic conditions, miR-210 becomes highly upregulated in response to hypoxia inducing factors (HIFs). HIF-1α drives miR-210’s overexpression and the resultant alteration of cellular processes, including cell cycle regulation, mitochondria function, apoptosis, angiogenesis and metastasis. Here we discuss hypoxia-induced dysregulation of miR-210 and the resultant changes in miR-210 protein targets that regulate cancer progression. Potential methods of targeting miR-210 as a therapeutic tool are also explored.
Collapse
Affiliation(s)
- Kyvan Dang
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences, 600 S. 43rd Str., Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Devulapally R, Paulmurugan R. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:40-60. [PMID: 23996830 PMCID: PMC3865230 DOI: 10.1002/wnan.1242] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/25/2013] [Accepted: 08/01/2013] [Indexed: 02/06/2023]
Abstract
Advances in nanotechnology have provided powerful and efficient tools in the development of cancer diagnosis and therapy. There are numerous nanocarriers that are currently approved for clinical use in cancer therapy. In recent years, biodegradable polymer nanoparticles have attracted a considerable attention for their ability to function as a possible carrier for target-specific delivery of various drugs, genes, proteins, peptides, vaccines, and other biomolecules in humans without much toxicity. This review will specifically focus on the recent advances in polymer-based nanocarriers for various drugs and small silencing RNA's loading and delivery to treat different types of cancer.
Collapse
Affiliation(s)
- Rammohan Devulapally
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, California 94304, USA
| |
Collapse
|
25
|
Wang JW, Li K, Hellermann G, Lockey RF, Mohapatra S, Mohapatra S. Regulating the Regulators: microRNA and Asthma. World Allergy Organ J 2013; 4:94-103. [PMID: 23282474 PMCID: PMC3651079 DOI: 10.1186/1939-4551-4-6-94] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
One obstacle to developing an effective therapeutic strategy to treat or prevent asthma is that the fundamental causes of asthma are not totally understood. Asthma is thought to be a chronic TH2 immune-mediated inflammatory disease. Epigenetic changes are recognized to play a role in the initiation and maintenance of a TH2 response. MicroRNAs (miRNAs) are key epigenetic regulators of gene expression, and their expression is highly regulated, therefore, deregulation of miRNAs may play an important role in the pathogenesis of asthma. Profiling circulating miRNA might provide the highest specificity and sensitivity to diagnose asthma; similarly, correcting potential defects in the miRNA regulation network may lead to new therapeutic modalities to treat this disease.
Collapse
Affiliation(s)
- Jia-Wang Wang
- Department of Internal Medicine Division of Translational Medicine and Nanomedicine Research Center1, and Division of Allergy and Immunology2, Department of Molecular Medicine3, University of South Florida College of Medicine, and James A. Haley VA Hospital and Medical Research Center4, Tampa, FL 33612
| | | | | | | | | | | |
Collapse
|
26
|
Rossi S, Di Narzo AF, Mestdagh P, Jacobs B, Bosman FT, Gustavsson B, Majoie B, Roth A, Vandesompele J, Rigoutsos I, Delorenzi M, Tejpar S. microRNAs in colon cancer: a roadmap for discovery. FEBS Lett 2012; 586:3000-7. [PMID: 23166923 DOI: 10.1016/j.febslet.2012.07.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer omics data are exponentially created and associated with clinical variables, and important findings can be extracted based on bioinformatics approaches which can then be experimentally validated. Many of these findings are related to a specific class of non-coding RNA molecules called microRNAs (miRNAs) (post-transcriptional regulators of mRNA expression). The related research field is quite heterogeneous and bioinformaticians, clinicians, statisticians and biologists, as well as data miners and engineers collaborate to cure stored data and on new impulses coming from the output of the latest Next Generation Sequencing technologies. Here we review the main research findings on miRNA of the first 10 years in colon cancer research with an emphasis on possible uses in clinical practice. This review intends to provide a road map in the jungle of publications of miRNA in colorectal cancer, focusing on data availability and new ways to generate biologically relevant information out of these huge amounts of data.
Collapse
Affiliation(s)
- Simona Rossi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hansbro PM, Scott GV, Essilfie AT, Kim RY, Starkey MR, Nguyen DH, Allen PD, Kaiko GE, Yang M, Horvat JC, Foster PS. Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opin Investig Drugs 2012; 22:49-69. [PMID: 23126660 DOI: 10.1517/13543784.2013.732997] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Asthma is a major disease burden worldwide. Treatment with steroids and long acting β-agonists effectively manage symptoms in many patients but do not treat the underlying cause of disease and have serious side effects when used long term and in children. Therapies targeting the underlying causes of asthma are urgently needed. T helper type 2 (Th2) cells and the cytokines they release are clinically linked to the presentation of all forms of asthma. They are the primary drivers of mild to moderate and allergic asthma. They also play a pathogenetic role in exacerbations and more severe asthma though other factors are also involved. Much effort using animal models and human studies has been dedicated to the identification of the pathogenetic roles of these cells and cytokines and whether inhibition of their activity has therapeutic benefit in asthma. AREAS COVERED We discuss the current status of Th2 cytokine antagonists for the treatment of asthma. We also discuss the potential for targeting Th2-inducing cytokines, Th2 cell receptors and signaling as well as the use of Th2 cell antagonists, small interfering oligonucleotides, microRNAs, and combination therapies. EXPERT OPINION Th2 antagonists may be most effective in particular asthma subtypes/endotypes where specific cytokines are known to be active through the analysis of biomarkers. Targeting common receptors and pathways used by these cytokines may have additional benefit. Animal models have been valuable in identifying therapeutic targets in asthma, however the results from such studies need to be carefully interpreted and applied to appropriately stratified patient cohorts in well-designed clinical studies and trials.
Collapse
Affiliation(s)
- Philip M Hansbro
- The University of Newcastle, Priority Research Centre for Asthma and Respiratory Disease and Hunter Medical Research Institute, Level 2, Kookaburra Circuit, New Lambton Heights, Newcastle, New South Wales, 2305, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Redlich K, Smolen JS. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat Rev Drug Discov 2012; 11:234-50. [PMID: 22378270 DOI: 10.1038/nrd3669] [Citation(s) in RCA: 556] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bone is a tissue undergoing continuous building and degradation. This remodelling is a tightly regulated process that can be disturbed by many factors, particularly hormonal changes. Chronic inflammation can also perturb bone metabolism and promote increased bone loss. Inflammatory diseases can arise all over the body, including in the musculoskeletal system (for example, rheumatoid arthritis), the intestine (for example, inflammatory bowel disease), the oral cavity (for example, periodontitis) and the lung (for example, cystic fibrosis). Wherever inflammatory diseases occur, systemic effects on bone will ensue, as well as increased fracture risk. Here, we discuss the cellular and signalling pathways underlying, and strategies for therapeutically interfering with, the inflammatory loss of bone.
Collapse
Affiliation(s)
- Kurt Redlich
- Division of Rheumatology, Department of Medicine 3, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | | |
Collapse
|
29
|
78495111110.1038/nrd3669" />
|
30
|
Jamieson NB, Morran DC, Morton JP, Ali A, Dickson EJ, Carter CR, Sansom OJ, Evans TRJ, McKay CJ, Oien KA. MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 2012; 18:534-45. [PMID: 22114136 DOI: 10.1158/1078-0432.ccr-11-0679] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE MicroRNAs (miRNA) have potential as diagnostic and prognostic biomarkers and as therapeutic targets in cancer. We sought to establish the relationship between miRNA expression and clinicopathologic parameters, including prognosis, in pancreatic ductal adenocarcinoma (PDAC). EXPERIMENTAL DESIGN Global miRNA microarray expression profiling of prospectively collected fresh-frozen PDAC tissue was done on an initial test cohort of 48 patients, who had undergone pancreaticoduodenectomy between 2003 and 2008 at a single institution. We evaluated association with tumor stage, lymph node status, and site of recurrence, in addition to overall survival, using Cox regression multivariate analysis. Validation of selected potentially prognostic miRNAs was done in a separate cohort of 24 patients. RESULTS miRNA profiling identified expression signatures associated with PDAC, lymph node involvement, high tumor grade, and 20 miRNAs were associated with overall survival. In the initial cohort of 48 PDAC patients, high expression of miR-21 (HR = 3.22, 95% CI: 1.21-8.58) and reduced expression of miR-34a (HR = 0.15, 95% CI: 0.06-0.37) and miR-30d (HR = 0.30, 95% CI: 0.12-0.79) were associated with poor overall survival following resection independent of clinical covariates. In a further validation set of 24 patients, miR-21 and miR-34a expression again significantly correlated with overall survival (P = 0.031 and P = 0.001). CONCLUSION Expression patterns of miRNAs are significantly altered in PDAC. Aberrant expression of a number of miRNAs was independently associated with reduced survival, including overexpression of miR-21 and underexpression of miR-34a. SUMMARY miRNA expression profiles for resected PDAC were examined to identify potentially prognostic miRNAs. miRNA microarray analysis identified statistically unique profiles, which could discriminate PDAC from paired nonmalignant pancreatic tissues as well as molecular signatures that differ according to pathologic features. miRNA expression profiles correlated with overall survival of PDAC following resection, indicating that miRNAs provide prognostic utility.
Collapse
Affiliation(s)
- Nigel B Jamieson
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Alexandra Parade, Glasgow, G31 2ER, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Velu CS, Grimes HL. Utilizing antagomiR (antisense microRNA) to knock down microRNA in murine bone marrow cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 928:185-95. [PMID: 22956143 DOI: 10.1007/978-1-62703-008-3_15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are highly conserved small RNAs which regulate gene expression primarily through base pairing to the 3' untranslated region of target messenger RNA (mRNA), leading to mRNA degradation or translation inhibition depending on the complementarity between the miRNA and target mRNA. Single miRNA regulates multiple target mRNA. miRNAs have been shown to regulate gene expression in the hematopoietic stem cells, as well as at key decision points for various lineages. However, aberrant expression of miRNAs has been documented in cancer and disease models. Rigorous dissection of miRNA pathways and biology requires facile loss of function modeling. This chapter describes detailed protocol for knockdown miRNA-21 which is involved in myelopoiesis using antagomiRs in primary murine bone marrow stem/progenitor cells.
Collapse
Affiliation(s)
- Chinavenmeni S Velu
- Immunobiology Division, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
32
|
Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release 2011; 161:554-65. [PMID: 22123560 DOI: 10.1016/j.jconrel.2011.11.014] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/10/2011] [Accepted: 11/13/2011] [Indexed: 01/22/2023]
Abstract
Gene therapy offers great opportunities for the treatment of severe diseases including cancer. In recent years the design of synthetic carriers for nucleic acid delivery has become a research field of increasing interest. Studies on the delivery of plasmid DNA (pDNA) have brought up a variety of gene delivery vehicles. The more recently emerged gene silencing strategy by the intracellular delivery of small interfering RNA (siRNA) takes benefit from existing expertise in pDNA transfer. Despite common properties however, delivery of siRNA also faces distinct challenges due to apparent differences in size, stability of the formed nucleic acid complexes, the location and mechanism of action. This review emphasizes the common aspects and main differences between pDNA and siRNA delivery, taking into consideration a wide spectrum of polymer-based, lipidic and peptide carriers. Challenges and opportunities which result from these differences as well as the recent progress made in the optimization of carrier design are presented.
Collapse
Affiliation(s)
- Claudia Scholz
- Pharmaceutical Biotechnology, Center for System-based Drug Research, and Center for NanoScience, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | |
Collapse
|
33
|
Xu S, Linher-Melville K, Yang BB, Wu D, Li J. Micro-RNA378 (miR-378) regulates ovarian estradiol production by targeting aromatase. Endocrinology 2011; 152:3941-51. [PMID: 21846797 PMCID: PMC3176644 DOI: 10.1210/en.2011-1147] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Estradiol is a steroid hormone that not only plays an important role in ovarian follicular development but also is associated with many reproductive disorders. Owing to the importance of aromatase in the production of estradiol, the regulation of aromatase gene expression at the transcriptional level has been an extensive area of study for over two decades. However, its regulation at the posttranscriptional level has remained unclear. Here, we show that micro-RNA378 (miR-378) is spatiotemporally expressed in porcine granulosa cells, the cells that generate estradiol in the ovary during follicular development, in an inverse manner compared with the expression of aromatase. In vitro overexpression and inhibition experiments revealed that aromatase expression, and therefore estradiol production, by granulosa cells, is posttranscriptionally down-regulated by miR-378. Furthermore, site-directed mutation studies identified two binding sites in the 3'-untranslated region (3'-UTR) of the aromatase coding sequence that are critical for the action of miR-378. Interestingly, overexpression of the aromatase 3'-UTR enhanced aromatase expression at the protein level in granulosa cells, possibly mediated by the binding of miR-378 within this region, thereby reducing the binding of this micro-RNA to the endogenous aromatase 3'-UTR.
Collapse
Affiliation(s)
- Shengyu Xu
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
34
|
Ganguli S, Mitra S, Datta A. Antagomirbase- a putative antagomir database. Bioinformation 2011; 7:41-3. [PMID: 21904438 PMCID: PMC3163932 DOI: 10.6026/97320630007041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 12/21/2010] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED The accurate prediction of a comprehensive set of messenger putative antagomirs against microRNAs (miRNAs) remains an open problem. In particular, a set of putative antagomirs against human miRNA is predicted in this current version of database. We have developed Antagomir database, based on putative antagomirs-miRNA heterodimers. In this work, the human miRNA dataset was used as template to design putative antagomirs, using GC content and secondary structures as parameters. The algorithm used predicted the free energy of unbound antagomirs. Although in its infancy the development of antagomirs, that can target cell specific genes or families of genes, may pave the way forward for the generation of a new class of therapeutics, to treat complex inflammatory diseases. Future versions need to incorporate further sequences from other mammalian homologues for designing of antagomirs for aid in research. AVAILABILITY The database is available for free at http://bioinfopresidencycollegekolkata.edu.in/antagomirs.html.
Collapse
Affiliation(s)
- Sayak Ganguli
- DBT-Centre for Bioinformatics, Presidency University, Kolkata – 700073
| | - Sanga Mitra
- DBT-Centre for Bioinformatics, Presidency University, Kolkata – 700073
| | - Abhijit Datta
- DBT-Centre for Bioinformatics, Presidency University, Kolkata – 700073
| |
Collapse
|
35
|
Abstract
Airway diseases such as allergic asthma and rhinitis are characterized by a T-helper type 2 (Th2) response. Treatment of allergic airway diseases is currently limited to drugs that relieve disease symptoms and inflammation. In the search for new therapeutics, efforts have been made to treat allergic airway disease with gene therapy, and many preclinical studies have demonstrated its impressive potential. Most strategies focus on blocking the expression of proinflammatory proteins or transcription factors involved in the disease pathogenesis using antisense oligonucleotides, DNAzymes, small interfering RNA, or blocking of microRNAs using antagomirs. Changing the Th1/Th2 balance by overexpressing Th1-stimulating factors is another treatment option. Although the proof of concept is convincing in animal models, progress in humans remains limited. In this review, we focus on preclinical models to describe the recent developments and major breakthroughs for treating allergic airway diseases with gene therapy.
Collapse
|
36
|
Collison A, Herbert C, Siegle JS, Mattes J, Foster PS, Kumar RK. Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med 2011; 11:29. [PMID: 21605405 PMCID: PMC3116478 DOI: 10.1186/1471-2466-11-29] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 05/23/2011] [Indexed: 02/06/2023] Open
Abstract
Background The role of microRNAs (miRNAs) in regulating gene expression is currently an area of intense interest. Relatively little is known, however, about the role of miRNAs in inflammatory and immunologically-driven disorders. In a mouse model, we have previously shown that miRNAs are potentially important therapeutic targets in allergic asthma, because inhibition of miR-126, one of a small subset of miRNAs upregulated in the airway wall, effectively suppressed Th2-driven airway inflammation and other features of asthma. In the present study, we extended investigation of the therapeutic potential of miRNA inhibition to our well-established model of chronic asthma. Methods Female BALB/c mice were systemically sensitised with ovalbumin (OVA) and chronically challenged with low mass concentrations of aerosolised OVA for up to 6 weeks. Airway tissue was obtained by blunt dissection and RNA was isolated for miRNA profiling. On the basis of the results obtained, animals were subsequently treated with either an antagomir to miR-126 (ant-miR-126) or a scrambled control antagomir once weekly during the 6 weeks of chronic challenge, and the effects on airway inflammation and remodelling were assessed using established morphometric techniques. Results Compared to naïve mice, there was selective upregulation of a modest number of miRNAs, notably miR-126, in the airway wall tissue of chronically challenged animals. The relative increase was maximal after 2 weeks of inhalational challenge and subsequently declined to baseline levels. Compared to treatment with the scrambled control, ant-miR-126 significantly reduced recruitment of intraepithelial eosinophils, but had no effect on the chronic inflammatory response, or on changes of airway remodelling. Conclusions In this model of chronic asthma, there was an initial increase in expression of a small number of miRNAs in the airway wall, notably miR-126. However, this later declined to baseline levels, suggesting that sustained changes in miRNA may not be essential for perpetuation of chronic asthma. Moreover, inhibition of miR-126 by administration of an antagomir suppressed eosinophil recruitment into the airways but had no effect on chronic inflammation in the airway wall, or on changes of remodelling, suggesting that multiple miRNAs are likely to regulate the development of these lesions.
Collapse
Affiliation(s)
- Adam Collison
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) are short synthetic single-stranded DNA sequences that bind to and induce the cleavage of homologous stretches of mRNA sequences. These result in targeted destruction of mRNA and correction of genetic aberrations. ASOs thus can act as drug molecules and potentially rectify many disease conditions. The broad range of applications reported in the literature highlights the advances in the field. AREAS COVERED This review covers different areas in which use of ASOs has been shown to have therapeutic effects. Some drugs in different stages of preclinical and clinical trials are discussed in detail. The problems faced and the strategies to surmount them are also described. The readers will gain an understanding of the recent developments in the field of ASOs with emphasis on their therapeutic applications. They will also become aware of the different strategies used for targeted delivery of ASOs and their stabilization, which may be useful for their work in this field, or in the area of nucleic acid therapeutics in general. EXPERT OPINION The design and application of ASOs for recognition of target mRNA sequences have become a fairly straightforward protocol. The main problem lies in designing ASOs which are stable in in vivo milieu. The delivery and bioavailability of the oligonucleotide to the site of action continue to be hurdles in the development of ASOs and therapeutic molecules.
Collapse
Affiliation(s)
- Ravinder Malik
- National Institute of Pharmaceutical Education and Research (NIPER), Department of Biotechnology , Sector 67, S.A.S. Nagar, Punjab 160 062 , India
| | | |
Collapse
|
38
|
Oligomeric nucleic acids as antivirals. Molecules 2011; 16:1271-96. [PMID: 21278679 PMCID: PMC6259927 DOI: 10.3390/molecules16021271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/12/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
Based on the natural functions and chemical characteristics of nucleic acids, a variety of novel synthetic drugs and tools to explore biological systems have become available in recent years. To date, a great number of antisense oligonucleotides, RNA interference-based tools, CpG-containing oligonucleotides, catalytic oligonucleotides, decoys and aptamers has been produced synthetically and applied successfully for understanding and manipulating biological processes and in clinical trials to treat a variety of diseases. Their versatility and potency make them equally suited candidates for fighting viral infections. Here, we describe the different types of nucleic acid-based antivirals, their mechanism of action, their advantages and limitations, and their future prospects.
Collapse
|
39
|
Wu W, Kaminski N. Chronic lung diseases. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:298-308. [PMID: 20835999 DOI: 10.1002/wsbm.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic lung diseases often have high morbidity and mortality rate and have posed a serious threat to human health. The incidence of many chronic lung diseases such as asthma has been on the rise in the past decade, which causes serious economic burden. Despite many efforts which employed traditional experimental approaches to elucidate the mechanisms of the diseases have been made, little is known about the pathogenesis of complex lung diseases. Systems biology approaches which aim to integrate and analyze information gathered from multiple sources offer a great opportunity to examine complex human diseases from a new angle. Many attempts have been made using high-throughput technologies such as microarrays to study chronic lung diseases; although compared with the full-fledged systems biology approach, research strategies employed in most of these investigations still have much room to improve, promising findings have already emerged from these efforts, which demonstrates the potential of implementing systems biology in pulmonary biomedical research.
Collapse
Affiliation(s)
- Wei Wu
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naftali Kaminski
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
40
|
Abstract
Asthma has been considered a T helper 2 (T(H)2) cell-associated inflammatory disease, and T(H)2-type cytokines, such as interleukin-4 (IL-4), IL-5 and IL-13, are thought to drive the disease pathology in patients. Although atopic asthma has a substantial T(H)2 cell component, the disease is notoriously heterogeneous, and recent evidence has suggested that other T cells also contribute to the development of asthma. Here, we discuss the roles of different T cell subsets in the allergic lung, consider how each subset can contribute to the development of allergic pathology and evaluate how we might manipulate these cells for new asthma therapies.
Collapse
Affiliation(s)
- Clare M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|
41
|
Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci 2010; 114:264-8. [PMID: 20953121 DOI: 10.1254/jphs.10r10fm] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in normal and diseased cell functions. The small-GTPase RhoA is one of the key proteins of bronchial smooth muscle (BSM) contraction, and an upregulation of RhoA has been demonstrated in BSMs of experimental asthma. Although the mechanism of RhoA upregulation in the diseased BSMs is not fully understood, recent observations suggest that RhoA translation is controlled by a miRNA, miR-133a, in cardiomyocytes. Similarly, in human BSM cells (hBSMCs), our recent studies revealed that an upregulation of RhoA was induced when the function of endogenous miR-133a was inhibited by its antagomir. Treatment of hBSMCs with interleukin-13 (IL-13) caused an upregulation of RhoA and a downregulation of miR-133a. In a mouse model of allergic bronchial asthma, increased expression of IL-13 and RhoA and the BSM hyperresponsiveness were observed. The level of miR-133a was significantly decreased in BSMs of the diseased animals. These findings suggest that RhoA expression is negatively regulated by miR-133a in BSMs and that the miR-133a downregulation causes an upregulation of RhoA, resulting in an augmentation of the contraction. MiR-133a might be a key regulator of BSM hyperresponsiveness and provide us with new insight into the treatment of airway hyperresponsiveness in asthmatics.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, Japan.
| | | |
Collapse
|
42
|
El Gazzar M, McCall CE. MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 2010; 285:20940-51. [PMID: 20435889 DOI: 10.1074/jbc.m110.115063] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We reported that gene-selective formation of facultative heterochromatin silences transcription of acute inflammatory genes during endotoxin (LPS) tolerance, according to function. We discovered that reversal of the epigenetically silenced transcription restored mRNA levels but not protein synthesis. Here, we find that translation repression of tumor necrosis factor-alpha (TNFalpha) occurs independent of transcription silencing during LPS tolerance. The process required to disrupt protein synthesis followed Toll-like receptor 4 (TLR4)-dependent induction of microRNA (miR)-221, miR-579, and miR-125b, which coupled with RNA-binding proteins TTP, AUF1, and TIAR at the 3'-untranslated region to arrest protein synthesis. TTP and AUF1 proteins linked to miR-221, whereas TIAR coupled with miR-579 and miR-125b. Functional inhibition of miR-221 prevented TNFalpha mRNA degradation, and blocking miR-579 and miR-125b precluded translation arrest. The functional specificity of the TNFalpha 3'-untranslated region was demonstrated using luciferase reporter with mutations in the three putative miRNA binding sites. Post-transcriptional silencing was gene-specific, because it did not affect production of the IkappaBalpha anti-inflammatory protein. These results suggest that TLR4-dependent reprogramming of inflammatory genes is regulated at two separate and distinct levels. The first level of control is mediated by epigenetic modifications at the promoters that control transcription. The second and previously unrecognized level of control is mediated by TLR4-dependent differential expression of miRNAs that exert post-transcriptional controls. The concept of distinct regulation of transcription and translation was confirmed in murine sepsis. We conclude that transcription- and translation-repressive events combine to tightly regulate pro-inflammatory genes during LPS tolerance, a common feature of severe systemic inflammation.
Collapse
Affiliation(s)
- Mohamed El Gazzar
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
43
|
Earle JSL, Luthra R, Romans A, Abraham R, Ensor J, Yao H, Hamilton SR. Association of microRNA expression with microsatellite instability status in colorectal adenocarcinoma. J Mol Diagn 2010; 12:433-40. [PMID: 20413677 DOI: 10.2353/jmoldx.2010.090154] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNA), small noncoding RNAs, are potential diagnostic and prognostic markers, as well as therapeutic targets. miRNA profiles of colorectal carcinomas have not been studied extensively in the context of microsatellite instability (MSI) status. We therefore evaluated 55 paired colorectal adenocarcinomas (CRC) and non-neoplastic mucosa samples using a panel of 24 miRNAs selected by literature review and prior studies in our laboratory. Stem-loop reverse transcriptase quantitative (real-time) polymerase chain reaction assays were done on RNA extracted from formalin-fixed, paraffin-embedded tissue of resection specimens. When miRNA expression was compared with clinicopathologic features and MSI status, eleven miRNAs (miR-183, -31, -20, -25, -92, -93, -17, -135a, -203, -133b, and -223) were over-expressed in CRC relative to mucosa, and nine (miR-192, -215, -26b, -143, -145, -191, -196a, -16, and let-7a) were under-expressed in CRC. Relative expression of miR-92, -223, -155, -196a, -31, and -26b were significantly different among MSI subgroups, and miR-31 and miR-223 were overexpressed in CRC of patients with hereditary non-polyposis colorectal cancer syndrome (Lynch syndrome). Our findings indicate that miRNA expression in CRC is associated with MSI subgroups, including low MSI and HNPCC-associated cancers, and that miRNAs may have posttranscriptional gene regulatory roles in these MSI subgroups and possible effects on the clinicopathologic and biomarker characteristics.
Collapse
Affiliation(s)
- Jonathan S L Earle
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, 8515 Fannin St, NAO1.061a, Houston, Texas 77054, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sirotkin AV, Lauková M, Ovcharenko D, Brenaut P, Mlyncek M. Identification of microRNAs controlling human ovarian cell proliferation and apoptosis. J Cell Physiol 2010; 223:49-56. [PMID: 20039279 DOI: 10.1002/jcp.21999] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous studies have shown that microRNAs (miRNAs) can control steroidogenesis in cultured granulosa cells. In this study we wanted to determine if miRNAs can also affect proliferation and apoptosis in human ovarian cells. The effect of transfection of cultured primary ovarian granulosa cells with 80 different constructs encoding human pre-miRNAs on the expression of the proliferation marker, PCNA, and the apoptosis marker, Bax was evaluated by immunocytochemistry. Eleven out of 80 tested miRNA constructs resulted in stimulation, and 53 miRNAs inhibited expression of PCNA. Furthermore, 11 of the 80 miRNAs tested promoted accumulation of Bax, while 46 miRNAs caused a reduction in Bax in human ovarian cells. In addition, two selected antisense constructs that block the corresponding miRNAs mir-15a and mir-188 were evaluated for their effects on expression of PCNA. An antisense construct inhibiting mir-15a (which precursor suppressed PCNA) increased PCNA, whereas an antisense construct for mir-188 (which precursor did not change PCNA) did not affect PCNA expression. Verification of effects of selected pre-mir-10a, mir-105, and mir-182 by using other markers of proliferation (cyclin B1) and apoptosis (TdT and caspase 3) confirmed specificity of miRNAs effects on these processes. This is the first direct demonstration of the involvement of miRNAs in controlling both proliferation and apoptosis by ovarian granulose cells, as well as the identification of miRNAs promoting and suppressing these processes utilizing a genome-wide miRNA screen.
Collapse
|
45
|
Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2010; 2:549-53. [PMID: 19892885 DOI: 10.1242/dmm.001719] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Childhood asthma is linked strongly to atopy and is characterised by a T helper 2 (Th2)-polarised immunological response. Epidemiological studies implicate severe lower respiratory tract viral infections, especially in early childhood, and repeated inhalational exposure to allergens as important synergistic factors in the development of asthma. The way in which these and other environmental factors induce stable alterations in phenotype is poorly understood, but may be explained on the basis of epigenetic changes, which are now recognised to underlie the establishment and maintenance of a Th2 response. Furthermore, ongoing asthmatic inflammation of the airways may be driven by alterations in the expression profile of regulatory microRNA genes, to which epigenetic mechanisms may also contribute. Thus, an understanding of epigenetic mechanisms in asthma has the potential to reveal new approaches for primary prevention or therapeutic intervention in childhood asthma.
Collapse
Affiliation(s)
- Rakesh K Kumar
- Department of Pathology, University of New South Wales, Sydney NSW, Australia.
| | | | | |
Collapse
|
46
|
Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A 2009; 106:18704-9. [PMID: 19843690 DOI: 10.1073/pnas.0905063106] [Citation(s) in RCA: 339] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Allergic asthma is an inflammatory disease of the lung characterized by abnormal T helper-2 (T(H)2) lymphocyte responses to inhaled antigens. The molecular mechanisms leading to the generation of T(H)2 responses remain unclear, although toll-like receptors (TLRs) present on innate immune cells play a pivotal role in sensing molecular patterns and in programming adaptive T cell responses. Here we show that in vivo activation of TLR4 by house dust mite antigens leads to the induction of allergic disease, a process that is associated with expression of a unique subset of small, noncoding microRNAs. Selective blockade of microRNA (miR)-126 suppressed the asthmatic phenotype, resulting in diminished T(H)2 responses, inflammation, airways hyperresponsiveness, eosinophil recruitment, and mucus hypersecretion. miR-126 blockade resulted in augmented expression of POU domain class 2 associating factor 1, which activates the transcription factor PU.1 that alters T(H)2 cell function via negative regulation of GATA3 expression. In summary, this study presents a functional connection between miRNA expression and asthma pathogenesis, and our data suggest that targeting miRNA in the airways may lead to anti-inflammatory treatments for allergic asthma.
Collapse
|
47
|
Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med 2009; 180:713-9. [PMID: 19644046 DOI: 10.1164/rccm.200903-0325oc] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Augmented bronchial smooth muscle (BSM) contraction is one of the causes of bronchial hyperresponsiveness. The protein RhoA and its downstream pathways have now been proposed as a new target for asthma therapy. MicroRNAs (miRNAs) play important roles in normal and diseased cell functions, and a contribution of miR-133 to RhoA expression has been suggested in cardiomyocytes. OBJECTIVES To make clear the mechanism(s) of up-regulation of RhoA observed in the BSMs of experimental asthma, the role of miR-133a in RhoA expression was tested. METHODS Total proteins and RNAs (containing miRNAs) were extracted from cultured human BSM cells (hBSMCs) that were treated with antagomirs and/or IL-13, and bronchial tissues of BALB/c mice that were sensitized and repeatedly challenged with ovalbumin. RhoA protein and miR-133a were detected by immunoblotting and quantified real-time reverse transcriptase-polymerase chain reaction, respectively. MEASUREMENTS AND MAIN RESULTS In hBSMCs, an up-regulation of RhoA was observed when the function of endogenous miR-133a was inhibited by its antagomir. Treatment of hBSMCs with IL-13 caused an up-regulation of RhoA and a down-regulation of miR-133a. In bronchial tissues of the repeatedly ovalbumin-challenged mice, a significant increase in RhoA was observed. Interestingly, the level of miR-133a was significantly decreased in BSMs of the challenged mice. CONCLUSIONS These findings suggest that RhoA expression is negatively regulated by miR-133a in BSMs. IL-13 might, at least in part, contribute to the reduction of miR-133a.
Collapse
Affiliation(s)
- Yoshihiko Chiba
- Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | | | | | | | | |
Collapse
|
48
|
Silencing viral microRNA as a novel antiviral therapy? J Biomed Biotechnol 2009; 2009:419539. [PMID: 19704916 PMCID: PMC2688686 DOI: 10.1155/2009/419539] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/20/2009] [Indexed: 12/16/2022] Open
Abstract
Viruses are intracellular parasites that ensure their existence by converting host cells into viral particle producing entities or into hiding places rendering the virus invisible to the host immune system. Some viruses may also survive by transforming the infected cell into an immortal tumour cell. MicroRNAs are small non-coding transcripts that function as posttranscriptional regulators of gene expression. Viruses encode miRNAs that regulate expression of both cellular and viral genes, and contribute to the pathogenic properties of viruses. Hence, neutralizing the action of viral miRNAs expression by complementary single-stranded oligonucleotides or so-called anti-miRNAs may represent a strategy to combat viral infections and viral-induced pathogenesis. This review describes the miRNAs encoded by human viruses, and discusses the possible therapeutic applications of anti-miRNAs against viral diseases.
Collapse
|
49
|
Li M, Marin-Muller C, Bharadwaj U, Chow KH, Yao Q, Chen C. MicroRNAs: control and loss of control in human physiology and disease. World J Surg 2009; 33:667-84. [PMID: 19030926 PMCID: PMC2933043 DOI: 10.1007/s00268-008-9836-x] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Analysis of the human genome indicates that a large fraction of the genome sequences are RNAs that do not encode any proteins, also known as non-coding RNAs. MicroRNAs (miRNAs) are a group of small non-coding RNA molecules 20-22 nucleotides (nt) in length that are predicted to control the activity of approximately 30% of all protein-coding genes in mammals. miRNAs play important roles in many diseases, including cancer, cardiovascular disease, and immune disorders. The expression of miRNAs can be regulated by epigenetic modification, DNA copy number change, and genetic mutations. miRNAs can serve as a valuable therapeutic target for a large number of diseases. For miRNAs with oncogenic capabilities, potential therapies include miRNA silencing, antisense blocking, and miRNA modifications. For miRNAs with tumor suppression functions, overexpression of those miRNAs might be a useful strategy to inhibit tumor growth. In this review, we discuss the current progress of miRNA research, regulation of miRNA expression, prediction of miRNA targets, and regulatory role of miRNAs in human physiology and diseases, with a specific focus on miRNAs in pancreatic cancer, liver cancer, colorectal cancer, cardiovascular disease, the immune system, and infectious disease. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in miRNAs as important mediators in human physiology and diseases.
Collapse
Affiliation(s)
- Min Li
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| | - Christian Marin-Muller
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| | - Uddalak Bharadwaj
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| | - Kwong-Hon Chow
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| | - Qizhi Yao
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Molecular Surgeon Research Center, Division of Vascular Surgery and Endovascular Therapy, Michael E. DeBakey Department of Surgery and Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
50
|
Sirotkin AV, Ovcharenko D, Grossmann R, Lauková M, Mlyncek M. Identification of microRNAs controlling human ovarian cell steroidogenesis via a genome-scale screen. J Cell Physiol 2009; 219:415-20. [PMID: 19194990 DOI: 10.1002/jcp.21689] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of our studies was to identify miRNAs affecting the release of the major ovarian steroid hormones progestagen, androgen and estrogen by human ovarian cells. The effect of transfection of cultured primary ovarian granulosa cells with 80 different gene constructs encoding human pre-miRNAs on release of progesterone, testosterone and estradiol was evaluated by enzyme immunoassay. In addition, effect of two selected antisense constructs blocking corresponding miRNA on progesterone release was tested. Efficiency of transfection (incorporation transfection reagent) and silencing of marker substances (GAPDH mRNA, GAPDH and CREB-1) were validated by fluorescent microscopy, real-time reverse transcription-PCR analysis and immunocytochemical analysis. Thirty-six out of 80 tested miRNA constructs resulted in inhibition of progesterone release in granulosa cells, and 10 miRNAs promoted progesterone release. Transfected of cells with antisense constructs to two selected miRNAs blocking progesterone release induced increase in progesterone output. Fifty-seven miRNAs tested inhibited testosterone release, and only one miRNA enhanced testosterone output. Fifty-one miRNAs suppressed estradiol release, while none of the miRNAs tested stimulated it. This is the first demonstration that miRNAs can control reproductive functions resulting in enhanced or inhibited release of ovarian progestagen, androgen and estrogen. We hypothesize that such miRNA-mediated effects could be potentially used for regulation of reproductive processes, including fertility, and for treatment of reproductive and other steroid-dependent disorders.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Research Institute of Animal Production, Slovak Centre of Agricultural Studies, Nitra, Slovakia.
| | | | | | | | | |
Collapse
|