1
|
Yadav V, Sharma AK, Parashar G, Parashar NC, Ramniwas S, Jena MK, Tuli HS, Yadav K. Patent landscape highlighting therapeutic implications of peptides targeting myristoylated alanine-rich protein kinase-C substrate (MARCKS). Expert Opin Ther Pat 2023; 33:445-454. [PMID: 37526024 DOI: 10.1080/13543776.2023.2240020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION MARCKS protein, a protein kinase C (PKC) substrate, is known to be at the intersection of several intracellular signaling pathways and plays a pivotal role in cellular physiology. Unlike PKC inhibitors, MARCKS-targeting drug (BIO-11006) has shown early success in clinical trials involving lung diseases. Recent research investigations have identified two MARCKS-targeting peptides which possess multifaceted implications against asthma, cancer, inflammation, and lung diseases. AREAS COVERED This review article provides the patent landscape and recent developments on peptides targeting MARCKS for therapeutic purposes. Online free open-access databases were used to fetch out the patent information, and research articles were fetched using PubMed. EXPERT OPINION Research studies highlighting the intriguing role of MARCKS in human disease and physiology have dramatically increased in recent years. A similar increasing trend in the number of patents has also been observed related to the MARCKS-targeting peptides. Thus, there is a need to amalgamate and translate such a trend into therapeutic intervention. Our review article provides an overview of such recent advances, and we believe that our compilation will fetch the interest of researchers around the globe to develop MARCKS-targeting peptides in future for human diseases.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Malmö, Sweden
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Kiran Yadav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, Punjab, India
| |
Collapse
|
2
|
Phosphorylation-dependent proteome of Marcks in ependyma during aging and behavioral homeostasis in the mouse forebrain. GeroScience 2022; 44:2077-2094. [DOI: 10.1007/s11357-022-00517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022] Open
|
3
|
Gundersen CB. Cysteine string proteins. Prog Neurobiol 2020; 188:101758. [DOI: 10.1016/j.pneurobio.2020.101758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
|
4
|
Sheats MK, Yin Q, Fang S, Park J, Crews AL, Parikh I, Dickson B, Adler KB. MARCKS and Lung Disease. Am J Respir Cell Mol Biol 2019; 60:16-27. [PMID: 30339463 DOI: 10.1165/rcmb.2018-0285tr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is a prominent PKC substrate expressed in all eukaryotic cells. It is known to bind to and cross-link actin filaments, to serve as a bridge between Ca2+/calmodulin and PKC signaling, and to sequester the signaling molecule phosphatidylinositol 4,5-bisphosphate in the plasma membrane. Since the mid-1980s, this evolutionarily conserved and ubiquitously expressed protein has been associated with regulating cellular events that require dynamic actin reorganization, including cellular adhesion, migration, and exocytosis. More recently, translational studies have implicated MARCKS in the pathophysiology of a number of airway diseases, including chronic obstructive pulmonary disease, asthma, lung cancer, and acute lung injury/acute respiratory distress syndrome. This article summarizes the structure and cellular function of MARCKS (also including MARCKS family proteins and MARCKSL1 [MARCKS-like protein 1]). Evidence for MARCKS's role in several lung diseases is discussed, as are the technological innovations that took MARCKS-targeting strategies from theoretical to therapeutic. Descriptions and updates derived from ongoing clinical trials that are investigating inhalation of a MARCKS-targeting peptide as therapy for patients with chronic bronchitis, lung cancer, and ARDS are provided.
Collapse
Affiliation(s)
| | - Qi Yin
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Shijing Fang
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Joungjoa Park
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Anne L Crews
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| | - Indu Parikh
- 3 BioMarck Pharmaceuticals, Durham, North Carolina
| | | | - Kenneth B Adler
- 2 Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina; and
| |
Collapse
|
5
|
Ye D, Wang X, Wei C, He M, Wang H, Wang Y, Zhu Z, Sun Y. Marcksb plays a key role in the secretory pathway of zebrafish Bmp2b. PLoS Genet 2019; 15:e1008306. [PMID: 31545789 PMCID: PMC6776368 DOI: 10.1371/journal.pgen.1008306] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/03/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
During vertebrate early embryogenesis, the ventral development is directed by the ventral-to-dorsal activity gradient of the bone morphogenetic protein (BMP) signaling. As secreted ligands, the extracellular traffic of BMP has been extensively studied. However, it remains poorly understood that how BMP ligands are secreted from BMP-producing cells. In this work, we show the dominant role of Marcksb controlling the secretory process of Bmp2b via interaction with Hsp70 in vivo. We firstly carefully characterized the role of Marcksb in promoting BMP signaling during dorsoventral axis formation through knockdown approach. We then showed that Marcksb cell autonomously regulates the trafficking of Bmp2b from producing cell to the extracellular space and both the total and the extracellular Bmp2b was decreased in Marcksb-deficient embryos. However, neither the zygotic mutant of marcksb (Zmarcksb) nor the maternal zygotic mutant of marcksb (MZmarcksb) showed any defects of dorsalization. In contrast, the MZmarcksb embryos even showed increased BMP signaling activity as measured by expression of BMP targets, phosphorylated Smad1/5/9 levels and imaging of Bmp2b, suggesting that a phenomenon of “genetic over-compensation” arose. Finally, we revealed that the over-compensation effects of BMP signaling in MZmarcksb was achieved through a sequential up-regulation of MARCKS-family members Marcksa, Marcksl1a and Marcksl1b, and MARCKS-interacting protein Hsp70.3. We concluded that the Marcksb modulates BMP signaling through regulating the secretory pathway of Bmp2b. Bone morphogenetic proteins (BMPs) are extracellular proteins which belong to the transforming growth factor-β (TGF-β) superfamily. BMP signaling is essential for embryonic development, organogenesis, and tissue regeneration and homeostasis, and tightly linked to various diseases and tumorigenesis. However, as secreted proteins, how BMPs are transported and secreted from BMP-producing cells remains poorly understood. In this study, we showed that Marcksb interacts with a molecular chaperon–Hsp70.3 to mediate the secretory pathway of BMP ligands during early development of zebrafish. Moreover, we discovered a novel phenomenon of “genetic over-compensation” in the genetic knock-out mutants of marcksb. To our knowledge, this is the first report that reveals the molecules and their related trafficking system mediating the secretion of BMPs. Considering the wide distribution of BMP and MARCKS within the human body, our work may shed light on the studies of BMPs secretion in organogenesis and adult tissue homeostasis. The finding of MARCKS in controlling BMP secretion may provide potential therapeutic targets for modulating the activity of BMP signaling and thus will be of interest to clinical research.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Changyong Wei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yanwu Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
6
|
Bolmarcich J, Wilbert S, Jackson GR, Oldach J, Bachelor M, Kenney T, Wright CD, Hayden PJ. In VitroHuman Airway Models for Study of Goblet Cell Hyperplasia and Mucus Production: Effects of Th2 Cytokines, Double-Stranded RNA, and Tobacco Smoke. ACTA ACUST UNITED AC 2018. [DOI: 10.1089/aivt.2017.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
El Amri M, Fitzgerald U, Schlosser G. MARCKS and MARCKS-like proteins in development and regeneration. J Biomed Sci 2018; 25:43. [PMID: 29788979 PMCID: PMC5964646 DOI: 10.1186/s12929-018-0445-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSL1) have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the inflammatory response. Recently, both proteins have also been identified as important players in regeneration. Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1 translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of cell migration, secretion, proliferation and differentiation in many different tissues. MAIN BODY Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making them promising targets for regenerative medicine. CONCLUSION This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSL1 proteins and outlines their vital roles in development and regeneration.
Collapse
Affiliation(s)
- Mohamed El Amri
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, Biomedical Sciences Building, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Gerhard Schlosser
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland. .,School of Natural Sciences and Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Biomedical Sciences Building, Newcastle Road, Galway, Ireland.
| |
Collapse
|
8
|
Franke NE, Kaspers GL, Assaraf YG, van Meerloo J, Niewerth D, Kessler FL, Poddighe PJ, Kole J, Smeets SJ, Ylstra B, Bi C, Chng WJ, Horton TM, Menezes RX, Musters RJP, Zweegman S, Jansen G, Cloos J. Exocytosis of polyubiquitinated proteins in bortezomib-resistant leukemia cells: a role for MARCKS in acquired resistance to proteasome inhibitors. Oncotarget 2018; 7:74779-74796. [PMID: 27542283 PMCID: PMC5342701 DOI: 10.18632/oncotarget.11340] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
PSMB5 mutations and upregulation of the β5 subunit of the proteasome represent key determinants of acquired resistance to the proteasome inhibitor bortezomib (BTZ) in leukemic cells in vitro. We here undertook a multi-modality (DNA, mRNA, miRNA) array-based analysis of human CCRF-CEM leukemia cells and BTZ-resistant subclones to determine whether or not complementary mechanisms contribute to BTZ resistance. These studies revealed signatures of markedly reduced expression of proteolytic stress related genes in drug resistant cells over a broad range of BTZ concentrations along with a high upregulation of myristoylated alanine-rich C-kinase substrate (MARCKS) gene expression. MARCKS upregulation was confirmed on protein level and also observed in other BTZ-resistant tumor cell lines as well as in leukemia cells with acquired resistance to other proteasome inhibitors. Moreover, when MARCKS protein expression was demonstrated in specimens derived from therapy-refractory pediatric leukemia patients (n = 44), higher MARCKS protein expression trended (p = 0.073) towards a dismal response to BTZ-containing chemotherapy. Mechanistically, we show a BTZ concentration-dependent association of MARCKS protein levels with the emergence of ubiquitin-containing vesicles in BTZ-resistant CEM cells. These vesicles were found to be extruded and taken up in co-cultures with proteasome-proficient acceptor cells. Consistent with these observations, MARCKS protein associated with ubiquitin-containing vesicles was also more prominent in clinical leukemic specimen with ex vivo BTZ resistance compared to BTZ-sensitive leukemia cells. Collectively, we propose a role for MARCKS in a novel mechanism of BTZ resistance via exocytosis of ubiquitinated proteins in BTZ-resistant cells leading to quenching of proteolytic stress.
Collapse
Affiliation(s)
- Niels E Franke
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa, Israel
| | - Johan van Meerloo
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Denise Niewerth
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Floortje L Kessler
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Pino J Poddighe
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen Kole
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Serge J Smeets
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Chonglei Bi
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Current address: BGI-Shenzhen, Shenzhen, China
| | - Wee Joo Chng
- Department of Experimental Therapeutics, Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terzah M Horton
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Rene X Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Sonja Zweegman
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol. PLoS One 2016; 11:e0159459. [PMID: 27463381 PMCID: PMC4962986 DOI: 10.1371/journal.pone.0159459] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/01/2016] [Indexed: 01/15/2023] Open
Abstract
Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin.
Collapse
|
10
|
Mo JS, Alam KJ, Kim HS, Lee YM, Yun KJ, Chae SC. MicroRNA 429 Regulates Mucin Gene Expression and Secretion in Murine Model of Colitis. J Crohns Colitis 2016; 10:837-49. [PMID: 26818658 DOI: 10.1093/ecco-jcc/jjw033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/15/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS miRNAs are non-coding RNAs that play important roles in the pathogenesis of human diseases by regulating target gene expression in specific cells or tissues. We aimed to detect miRNAs related to ulcerative colitis [UC], identify their target molecules, and analyse the correlation between the miRNAs and their target genes in colorectal cells and dextran sulphate sodium [DSS]-induced mouse colitis. METHODS UC-associated miRNAs were identified by miRNA microarray analysis using DSS-induced colitis and normal colon tissues. The results were validated by quantitative real-time polymerase chain reaction [RT-PCR]. We identified target genes of MIR429, a colitis-associated miRNA, from our screen by comparing the mRNA microarray analysis in MIR429-overexpressed cells with predicted candidate target genes. We constructed luciferase reporter plasmids to confirm the effect of MIR429 on target gene expression. The protein expression of the target genes was measured by western blot,enzyme-linked immunosorbent assay [ELISA] analysis, or immunohistochemistry. RESULTS We identified 37 DSS-induced colitis associated miRNAs. We investigated MIR429 that is down-regulated in DSS-induced colitis, and identified 41 target genes of MIR429. We show that the myristoylated alanine-rich protein kinase C substrate [MARCKS] is a direct target of MIR429. MARCKS mRNA and protein expression levels are down-regulated by MIR429, and MIR429 regulates the expression of MARCKS and MARCKS-mediated mucin secretion in colorectal cells and DSS-induced colitis. In addition, anti-MIR429 up-regulates MARCKS expression in colorectal cell lines. CONCLUSION Our findings suggest that MIR429 modulates mucin secretion in human colorectal cells and mouse colitis tissues by up-regulating of MARCKS expression, thereby making MIR429 a candidate for anti-colitis therapy in human UC.
Collapse
Affiliation(s)
- Ji-Su Mo
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Khondoker Jahengir Alam
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Hun-Soo Kim
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Young-Mi Lee
- Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Ki-Jung Yun
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| | - Soo-Cheon Chae
- Department of Pathology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Republic of Korea Digestive Disease Research Institute, Wonkwang University, Iksan, Chonbuk, Republic of Korea
| |
Collapse
|
11
|
Haddock BJ, Zhu Y, Doyle SP, Abdullah LH, Davis CW. Role of MARCKS in regulated secretion from mast cells and airway goblet cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L925-36. [PMID: 24705720 DOI: 10.1152/ajplung.00213.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MARCKS (myristoylated alanine-rich C kinase substrate) is postulated to regulate the passage of secretory granules through cortical actin in the early phase of exocytosis. There are, however, three proposed mechanisms of action, all of which were derived from studies using synthetic peptides representing either the central phosphorylation site domain or the upstream, NH2-terminal domain: it tethers actin to the plasma membrane and/or to secretory granules, and/or it sequesters PIP2. Using MARCKS-null mice, we probed for a loss of function secretory phenotype in mast cells harvested from embryonic livers and maturated in vivo [embryonic hepatic-derived mast cells (eHMCs)]. Both wild-type (WT) and MARCKS-null eHMCs exhibited full exocytic responses upon FcϵRI receptor activation with DNP-BSA (2,4-dinitrophenyl-BSA), whether they were in suspension or adherent. The secretory responses of MARCKS-null eHMCs were consistently higher than those of WT cells, but the differences had sporadic statistical significance. The MARCKS-null cells exhibited faster secretory kinetics, however, achieving the plateau phase of the response with a t½ ∼2.5-fold faster. Hence, MARCKS appears to be a nonessential regulatory protein in mast cell exocytosis but exerts a negative modulation. Surprisingly, the MARCKS NH2-terminal peptide, MANS, which has been reported to inhibit mucin secretion from airway goblet cells (Li Y, Martin LD, Spizz G, Adler KB. J Biol Chem 276: 40982-40990, 2001), inhibited hexosaminidase secretion from WT and MARCKS-null eHMCs, leading us to reexamine its effects on mucin secretion. Results from studies using peptide inhibitors with human bronchial epithelial cells and with binding assays using purified mucins suggested that MANS inhibited the mucin binding assay, rather than the secretory response.
Collapse
Affiliation(s)
- Brookelyn J Haddock
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - Yunxiang Zhu
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - Sean P Doyle
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - Lubna H Abdullah
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and
| | - C William Davis
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina and Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Adler KB, Tuvim MJ, Dickey BF. Regulated mucin secretion from airway epithelial cells. Front Endocrinol (Lausanne) 2013; 4:129. [PMID: 24065956 PMCID: PMC3776272 DOI: 10.3389/fendo.2013.00129] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3 × 10(6) Da per monomer) whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ∼1 μm in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among myristoylated alanine-rich C kinase substrate, cysteine string protein, heat shock protein 70, and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG). Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the generation of DAG and of IP3 that releases calcium from apical ER. Stimulated secretion requires activation of the low affinity calcium sensor Synaptotagmin-2, while a corresponding high affinity calcium sensor in basal secretion is not known. The core exocytic machinery is comprised of the SNARE proteins VAMP8, SNAP23, and an unknown Syntaxin protein, together with the scaffolding protein Munc18b. Common and distinct features of this exocytic system in comparison to neuroendocrine cells and neurons are highlighted.
Collapse
Affiliation(s)
- Kenneth B. Adler
- Department of Molecular Biomedical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, USA
| | - Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- *Correspondence: Burton F. Dickey, Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Unit 1462, 1515 Holcombe Boulevard, Houston, TX 77030-4009, USA e-mail:
| |
Collapse
|
13
|
Fang S, Crews AL, Chen W, Park J, Yin Q, Ren XR, Adler KB. MARCKS and HSP70 interactions regulate mucin secretion by human airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 2013; 304:L511-8. [PMID: 23377348 DOI: 10.1152/ajplung.00337.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.
Collapse
Affiliation(s)
- Shijing Fang
- Department of Molecular Biomedical Sciences, North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27607, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Karunakaran D, Kockx M, Owen DM, Burnett JR, Jessup W, Kritharides L. Protein kinase C controls vesicular transport and secretion of apolipoprotein E from primary human macrophages. J Biol Chem 2013; 288:5186-97. [PMID: 23288845 DOI: 10.1074/jbc.m112.428961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophage-specific apolipoprotein E (apoE) secretion plays an important protective role in atherosclerosis. However, the precise signaling mechanisms regulating apoE secretion from primary human monocyte-derived macrophages (HMDMs) remain unclear. Here we investigate the role of protein kinase C (PKC) in regulating basal and stimulated apoE secretion from HMDMs. Treatment of HMDMs with structurally distinct pan-PKC inhibitors (calphostin C, Ro-31-8220, Go6976) and a PKC inhibitory peptide all significantly decreased apoE secretion without significantly affecting apoE mRNA or apoE protein levels. The PKC activator phorbol 12-myristate 13-acetate (PMA) stimulated apoE secretion, and both PMA-induced and apoAI-induced apoE secretion were inhibited by PKC inhibitors. PKC regulation of apoE secretion was found to be independent of the ATP binding cassette transporter ABCA1. Live cell imaging demonstrated that PKC inhibitors inhibited vesicular transport of apoE to the plasma membrane. Pharmacological or peptide inhibitor and knockdown studies indicate that classical isoforms PKCα/β and not PKCδ, -ε, -θ, or -ι/ζ isoforms regulate apoE secretion from HMDMs. The activity of myristoylated alanine-rich protein kinase C substrate (MARCKS) correlated with modulation of PKC activity in these cells, and direct peptide inhibition of MARCKS inhibited apoE secretion, implicating MARCKS as a downstream effector of PKC in apoE secretion. Comparison with other secreted proteins indicated that PKC similarly regulated secretion of matrix metalloproteinase 9 and chitinase-3-like-1 protein but differentially affected the secretion of other proteins. In conclusion, PKC regulates the secretion of apoE from primary human macrophages.
Collapse
Affiliation(s)
- Denuja Karunakaran
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Mancek-Keber M, Bencina M, Japelj B, Panter G, Andrä J, Brandenburg K, Triantafilou M, Triantafilou K, Jerala R. MARCKS as a negative regulator of lipopolysaccharide signaling. THE JOURNAL OF IMMUNOLOGY 2012; 188:3893-902. [PMID: 22427633 DOI: 10.4049/jimmunol.1003605] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Myristoylated alanine-rich C kinase substrate (MARCKS) is an intrinsically unfolded protein with a conserved cationic effector domain, which mediates the cross-talk between several signal transduction pathways. Transcription of MARCKS is increased by stimulation with bacterial LPS. We determined that MARCKS and MARCKS-related protein specifically bind to LPS and that the addition of the MARCKS effector peptide inhibited LPS-induced production of TNF-α in mononuclear cells. The LPS binding site within the effector domain of MARCKS was narrowed down to a heptapeptide that binds to LPS in an extended conformation as determined by nuclear magnetic resonance spectroscopy. After LPS stimulation, MARCKS moved from the plasma membrane to FYVE-positive endosomes, where it colocalized with LPS. MARCKS-deficient mouse embryonic fibroblasts (MEFs) responded to LPS with increased IL-6 production compared with the matched wild-type MEFs. Similarly, small interfering RNA knockdown of MARCKS also increased LPS signaling, whereas overexpression of MARCKS inhibited LPS signaling. TLR4 signaling was enhanced by the ablation of MARCKS, which had no effect on stimulation by TLR2, TLR3, and TLR5 agonists. These findings demonstrate that MARCKS contributes to the negative regulation of the cellular response to LPS.
Collapse
Affiliation(s)
- Mateja Mancek-Keber
- Department of Biotechnology, National Institute of Chemistry, Ljubljana 1000, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Raiford KL, Park J, Lin KW, Fang S, Crews AL, Adler KB. Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome". Respir Res 2011; 12:118. [PMID: 21896166 PMCID: PMC3184067 DOI: 10.1186/1465-9921-12-118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/06/2011] [Indexed: 01/11/2023] Open
Abstract
Background Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secretion, including the specific proteins involved in the process, have yet to be elucidated. Previously, we have shown that the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein regulates mucin secretion by orchestrating translocation of mucin granules from the cytosol to the plasma membrane, where the granules dock, fuse and release their contents into the airway lumen. Associated with MARCKS in this process are chaperone (Heat Shock Protein 70 [HSP70], Cysteine string protein [CSP]) and cytoskeletal (actin, myosin) proteins. However, additional granule-associated proteins that may be involved in secretion have not yet been elucidated. Methods Here, we isolated mucin granules and granule membranes from primary cultures of well differentiated human bronchial epithelial cells utilizing a novel technique of immuno-isolation, based on the presence of the calcium activated chloride channel hCLCA1 (the human ortholog of murine Gob-5) on the granule membranes, and verified via Western blotting and co-immunoprecipitation that MARCKS, HSP70, CSP and hCLCA1 were present on the granule membranes and associated with each other. We then subjected the isolated granules/membranes to liquid chromatography mass spectrometry (LC-MS/MS) to identify other granule associated proteins. Results A number of additional cytoskeletal (e.g. Myosin Vc) and regulatory proteins (e.g. Protein phosphatase 4) associated with the granules and could play a role in secretion were discovered. This is the first description of the airway goblet cell "granulome."
Collapse
Affiliation(s)
- Kimberly L Raiford
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
17
|
Ott LE, McDowell ZT, Turner PM, Law JM, Adler KB, Yoder JA, Jones SL. Two myristoylated alanine-rich C-kinase substrate (MARCKS) paralogs are required for normal development in zebrafish. Anat Rec (Hoboken) 2011; 294:1511-24. [PMID: 21809467 DOI: 10.1002/ar.21453] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 05/15/2011] [Indexed: 12/20/2022]
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is an actin binding protein substrate of protein kinase C (PKC) and critical for mouse and Xenopus development. Herein two MARCKS paralogs, marcksa and marcksb, are identified in zebrafish and the role of these genes in zebrafish development is evaluated. Morpholino-based targeting of either MARCKS protein resulted in increased mortality and a range of gross phenotypic abnormalities. Phenotypic abnormalities were classified as mild, moderate or severe, which is characterized by a slight curve of a full-length tail, a severe curve or twist of a full-length tail and a truncated tail, respectively. All three phenotypes displayed abnormal neural architecture. Histopathology of Marcks targeted embryos revealed abnormalities in retinal layering, gill formation and skeletal muscle morphology. These results demonstrate that Marcksa and Marcksb are required for normal zebrafish development and suggest that zebrafish are a suitable model to further study MARCKS function.
Collapse
Affiliation(s)
- Laura E Ott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Green TD, Crews AL, Park J, Fang S, Adler KB. Regulation of mucin secretion and inflammation in asthma: a role for MARCKS protein? Biochim Biophys Acta Gen Subj 2011; 1810:1110-3. [PMID: 21281703 DOI: 10.1016/j.bbagen.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/14/2011] [Accepted: 01/21/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND A major characteristic of asthmatic airways is an increase in mucin (the glycoprotein component of mucus) producing and secreting cells, which leads to increased mucin release that further clogs constricted airways and contributes markedly to airway obstruction and, in the most severe cases, to status asthmaticus. Asthmatic airways show both a hyperplasia and metaplasia of goblet cells, mucin-producing cells in the epithelium; hyperplasia refers to enhanced numbers of goblet cells in larger airways, while metaplasia refers to the appearance of these cells in smaller airways where they normally are not seen. With the number of mucin-producing and secreting cells increased, there is a coincident hypersecretion of mucin which characterizes asthma. On a cellular level, a major regulator of airway mucin secretion in both in vitro and in vivo studies has been shown to be MARCKS (myristoylated alanine-rich C kinase substrate) protein, a ubiquitous substrate of protein kinase C (PKC). GENERAL SIGNIFICANCE In this review, properties of MARCKS and how the protein may regulate mucin secretion at a cellular level will be discussed. In addition, the roles of MARCKS in airway inflammation related to both influx of inflammatory cells into the lung and release of granules containing inflammatory mediators by these cells will be explored. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Teresa D Green
- Deparment of Molecualr Biomedical Sciences, North Carolina State University CVM, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
19
|
Johnson JN, Ahrendt E, Braun JEA. CSPalpha: the neuroprotective J protein. Biochem Cell Biol 2010; 88:157-65. [PMID: 20453918 DOI: 10.1139/o09-124] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cysteine string protein (CSPalpha, also called DnaJC5) is unique among J proteins. Similar to other J proteins, CSPalpha interacts with and activates the ATPase of Hsc70s (heat shock proteins of 70 kDa), thereby harnessing the ATPase activity for conformational work on client proteins. In contrast to other J proteins, CSPalpha is anchored to synaptic vesicles, as well as to exocrine, endocrine and neuroendocrine secretory granules, and has been shown to have an essential anti-neurodegenerative role. CSPalpha-null organisms exhibit progressive neurodegeneration, behavioural deficits, and premature death, most likely due to the progressive misfolding of one or more client proteins. Here we highlight recent advances in our understanding of the critical role that CSPalpha plays in governing exocytotic secretory functions.
Collapse
Affiliation(s)
- Jadah N Johnson
- Department of Physiology and Pharmacology and the Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
20
|
Gundersen CB, Kohan SA, Souda P, Whitelegge JP, Umbach JA. Cysteine string protein β is prominently associated with nerve terminals and secretory organelles in mouse brain. Brain Res 2010; 1332:1-11. [DOI: 10.1016/j.brainres.2010.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/26/2010] [Accepted: 03/14/2010] [Indexed: 11/16/2022]
|
21
|
Miller JD, Lankford SM, Adler KB, Brody AR. Mesenchymal stem cells require MARCKS protein for directed chemotaxis in vitro. Am J Respir Cell Mol Biol 2010; 43:253-8. [PMID: 20224071 DOI: 10.1165/rcmb.2010-0015rc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSCs) reside within tissues such as bone marrow, cord blood, and dental pulp and can differentiate into other mesenchymal cell types. Differentiated MSCs, called circulating fibrocytes, have been demonstrated in human lungs and migrate to injured lung tissue in experimental models. It is likely that MSCs migrate from the bone marrow to sites of injury by following increasing chemokine concentrations. In the present study, we show that primary mouse bone marrow mesenchymal stem cells (BM-MSCs) exhibit directed chemotaxis through transwell inserts toward increasing concentrations of the chemokines complement component 5a, stromal cell-derived factor-1alpha, and monocyte chemotactic protein-1. Prior research has indicated that myristoylated alanine-rich C kinase substrate (MARCKS) protein is critically important for motility in macrophages, neutrophils, and fibroblasts, and here we investigated a possible role for MARCKS in BM-MSC directed chemotaxis. The presence of MARCKS in these cells as well as in human cord blood MSC was verified by Western blotting, and MARCKS was rapidly phosphorylated in these cells after exposure to chemokines. A synthetic peptide that inhibits MARCKS function attenuated, in a concentration-dependent manner, directed chemotaxis of BM-MSCs, while a missense control peptide had no effect. Our results illustrate, for the first time, that MARCKS protein plays an integral role in BM-MSC-directed chemotaxis in vitro.
Collapse
Affiliation(s)
- Jeffrey D Miller
- Dept. of Molecular Biomedical Sciences, NC State University, Raleigh, 27606, USA
| | | | | | | |
Collapse
|
22
|
Lin KW, Fang S, Park J, Crews AL, Adler KB. MARCKS and related chaperones bind to unconventional myosin V isoforms in airway epithelial cells. Am J Respir Cell Mol Biol 2010; 43:131-6. [PMID: 20203291 DOI: 10.1165/rcmb.2010-0016rc] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have shown previously that myristoylated alanine-rich C kinase substrate (MARCKS) is a key regulatory molecule in the process of mucin secretion by airway epithelial cells, and that part of the secretory mechanism involves intracellular associations of MARCKS with specific chaperones: heat shock protein 70 (Hsp70) and cysteine string protein (CSP). Here, we report that MARCKS also interacts with unconventional myosin isoforms within these cells, and further molecular interactions between MARCKS and these chaperones/cytoskeletal proteins are elucidated. Primary human bronchial epithelial cells and the HBE1 cell line both expressed myosin V and VI proteins, and both MARCKS and CSP were shown to bind to myosin V, specifically Va and Vc. This binding was enhanced by exposing the cells to phorbol-12-myristate-13-acetate, an activator of protein kinase C and stimulator of mucin secretion. Binding of MARCKS, Hsp70, and CSP was further investigated by His-tagged pull down assays of purified recombinant proteins and multiple transfections of HBE1 cells with fusion proteins (MARCKS-HA; Flag-Hsp70; c-Myc-CSP) and immunoprecipitation. The results showed that MARCKS binds directly to Hsp70, and that Hsp70 binds directly to CSP, but that MARCKS binding to CSP appears to require the presence of Hsp70. Interrelated binding(s) of MARCKS, chaperones, and unconventional myosin isoforms may be integral to the mucin secretion process.
Collapse
Affiliation(s)
- Ko-Wei Lin
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, 27606, USA
| | | | | | | | | |
Collapse
|
23
|
Weimer JM, Yokota Y, Stanco A, Stumpo DJ, Blackshear PJ, Anton ES. MARCKS modulates radial progenitor placement, proliferation and organization in the developing cerebral cortex. Development 2009; 136:2965-75. [PMID: 19666823 DOI: 10.1242/dev.036616] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The radial glial cells serve as neural progenitors and as a migratory guide for newborn neurons in the developing cerebral cortex. These functions require appropriate organization and proliferation of the polarized radial glial scaffold. Here, we demonstrate in mice that the myristoylated alanine-rich C-kinase substrate protein (MARCKS), a prominent cellular substrate for PKC, modulates radial glial placement and expansion. Loss of MARCKS results in ectopic collection of mitotically active radial progenitors away from the ventricular zone (VZ) in the upper cerebral wall. Apical restriction of key polarity complexes [CDC42, beta-catenin (CTNNB1), N-cadherin (CDH2), myosin IIB (MYOIIB), aPKCzeta, LGL, PAR3, pericentrin, PROM1] is lost. Furthermore, the radial glial scaffold in Marcks null cortex is compromised, with discontinuous, non-radial processes apparent throughout the cerebral wall and deformed, bulbous, unbranched end-feet at the basal ends. Further, the density of radial processes within the cerebral cortex is reduced. These deficits in radial glial development culminate in aberrant positioning of neurons and disrupted cortical lamination. Genetic rescue experiments demonstrate, surprisingly, that phosphorylation of MARCKS by PKC is not essential for the role of MARCKS in radial glial cell development. By contrast, the myristoylation domain of MARCKS needed for membrane association is essential for MARCKS function in radial glia. The membrane-associated targeting of MARCKS and the resultant polarized distribution of signaling complexes essential for apicobasal polarity may constitute a critical event in the appropriate placement, proliferation and organization of polarized radial glial scaffold in the developing cerebral cortex.
Collapse
Affiliation(s)
- Jill M Weimer
- UNC Neuroscience Center and the Department of Cell and Molecular Physiology, The University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
24
|
Curran DR, Cohn L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am J Respir Cell Mol Biol 2009; 42:268-75. [PMID: 19520914 DOI: 10.1165/rcmb.2009-0151tr] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mucous cell metaplasia is induced in response to harmful insults and provides front-line protection to clear the airway of toxic substances and cellular debris. In chronic airway diseases mucous metaplasia persists and results in airway obstruction and contributes significantly to morbidity and mortality. Mucus hypersecretion involves increased expression of mucin genes, and increased mucin production and release. The past decade has seen significant advances in our understanding of the molecular mechanisms by which these events occur. Inflammation stimulates epidermal growth factor receptor activation and IL-13 to induce both Clara and ciliated cells to transition into goblet cells through the coordinated actions of FoxA2, TTF-1, SPDEF, and GABA(A)R. Ultimately, these steps lead to up-regulation of MUC5AC expression, and increased mucin in goblet cell granules that fuse to the plasma membrane through actions of MARCKS, SNAREs, and Munc proteins. Blockade of mucus in exacerbations of asthma and chronic obstructive pulmonary disease may affect morbidity. Development of new therapies to target mucus production and secretion are now possible given the advances in our understanding of molecular mechanisms of mucous metaplasia. We now have a greater incentive to focus on inhibition of mucus as a therapy for chronic airway diseases.
Collapse
Affiliation(s)
- David R Curran
- Section of Pulmonary and Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Airway mucus plugging has long been recognized as a principal cause of death in asthma. However, molecular mechanisms of mucin overproduction and secretion have not been understood until recently. These mechanisms are reviewed together with ongoing investigations relating them to lung pathophysiology. RECENT FINDINGS Of the five secreted gel-forming mucins in mammals, only MUC5AC and MUC5B are produced in significant quantities in intrapulmonary airways. MUC5B is the principal gel-forming mucin at baseline in small airways of humans and mice, and therefore likely performs most homeostatic clearance functions. MUC5AC is the principal gel-forming mucin upregulated in airway inflammation and is under negative control by forkhead box a2 (Foxa2) and positive control by hypoxia inducible factor-1 (HIF-1). Mucin secretion is regulated separately from production, principally by extracellular triphosphate nucleotides that bind P2Y2 receptors on the lumenal surface of airway secretory cells, generating intracellular second messengers that activate the exocytic proteins, Munc13-2 and synaptotagmin-2. SUMMARY Markedly upregulated production of MUC5AC together with stimulated secretion leads to airflow obstruction in asthma. As MUC5B appears to mediate homeostatic functions, it may be possible to selectively inhibit MUC5AC production without impairing airway function. The precise roles of mucin hypersecretion in asthma symptoms such as dyspnea and cough and in physiologic phenomena such as airway hyperresponsiveness remain to be defined.
Collapse
|
26
|
Ahmad S, Ahmad A, Dremina ES, Sharov VS, Guo X, Jones TN, Loader JE, Tatreau JR, Perraud AL, Schöneich C, Randell SH, White CW. Bcl-2 suppresses sarcoplasmic/endoplasmic reticulum Ca2+-ATPase expression in cystic fibrosis airways: role in oxidant-mediated cell death. Am J Respir Crit Care Med 2009; 179:816-26. [PMID: 19201925 DOI: 10.1164/rccm.200807-1104oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Modulation of the activity of sarcoendoplasmic reticulum calcium ATPase (SERCA) can profoundly affect Ca(2+) homeostasis. Although altered calcium homeostasis is a characteristic of cystic fibrosis (CF), the role of SERCA is unknown. OBJECTIVES This study provides a comprehensive investigation of expression and activity of SERCA in CF airway epithelium. A detailed study of the mechanisms underlying SERCA changes and its consequences was also undertaken. METHODS Lung tissue samples (bronchus and bronchiole) from subjects with and without CF were evaluated by immunohistochemistry. Protein and mRNA expression in primary non-CF and CF cells was determined by Western and Northern blots. MEASUREMENTS AND MAIN RESULTS SERCA2 expression was decreased in bronchial and bronchiolar epithelia of subjects with CF. SERCA2 expression in lysates of polarized tracheobronchial epithelial cells from subjects with CF was decreased by 67% as compared with those from subjects without CF. Several non-CF and CF airway epithelial cell lines were also probed. SERCA2 expression and activity were consistently decreased in CF cell lines. Adenoviral expression of mutant F508 cystic fibrosis transmembrane regulator gene (CFTR), inhibition of CFTR function pharmacologically (CFTR(inh)172), or stable expression of antisense oligonucleotides to inhibit CFTR expression caused decreased SERCA2 expression. In CF cells, SERCA2 interacted with Bcl-2, leading to its displacement from caveolae-related domains of endoplasmic reticulum membranes, as demonstrated in sucrose density gradient centrifugation and immunoprecipitation studies. Knockdown of SERCA2 using siRNA enhanced epithelial cell death due to ozone, hydrogen peroxide, and TNF-alpha. CONCLUSIONS Reduced SERCA2 expression may alter calcium signaling and apoptosis in CF. These findings decrease the likelihood of therapeutic benefit of SERCA inhibition in CF.
Collapse
Affiliation(s)
- Shama Ahmad
- Department of Pediatrics, National Jewish Medical and Research Center, A440, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, Demaria G, Knight D, Thornton DJ, Sheehan JK. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol 2008; 296:L92-L100. [PMID: 18931053 PMCID: PMC2636953 DOI: 10.1152/ajplung.90388.2008] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human tracheobronchial epithelial cells grown in air-liquid interface culture have emerged as a powerful tool for the study of airway biology. In this study, we have investigated whether this culture system produces "mucus" with a protein composition similar to that of in vivo, induced airway secretions. Previous compositional studies of mucous secretions have greatly underrepresented the contribution of mucins, which are major structural components of normal mucus. To overcome this limitation, we have used a mass spectrometry-based approach centered on prior separation of the mucins from the majority of the other proteins. Using this approach, we have compared the protein composition of apical secretions (AS) from well-differentiated primary human tracheobronchial cells grown at air-liquid interface and human tracheobronchial normal induced sputum (IS). A total of 186 proteins were identified, 134 from AS and 136 from IS; 84 proteins were common to both secretions, with host defense proteins being predominant. The epithelial mucins MUC1, MUC4, and MUC16 and the gel-forming mucins MUC5B and MUC5AC were identified in both secretions. Refractometry showed that the gel-forming mucins were the major contributors by mass to both secretions. When the composition of the IS was corrected for proteins that were most likely derived from saliva, serum, and migratory cells, there was considerable similarity between the two secretions, in particular, in the category of host defense proteins, which includes the mucins. This shows that the primary cell culture system is an important model for study of aspects of innate defense of the upper airways related specifically to mucus consisting solely of airway cell products.
Collapse
Affiliation(s)
- Mehmet Kesimer
- Dept. of Biochemistry and Biophysics, Univ. of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|