1
|
Otelea MR, Oancea C, Reisz D, Vaida MA, Maftei A, Popescu FG. Club Cells-A Guardian against Occupational Hazards. Biomedicines 2023; 12:78. [PMID: 38255185 PMCID: PMC10813369 DOI: 10.3390/biomedicines12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Club cells have a distinct role in the epithelial repair and defense mechanisms of the lung. After exposure to environmental pollutants, during chronic exposure, the secretion of club cells secretory protein (CCSP) decreases. Exposure to occupational hazards certainly has a role in a large number of interstitial lung diseases. According to the American Thoracic Society and the European Respiratory Society, around 40% of the all interstitial lung disease is attributed to occupational hazards. Some of them are very well characterized (pneumoconiosis, hypersensitivity pneumonitis), whereas others are consequences of acute exposure (e.g., paraquat) or persistent exposure (e.g., isocyanate). The category of vapors, gases, dusts, and fumes (VGDF) has been proven to produce subclinical modifications. The inflammation and altered repair process resulting from the exposure to occupational respiratory hazards create vicious loops of cooperation between epithelial cells, mesenchymal cells, innate defense mechanisms, and immune cells. The secretions of club cells modulate the communication between macrophages, epithelial cells, and fibroblasts mitigating the inflammation and/or reducing the fibrotic process. In this review, we describe the mechanisms by which club cells contribute to the development of interstitial lung diseases and the potential role for club cells as biomarkers for occupational-related fibrosis.
Collapse
Affiliation(s)
- Marina Ruxandra Otelea
- Clinical Department 5, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Corina Oancea
- Department of Physical Medicine and Rehabilitation, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daniela Reisz
- Department of Neurology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Monica Adriana Vaida
- Department of Anatomy and Embryology, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Andreea Maftei
- Doctoral School, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Florina Georgeta Popescu
- Department of Occupational Health, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| |
Collapse
|
2
|
Kim S, Lim Y, Lee SY, Yoon HN, Yi H, Jang KH, Ku NO. Keratin 8 mutations in transgenic mice predispose to lung injury. J Cell Sci 2021; 134:jcs250167. [PMID: 34342355 DOI: 10.1242/jcs.250167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/28/2021] [Indexed: 11/20/2022] Open
Abstract
Keratin 8 (K8) is the cytoskeletal intermediate filament protein of simple-type epithelia. Mutations in K8 predispose the affected individual and transgenic mouse to liver disease. However, the role of K8 in the lung has not been reported in mutant transgenic mouse models. Here, we investigated the susceptibility of two different transgenic mice expressing K8 Gly62-Cys (Gly62 replaced with Cys) or Ser74-Ala (Ser74 replaced with Ala) to lung injury. The mutant transgenic mice were highly susceptible to two independent acute and chronic lung injuries compared with control mice. Both K8 Gly62-Cys mice and K8 Ser74-Ala mice showed markedly increased mouse lethality (∼74% mutant mice versus ∼34% control mice) and more severe lung damage, with increased inflammation and apoptosis, under L-arginine-mediated acute lung injury. Moreover, the K8 Ser74-Ala mice had more severe lung damage, with extensive hemorrhage and prominent fibrosis, under bleomycin-induced chronic lung injury. Our study provides the first direct evidence that K8 mutations predispose to lung injury in transgenic mice.
Collapse
Affiliation(s)
- Sujin Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Younglan Lim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - So-Young Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Han-Na Yoon
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Hayan Yi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Kwi-Hoon Jang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
| | - Nam-On Ku
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, Seoul 03722, Korea
- Department of Bio-Convergence ISED, Underwood International College, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
3
|
Galani V, Varouktsi A, Papadatos SS, Mitselou A, Sainis I, Constantopoulos S, Dalavanga Y. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment. Cancer Chemother Pharmacol 2019; 84:241-253. [DOI: 10.1007/s00280-019-03878-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/18/2019] [Indexed: 01/09/2023]
|
4
|
Uzhachenko R, Issaeva N, Boyd K, Ivanov SV, Carbone DP, Ivanova AV. Tumour suppressor Fus1 provides a molecular link between inflammatory response and mitochondrial homeostasis. J Pathol 2012; 227:456-69. [PMID: 22513871 DOI: 10.1002/path.4039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/04/2012] [Accepted: 04/07/2012] [Indexed: 02/04/2023]
Abstract
Fus1, encoded by a 3p21.3 tumour suppressor gene, is down-regulated, mutated or lost in the majority of inflammatory thoracic malignancies. The mitochondrial localization of Fus1 stimulated us to investigate how Fus1 modulates inflammatory response and mitochondrial function in a mouse model of asbestos-induced peritoneal inflammation. Asbestos treatment resulted in a decreased Fus1 expression in wild-type (WT) peritoneal immune cells, suggesting that asbestos exposure may compromise the Fus1-mediated inflammatory response. Untreated Fus1(-/-) mice had an ~eight-fold higher proportion of peritoneal granulocytes than Fus1(+/+) mice, pointing at ongoing chronic inflammation. Fus1(-/-) mice exhibited a perturbed inflammatory response to asbestos, reflected in decreased immune organ weight and peritoneal fluid protein concentration, along with an increased proportion of peritoneal macrophages. Fus1(-/-) immune cells showed augmented asbestos-induced activation of key inflammatory, anti-oxidant and genotoxic stress response proteins ERK1/2, NFκB, SOD2, γH2AX, etc. Moreover, Fus1(-/-) mice demonstrated altered dynamics of pro- and anti-inflammatory cytokine expression, such as IFNγ, TNFα, IL-1A, IL-1B and IL-10. 'Late' response cytokine Ccl5 was persistently under-expressed in Fus1(-/-) immune cells at both basal and asbestos-activated states. We observed an asbestos-related difference in the size of CD3(+) CD4(-) CD8(-) DN T cell subset that was expanded four-fold in Fus1(-/-) mice. Finally, we demonstrated Fus1-dependent basal and asbestos-induced changes in major mitochondrial parameters (ROS production, mitochondrial potential and UCP2 expression) in Fus1(-/-) immune cells and in Fus1-depleted cancer cells, thus supporting our hypothesis that Fus1 establishes its immune- and tumour-suppressive activities via regulation of mitochondrial homeostasis.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Medicine, Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | | | |
Collapse
|
5
|
Shukla A, Hillegass JM, MacPherson MB, Beuschel SL, Vacek PM, Butnor KJ, Pass HI, Carbone M, Testa JR, Heintz NH, Mossman BT. ERK2 is essential for the growth of human epithelioid malignant mesotheliomas. Int J Cancer 2011; 129:1075-86. [PMID: 21710492 DOI: 10.1002/ijc.25763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 10/19/2010] [Indexed: 11/09/2022]
Abstract
Members of the extracellular signal-regulated kinase (ERK) family may have distinct roles in the development of cell injury and repair, differentiation and carcinogenesis. Here, we show, using a synthetic small-molecule MEK1/2 inhibitor (U0126) and RNA silencing of ERK1 and 2, comparatively, that ERK2 is critical to transformation and homeostasis of human epithelioid malignant mesotheliomas (MMs), asbestos-induced tumors with a poor prognosis. Although MM cell (HMESO) lines stably transfected with shERK1 or shERK2 both exhibited significant decreases in cell proliferation in vitro, injection of shERK2 cells, and not shERK1 cells, into immunocompromised severe combined immunodeficiency (SCID) mice showed significant attenuated tumor growth in comparison to shControl (shCon) cells. Inhibition of migration, invasion and colony formation occurred in shERK2 MM cells in vitro, suggesting multiple roles of ERK2 in neoplasia. Microarray and quantitative real-time PCR analyses revealed gene expression that was significantly increased (CASP1, TRAF1 and FAS) or decreased (SEMA3E, RPS6KA2, EGF and BCL2L1) in shERK2-transfected MM cells in contrast to shCon-transfected MM cells. Most striking decreases were observed in mRNA levels of Semaphorin 3 (SEMA3E), a candidate tumor suppressor gene linked to inhibition of angiogenesis. These studies demonstrate a key role of ERK2 in novel gene expression critical to the development of epithelioid MMs. After injection of sarcomatoid human MM (PPMMill) cells into SCID mice, both shERK1 and shERK2 lines showed significant decreased tumor growth, suggesting heterogeneous effects of ERKs in individual MMs.
Collapse
Affiliation(s)
- Arti Shukla
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:76-121. [PMID: 21534086 PMCID: PMC3118517 DOI: 10.1080/10937404.2011.556047] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lung carcinomas and pulmonary fibrosis (asbestosis) occur in asbestos workers. Understanding the pathogenesis of these diseases is complicated because of potential confounding factors, such as smoking, which is not a risk factor in mesothelioma. The modes of action (MOA) of various types of asbestos in the development of lung cancers, asbestosis, and mesotheliomas appear to be different. Moreover, asbestos fibers may act differentially at various stages of these diseases, and have different potencies as compared to other naturally occurring and synthetic fibers. This literature review describes patterns of deposition and retention of various types of asbestos and other fibers after inhalation, methods of translocation within the lung, and dissolution of various fiber types in lung compartments and cells in vitro. Comprehensive dose-response studies at fiber concentrations inhaled by humans as well as bivariate size distributions (lengths and widths), types, and sources of fibers are rarely defined in published studies and are needed. Species-specific responses may occur. Mechanistic studies have some of these limitations, but have suggested that changes in gene expression (either fiber-catalyzed directly or by cell elaboration of oxidants), epigenetic changes, and receptor-mediated or other intracellular signaling cascades may play roles in various stages of the development of lung cancers or asbestosis.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:179-245. [PMID: 21534089 PMCID: PMC3118525 DOI: 10.1080/10937404.2011.556051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided.
Collapse
Affiliation(s)
- Sarah X. L. Huang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marie-Claude Jaurand
- INSERM (Institut National de la Santé et de la Recherche Médicale), Paris, France
| | - David W. Kamp
- Pulmonary & Critical Care Medicine, Northwestern University Feinberg School of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Whysner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Tom K. Hei
- Address correspondence to Tom K. Hei, Center for Radiological Research, College of Physicians and Surgeons, Columbia University. 630 West 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
8
|
Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT. Assessing nanotoxicity in cells in vitro. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:219-31. [PMID: 20063369 PMCID: PMC2854858 DOI: 10.1002/wnan.54] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanomaterials are commonly defined as particles or fibers of less than 1 microm in diameter. For these reasons, they may be respirable in humans and have the potential, based upon their geometry, composition, size, and transport or durability in the body, to cause adverse effects on human health, especially if they are inhaled at high concentrations. Rodent inhalation models to predict the toxicity and pathogenicity of nanomaterials are prohibitive in terms of time and expense. For these reasons, a panel of in vitro assays is described below. These include cell culture assays for cytotoxicity (altered metabolism, decreased growth, lytic or apoptotic cell death), proliferation, genotoxicity, and altered gene expression. The choice of cell type for these assays may be dictated by the procedure or endpoint selected. Most of these assays have been standardized in our laboratory using pathogenic minerals (asbestos and silica) and non-pathogenic particles (fine titanium dioxide or glass beads) as negative controls. The results of these in vitro assays should predict whether testing of selected nanomaterials should be pursued in animal inhalation models that simulate physiologic exposure to inhaled nanomaterials. Conversely, intrathoracic or intrapleural injection of nanomaterials into rodents can be misleading because they bypass normal clearance mechanisms, and non-pathogenic fibers and particles can test positively in these assays.
Collapse
|
9
|
Heintz NH, Janssen-Heininger YMW, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol 2010; 42:133-9. [PMID: 20068227 DOI: 10.1165/rcmb.2009-0206tr] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fifteen years have passed since we published findings in the AJRCMB demonstrating that induction of early response fos/jun proto-oncogenes in rodent tracheal and mesothelial cells correlates with fibrous geometry and pathogenicity of asbestos. Our study was the first to suggest that the aberrant induction of signaling responses by crocidolite asbestos and erionite, a fibrous zeolite mineral associated with the development of malignant mesotheliomas (MMs) in areas of Turkey, led to altered gene expression. New data questioned the widely held belief at that time that the carcinogenic effects of asbestos in the development of lung cancer and MM were due to genotoxic or mutagenic effects. Later studies by our group revealed that proto-oncogene expression and several of the signaling pathways activated by asbestos were redox dependent, explaining why antioxidants and antioxidant enzymes were elevated in lung and pleura after exposure to asbestos and how they alleviated many of the phenotypic and functional effects of asbestos in vitro or after inhalation. Since these original studies, our efforts have expanded to understand the interface between asbestos-induced redox-dependent signal transduction cascades, the relationship between these pathways and cell fate, and the role of asbestos and cell interactions in development of asbestos-associated diseases. Of considerable significance is the fact that the signal transduction pathways activated by asbestos are also important in survival and chemoresistance of MMs and lung cancers. An understanding of the pathogenic features of asbestos fibers and dysregulation of signaling pathways allows strategies for the prevention and therapy of asbestos-related diseases.
Collapse
Affiliation(s)
- Nicholas H Heintz
- Department of Pathology, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405-0068, USA
| | | | | |
Collapse
|
10
|
|
11
|
Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2009; 1:511-29. [PMID: 20049814 PMCID: PMC2864601 DOI: 10.1002/wnan.41] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human diseases associated with exposure to asbestos fibers include pleural fibrosis and plaques, pulmonary fibrosis (asbestosis), lung cancer, and diffuse malignant mesothelioma. The critical determinants of fiber bioactivity and toxicity include not only fiber dimensions, but also shape, surface reactivity, crystallinity, chemical composition, and presence of transition metals. Depending on their size and dimensions, inhaled fibers can penetrate the respiratory tract to the distal airways and into the alveolar spaces. Fibers can be cleared by several mechanisms, including the mucociliary escalator, engulfment, and removal by macrophages, or through splitting and chemical modification. Biopersistence of long asbestos fibers can lead to inflammation, granuloma formation, fibrosis, and cancer. Exposure to synthetic carbon nanomaterials, including carbon nanofibers and carbon nanotubes (CNTs), is considered a potential health hazard because of their physical similarities with asbestos fibers. Respiratory exposure to CNTs can produce an inflammatory response, diffuse interstitial fibrosis, and formation of fibrotic granulomas similar to that observed in asbestos-exposed animals and humans. Given the known cytotoxic and carcinogenic properties of asbestos fibers, toxicity of fibrous nanomaterials is a topic of intense study. The mechanisms of nanomaterial toxicity remain to be fully elucidated, but recent evidence suggests points of similarity with asbestos fibers, including a role for generation of reactive oxygen species, oxidative stress, and genotoxicity. Considering the rapid increase in production and use of fibrous nanomaterials, it is imperative to gain a thorough understanding of their biologic activity to avoid the human health catastrophe that has resulted from widespread use of asbestos fibers.
Collapse
Affiliation(s)
- Vanesa C. Sanchez
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Jodie R. Pietruska
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Nathan R. Miselis
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Robert H. Hurt
- Division of Engineering, Brown University, Providence, RI, USA
| | - Agnes B. Kane
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
Abstract
Asbestos causes asbestosis (pulmonary fibrosis caused by asbestos inhalation) and malignancies (bronchogenic carcinoma and mesothelioma) by mechanisms that are not fully elucidated. Despite a dramatic reduction in asbestos use worldwide, asbestos-induced lung diseases remain a substantial health concern primarily because of the vast amounts of fibers that have been mined, processed, and used during the 20th century combined with the long latency period of up to 40 years between exposure and disease presentation. This review summarizes the important new epidemiologic and pathogenic information that has emerged over the past several years. Whereas the development of asbestosis is directly associated with the magnitude and duration of asbestos exposure, the development of a malignant clone of cells can occur in the setting of low-level asbestos exposure. Emphasis is placed on the recent epidemiologic investigations that explore the malignancy risk that occurs from nonoccupational, environmental asbestos exposure. Accumulating studies are shedding light on novel mechanistic pathways by which asbestos damages the lung. Attention is focused on the importance of alveolar epithelial cell (AEC) injury and repair, the role of iron-derived reactive oxygen species (ROS), and apoptosis by the p53- and mitochondria-regulated death pathways. Furthermore, recent evidence underscores crucial roles for specific cellular signaling pathways that regulate the production of cytokines and growth factors. An evolving role for epithelial-mesenchymal transition (EMT) is also reviewed. The translational significance of these studies is evident in providing the molecular basis for developing novel therapeutic strategies for asbestos-related lung diseases and, importantly, other pulmonary diseases, such as interstitial pulmonary fibrosis and lung cancer.
Collapse
Affiliation(s)
- David W Kamp
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical Center, Chicago, Ill 60611-3010, USA.
| |
Collapse
|
13
|
Germann PG, Doelemeyer A, Kohler M, Mecklenburg L, Noguchi C, Nolte T, Persohn E, Seeliger F, Wendt M, Wöhrmann T. Current Status of Automation in the Process of Visualisation and Analysis: What is important for Toxicologic Pathology? J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | | | | | - Chihiro Noguchi
- Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Company Ltd
| | | | | | | | | | | |
Collapse
|