1
|
Jia S, Luo H, Liu X, Fan X, Huang Z, Lu S, Shen L, Guo S, Liu Y, Wang Z, Cao L, Cao Z, Zhang X, Zhou W, Zhang J, Li J, Wu J, Xiao W. Dissecting the novel mechanism of reduning injection in treating Coronavirus Disease 2019 (COVID-19) based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113871. [PMID: 33485971 PMCID: PMC7825842 DOI: 10.1016/j.jep.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 05/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 μg crude drugs/mL (2.405 μg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.
Collapse
Affiliation(s)
- Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Liangliang Shen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Liang Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Zeyu Cao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Xinzhuang Zhang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China.
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China; The Key Laboratory for the New Technique Research of TCM Extraction and Purification, Lianyungang, Jiangsu, 222047, China.
| |
Collapse
|
2
|
Howe HS, Leung BPL. Anti-Cytokine Autoantibodies in Systemic Lupus Erythematosus. Cells 2019; 9:E72. [PMID: 31892200 PMCID: PMC7016754 DOI: 10.3390/cells9010072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023] Open
Abstract
Cytokine dysregulation is characteristic of systemic lupus erythematosus (SLE), a systemic autoimmune disease of considerable heterogeneity. Insights gained about the cytokine dysregulation in SLE have the potential for identifying patient subsets before the onset of clinical disease and during established disease. Clustering patients by cytokine and disease activity subsets is more informative than isolated cytokine studies, as both pro inflammatory and immunoregulatory cytokines contribute to the cytokine dysregulated state in SLE. Endogenous anti-cytokine autoantibodies (ACAAs) may be involved in the regulation of cytokine biology by reducing excessive production or by prolonging their half-life in the circulation through the formation of cytokine-antibody immune complexes. Although endogenous ACAAs may have deleterious effects such as contributing to immunodeficiency states, their role in the pathophysiology of autoimmune conditions such as SLE has yet to be clearly elucidated. The aim of the present article is to provide a focused review of the current knowledge of ACAAs in SLE.
Collapse
Affiliation(s)
- Hwee Siew Howe
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Bernard Pui Lam Leung
- Department of Rheumatology, Allergy and Immunology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Singapore Institute of Technology, Singapore 138683, Singapore
| |
Collapse
|
3
|
Florence JM, Krupa A, Booshehri LM, Allen TC, Kurdowska AK. Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1. PLoS One 2017; 12:e0171427. [PMID: 28166283 PMCID: PMC5293219 DOI: 10.1371/journal.pone.0171427] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/20/2017] [Indexed: 01/05/2023] Open
Abstract
The atherosclerotic process begins when vascular endothelial cells undergo pro-inflammatory changes such as aberrant activation to dysfunctional phenotypes and apoptosis, leading to loss of vascular integrity. Our laboratory has demonstrated that exposure of mice to second hand smoke triggers an increase in expression of metalloproteinase-9. Further, metalloproteinase-9 released by second hand smoke-activated leukocytes may propagate pro-atherogenic alterations in endothelial cells. We have shown that levels of metalloproteinase-9 were increased in the plasma from apolipoprotein E deficient (ApoE-/-) mice exposed to second hand smoke relative to non-exposed controls. Moreover, we have collected data from two different, but complementary, treatments of second hand smoke exposed atherosclerotic mice. Animals received either cell specific metalloproteinase-9 directed siRNA to minimize metalloproteinase-9 expression in neutrophils and endothelial cells, or a pharmacological inhibitor of Bruton's tyrosine kinase which indirectly limits metalloproteinase-9 production in neutrophils. These treatments reduced atherosclerotic changes in mice and improved overall vascular health. We also demonstrated that metalloproteinase-9 could activate endothelial cells and induce their apoptosis via cleavage of protease activated receptor-1. In summary, better understanding of metalloproteinase-9's pathogenic capabilities as well as novel signaling pathways involved may lead to development of treatments which may provide additional benefits to atherosclerosis patients with a history of second hand smoke exposure.
Collapse
Affiliation(s)
- Jon M. Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Laela M. Booshehri
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Timothy C. Allen
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anna K. Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| |
Collapse
|
4
|
Buač M, Mojsilović S, Mišić D, Vuković D, Savić O, Valčić O, Marković D, Gvozdić D, Ilić V, Fratrić N. Circulating immune complexes of calves with bronchopneumonia modulate the function of peripheral blood leukocytes: In vitro evaluation. Res Vet Sci 2016; 106:135-42. [DOI: 10.1016/j.rvsc.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/09/2016] [Accepted: 04/03/2016] [Indexed: 12/29/2022]
|
5
|
Krupa A, Fol M, Rahman M, Stokes KY, Florence JM, Leskov IL, Khoretonenko MV, Matthay MA, Liu KD, Calfee CS, Tvinnereim A, Rosenfield GR, Kurdowska AK. Silencing Bruton's tyrosine kinase in alveolar neutrophils protects mice from LPS/immune complex-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 307:L435-48. [PMID: 25085625 DOI: 10.1152/ajplung.00234.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous observations made by our laboratory indicate that Bruton's tyrosine kinase (Btk) may play an important role in the pathophysiology of local inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). We have shown that there is cross talk between FcγRIIa and TLR4 in alveolar neutrophils from patients with ALI/ARDS and that Btk mediates the molecular cooperation between these two receptors. To study the function of Btk in vivo we have developed a unique two-hit model of ALI: LPS/immune complex (IC)-induced ALI. Furthermore, we conjugated F(ab)2 fragments of anti-neutrophil antibodies (Ly6G1A8) with specific siRNA for Btk to silence Btk specifically in alveolar neutrophils. It should be stressed that we are the first group to perform noninvasive transfections of neutrophils, both in vitro and in vivo. Importantly, our present findings indicate that silencing Btk in alveolar neutrophils has a dramatic protective effect in mice with LPS/IC-induced ALI, and that Btk regulates neutrophil survival and clearance of apoptotic neutrophils in this model. In conclusion, we put forward a hypothesis that Btk-targeted neutrophil specific therapy is a valid goal of research geared toward restoring homeostasis in lungs of patients with ALI/ARDS.
Collapse
Affiliation(s)
- Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas; Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marek Fol
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas; Department of Immunology and Infectious Biology, University of Lodz, Lodz, Poland
| | - Moshiur Rahman
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jon M Florence
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Igor L Leskov
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Mikhail V Khoretonenko
- Department of Molecular and Cellular Physiology and Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Kathleen D Liu
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, University of California, San Francisco, California; and
| | - Amy Tvinnereim
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Gabriel R Rosenfield
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Anna K Kurdowska
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas;
| |
Collapse
|
6
|
Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol 2013; 306:L217-30. [PMID: 24318116 DOI: 10.1152/ajplung.00311.2013] [Citation(s) in RCA: 287] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening lung condition resulting from direct and indirect insults to the lung. It is characterized by disruption of the endothelial-epithelial barrier, alveolar damage, pulmonary edema, and respiratory failure. A key feature of ARDS is the accumulation of neutrophils in the lung microvasculature, interstitium, and alveolar space. Despite a clear association between neutrophil influx into the lung and disease severity, there is some debate as to whether neutrophils directly contribute to disease pathogenesis. The primary function of neutrophils is to provide immediate host defense against pathogenic microorganisms. Neutrophils release numerous antimicrobial factors such as reactive oxygen species, proteinases, and neutrophil extracellular traps. However, these factors are also toxic to host cells and can result in bystander tissue damage. The excessive accumulation of neutrophils in ARDS may therefore contribute to disease progression. Central to neutrophil recruitment is the release of chemokines, including the archetypal neutrophil chemoattractant IL-8, from resident pulmonary cells. However, the chemokine network in the inflamed lung is complex and may involve several other chemokines, including CXCL10, CCL2, and CCL7. This review will therefore focus on the experimental and clinical evidence supporting neutrophils as key players in ARDS and the chemokines involved in recruiting them into the lung.
Collapse
Affiliation(s)
- Andrew E Williams
- Centre for Inflammation and Tissue Repair, Univ. College London, Rayne Institute, 5 Univ. St., London WC1E 6JF, UK.
| | | |
Collapse
|
7
|
Abstract
Cytokines and growth factors play an integral role in the maintenance of immune homeostasis, the generation of protective immunity, and lung reparative processes. However, the dysregulated expression of cytokines and growth factors in response to infectious or noxious insults can initiate and perpetuate deleterious lung inflammation and fibroproliferation. In this article, we will comprehensively review the contribution of individual cytokines and growth factors and cytokine networks to key pathophysiological events in human and experimental acute lung injury (ALI), including inflammatory cell recruitment and activation, alveolar epithelial injury and repair, angiogenesis, and matrix deposition and remodeling. The application of cytokines/growth factors as prognostic indicators and therapeutic targets in human ALI is explored.
Collapse
Affiliation(s)
- Jane C Deng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, Los Angeles, CA, USA
| | | |
Collapse
|
8
|
Abstract
Acute lung injury is a complex clinical syndrome involving acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure culminating in often-fatal acute respiratory distress syndrome. Interleukin 8 (IL-8), a potent neutrophil attractant and activator, plays a significant role in acute lung injury via the formation of anti-IL-8 autoantibody:IL-8 complexes and those complexes' interaction with FcγRIIa receptors, leading to the development of acute lung injury by, among other possible mechanisms, effecting neutrophil apoptosis. These complexes may also interact with lung endothelial cells in patients with acute respiratory distress syndrome. Continuing research of the role of neutrophils, IL-8, anti-IL-8 autoantibody:IL-8 complexes, and FcγRIIa receptors may ultimately provide molecular therapies that could lower acute respiratory distress syndrome mortality, as well as reduce or even prevent the development of acute lung injury altogether.
Collapse
Affiliation(s)
- Timothy Craig Allen
- From the Departments of Pathology (Dr Allen) and Biochemistry (Dr Kurdowska), University of Texas Health Science Center at Tyler. Dr Allen is now located at the University of Texas Medical Branch at Galveston, Texas
| | | |
Collapse
|
9
|
Krupa A, Fudala R, Florence JM, Tucker T, Allen TC, Standiford TJ, Luchowski R, Fol M, Rahman M, Gryczynski Z, Gryczynski I, Kurdowska AK. Bruton's tyrosine kinase mediates FcγRIIa/Toll-like receptor-4 receptor crosstalk in human neutrophils. Am J Respir Cell Mol Biol 2012; 48:240-9. [PMID: 23239500 DOI: 10.1165/rcmb.2012-0039oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Previous observations by our laboratory indicate that the presence of anti-IL-8 autoantibody:IL-8 immune complexes in lung fluids from patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS) comprises an important prognostic indicator in the development and ultimate outcome of ALI/ARDS. We also showed that these complexes display proinflammatory activity toward neutrophils through the engagement of FcγRIIa receptors. Because sepsis is one of the most common risk factors for ALI/ARDS, the initial goal of our present study involved investigating the effects of LPS on the expression of FcγRIIa receptors in neutrophils. Our results indicate that LPS triggers an increase in the expression of FcγRIIa on the neutrophil surface, which leads to shortening of the molecular distance between FcγRIIa and Toll-like receptor-4 (TLR4). When such neutrophils are stimulated with anti-IL-8:IL-8 complexes, the TLR4 cascade becomes activated via the engagement of FcγRIIa. The underlying molecular mechanism has been subsequently examined and involves Bruton's tyrosine kinase (Btk). In conclusion, our study reveals the existence of Btk-dependent molecular cooperation between FcγRIIa and TLR4 signaling cascades in LPS-"primed" human neutrophils. Furthermore, we used fluorescence lifetime imaging to study the interactions between TLR4 and FcγRIIa in human alveolar neutrophils from patients with ALI/ARDS. The results from these experiments confirm the existence of the molecular cooperation between TLR4 and FcγRIIa.
Collapse
Affiliation(s)
- Agnieszka Krupa
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gan X, Liu D, Huang P, Gao W, Chen X, Hei Z. Mast-cell-releasing tryptase triggers acute lung injury induced by small intestinal ischemia-reperfusion by activating PAR-2 in rats. Inflammation 2012; 35:1144-53. [PMID: 22200983 DOI: 10.1007/s10753-011-9422-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mast cell has been demonstrated to be involved in the small intestinal ischemia-reperfusion (IIR) injury, however, the precise role of tryptase released from mast cell on acute lung injury(ALI) induced by IIR remains to be elucidated, our study aimed to observe the roles of tryptase on ALI triggered by IIR and its underlying mechanism. Adult SD rats were randomized into sham-operated group, sole IIR group in which rats were subjected to 75 min superior mesenteric artery occlusion followed by 4 h reperfusion, or IIR being respectively treated with cromolyn sodium, protamine, and compound 48/80. The above agents were, respectively, administrated intravenously 5 min before reperfusion. At the end of experiment, lung tissue was obtained for assays for protein expressions of tryptase and mast cell protease 7 (MCP7) and protease-activated receptor 2 (PAR-2). Pulmonary mast cell number and levels of IL-8 were quantified. Lung histologic injury scores and lung water content were measured. IIR resulted in lung injury evidenced as significant increases in lung histological scores and lung water contents, accompanied with concomitant increases of expressions of tryptase and MCP7, and elevations in PAR-2 expressions and IL-8 levels in lungs. Stabilizing mast cell with cromolyn sodium and inhibiting tryptase with protamine significantly reduced IIR-mediated ALI and the above biochemical changes while activating mast cell with compound 48/80 further aggravated IIR-mediated ALI and the increases of above parameters. Tryptase released from mast cells mediates ALI induced by intestinal ischemia-reperfusion by activating PAR-2 to produce IL-8.
Collapse
Affiliation(s)
- Xiaoliang Gan
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
11
|
Nielsen CH, Bendtzen K. Immunoregulation by naturally occurring and disease-associated autoantibodies : binding to cytokines and their role in regulation of T-cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 750:116-32. [PMID: 22903670 PMCID: PMC7123141 DOI: 10.1007/978-1-4614-3461-0_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of naturally occurring autoantibodies (NAbs) in homeostasis and in disease manifestations is poorly understood. In the present chapter, we review how NAbs may interfere with the cytokine network and how NAbs, through formation of complement-activating immune complexes with soluble self-antigens, may promote the uptake and presentation of self-molecules by antigen-presenting cells. Both naturally occurring and disease-associated autoantibodies against a variety of cytokines have been reported, including NAbs against interleukin (IL)-1α, IL-6, IL-8, IL-10, granulocyte-macrophage colony-stimulating factor, interferon (IFN)-α, IFN-β, IFN-γ, macrophage chemotactic protein-1 and IL-21. NAbs against a variety of other self-antigens have also been reported, and using thyroglobulin as an example we discuss how NAbs are capable of promoting uptake of immune complexes via complement receptors and Fc-receptors on antigen-presenting cells and thereby regulate T-cell activity. Knowledge of the influence of NAbs against cytokines on immune homeostasis is likely to have wide-ranging implications both in understanding pathogenesis and in treatment of many immunoinflammatory disorders, including a number of autoimmune and autoinflammatory diseases.
Collapse
Affiliation(s)
- Claus H Nielsen
- Institute for Inflammation Research, Department of Rheumatology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
12
|
Xie T, Liang J, Liu N, Wang Q, Li Y, Noble PW, Jiang D. MicroRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. THE JOURNAL OF IMMUNOLOGY 2012; 188:2437-44. [PMID: 22287715 DOI: 10.4049/jimmunol.1101070] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The molecular mechanisms of acute lung injury are incompletely understood. MicroRNAs (miRNAs) are crucial biological regulators that act by suppressing their target genes and are involved in a variety of pathophysiologic processes. miR-127 appears to be downregulated during lung injury. We set out to investigate the role of miR-127 in lung injury and inflammation. Expression of miR-127 significantly reduced cytokine release by macrophages. Looking into the mechanisms of regulation of inflammation by miR-127, we found that IgG FcγRI (CD64) was a target of miR-127, as evidenced by reduced CD64 protein expression in macrophages overexpressing miR-127. Furthermore, miR-127 significantly reduced the luciferase activity with a reporter construct containing the native 3' untranslated region of CD64. Importantly, we demonstrated that miR-127 attenuated lung inflammation in an IgG immune complex model in vivo. Collectively, these data show that miR-127 targets macrophage CD64 expression and promotes the reduction of lung inflammation. Understanding how miRNAs regulate lung inflammation may represent an attractive way to control inflammation induced by infectious or noninfectious lung injury.
Collapse
Affiliation(s)
- Ting Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Degree of endothelium injury promotes fibroelastogenesis in experimental acute lung injury. Respir Physiol Neurobiol 2010; 173:179-88. [DOI: 10.1016/j.resp.2010.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 11/24/2022]
|
14
|
Gallo P, Gonçalves R, Mosser DM. The influence of IgG density and macrophage Fc (gamma) receptor cross-linking on phagocytosis and IL-10 production. Immunol Lett 2010; 133:70-7. [PMID: 20670655 DOI: 10.1016/j.imlet.2010.07.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/27/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
Abstract
We have previously demonstrated that the addition of immune complexes (IC) to stimulated macrophages could profoundly influence cytokine production. In the present work we sought to determine the density of IgG on immune complexes necessary to mediate phagocytosis, inhibit IL-12 production and induce IL-10 production from stimulated macrophages. We developed immune complexes with predictable average densities of surface-bound immunoglobulin. We show that a threshold amount of IgG was necessary to mediate attachment of IC to macrophages. At progressively higher densities of IgG, Fc receptor-mediated phagocytosis resulted in an inhibition of IL-12 production and then an induction of IL-10. The reciprocal alterations in these two cytokines occurred when as little as one optimally opsonized SRBC was bound per macrophage. Macrophage IL-10 induction by immune complexes was associated with the activation of the MAP kinase, ERK, which was progressively increased as a function of IgG density. We conclude that signal transduction through the macrophage Fcγ receptors vary as a function of signal strength. At moderate IgG densities, especially in the presence of complement, efficient phagocytosis occurs in the absence of cytokine alterations. At slightly higher IgG densities IL-12 production is shut off and eventually IL-10 induction occurs. Thus, the myriad events emanating from FcγR ligation depends on the density of immune complexes, allowing the Fc receptors to fine-tune cellular responses depending on the extent of receptor cross-linking.
Collapse
Affiliation(s)
- Paul Gallo
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
15
|
Does activation of the FcgammaRIIa play a role in the pathogenesis of the acute lung injury/acute respiratory distress syndrome? Clin Sci (Lond) 2010; 118:519-26. [PMID: 20088831 PMCID: PMC2811426 DOI: 10.1042/cs20090422] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
ALI (acute lung injury) and its more severe form ARDS (acute respiratory distress syndrome) are inflammatory diseases of the lung characterized by hypoxaemia and diffuse bilateral infiltrates. Disruption of epithelial integrity and injury to endothelium are contributing factors of the development of ALI/ARDS, and alveolar damage is the most pronounced feature of ALI/ARDS. The resulting increase in lung microvascular permeability promotes influx of inflammatory cells to the alveolar spaces. Oedema fluid contains pro-nflammatory mediators and plasma proteins, including Igs (immunoglobulins). Moreover, several reports describe the presence of autoantibodies and immune complexes [anti-IL-8 (interleukin-8) autoantibody/IL-8 complexes] in lung fluids (oedema and bronchoalveolar lavage fluids) from patients with ALI/ARDS. These immune complexes associate with FcgammaRIIa (Fcgamma IIa receptor) in lungs of patients with ARDS. Furthermore, the expression of FcgammaRIIa is substantially elevated in lungs of these patients. FcgammaRIIa appears on virtually all myeloid cells, platelets and endothelial cells. It is a low-affinity receptor for IgG that preferentially binds aggregated immunoglobulins and immune complexes. FcgammaRs regulate phagocytosis and cell-mediated cytotoxicity, and initiate the release of inflammatory mediators. It should be noted that immune complexes formed between either anti-neutrophil autoantibodies and their specific antigens or anti-HLA (human leucocyte antigen) antibodies and target antigens are implicated in the pathogenesis of TRALI (transfusion-related acute lung injury), and importantly, animal studies indicate that FcgammaRs are essential for these complexes to cause damage to the lungs. Therefore, we hypothesize that FcgammaRs such as FcgammaRIIa could contribute to the pathogenesis of ALI/ARDS.
Collapse
|