1
|
Jiang L, Zhang J, Fang M, Qin Y, Huang Y, Tao R. Analysis of subgingival micro-organisms based on multi-omics and Treg/Th17 balance in type 2 diabetes with/without periodontitis. Front Microbiol 2022; 13:939608. [PMID: 36519166 PMCID: PMC9743466 DOI: 10.3389/fmicb.2022.939608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/10/2022] [Indexed: 01/02/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and periodontitis are common and interrelated diseases, resulting in altered host response microbiota. The subgingival micro-organisms play a key role in periodontitis pathogenesis. To assess the shift of subgingival microbiome and metabolome in T2DM, we performed an analysis of the subgingival microbiome in patients with T2DM (n = 20) compared with non-diabetes (ND) subjects (n = 21). Furthermore, patients were subdivided into 10 T2DM with periodontitis (DP), 10 T2DM without periodontitis (DNP), 10 periodontitis (P), and 11 healthy control (H) groups. 16SrRNA gene sequencing combined with ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS) based metabolomics was performed in all participants. T lymphocyte immunity was analyzed by flow cytometry. Furthermore, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were analyzed. The results showed that the difference of the subgingival microbiome from healthy to periodontitis status was less prominent in T2DM compared with ND, though the clinical signs of disease were similar. The bacteria Eubacterium nodatum group, Filifactor, Fretibacterium, Peptostreptococcus, and Desulfovibrio, amongst others, may be important in the pathopoiesia of periodontitis in the T2DM state. In addition, some dominant bacteria showed network relationships. The Treg/Th17 ratio was lower in the DP and DNP groups than in the P and H groups-though that of P was lower than for H. The percentage of CD4+/CD8+ PD1 and CD8+ PDL1 was higher in the DP and DNP groups than in the H group; the percentage of CD8+ PDL1 was higher in the DP than P groups. Subgingival micro-organisms in periodontitis had a significant metabolic shift in terms of their signature metabolites. Butyrate metabolism and phenylalanine metabolism may play a role in the pathogenesis of periodontitis with/without T2DM. Specifically, biphenyl degradation, tryptophan metabolism, and the two-component system may play important roles in periodontitis with T2DM. Lastly, the network relationship among subgingival micro-organisms, metabolites, blood glucose level, and T lymphocyte immunity were unbalanced. This study identified the changes in the subgingival microbiome associated with periodontitis in T2DM, as well as the associated network between bacterial flora, metabolism dysbiosis, and immune regulation.
Collapse
Affiliation(s)
- Lanlan Jiang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| | - Jiaming Zhang
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
| | - Meifei Fang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuxiao Huang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
| | - Renchuan Tao
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction for Oral and Maxillofacial Research, Nanning, China
| |
Collapse
|
2
|
Worthington AK, Cool T, Poscablo DM, Hussaini A, Beaudin AE, Forsberg EC. IL7Rα, but not Flk2, is required for hematopoietic stem cell reconstitution of tissue-resident lymphoid cells. Development 2022; 149:274067. [PMID: 35072209 PMCID: PMC8917444 DOI: 10.1242/dev.200139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022]
Abstract
Tissue-resident lymphoid cells (TLCs) span the spectrum of innate-to-adaptive immune function. Unlike traditional, circulating lymphocytes that are continuously generated from hematopoietic stem cells (HSCs), many TLCs are of fetal origin and poorly generated from adult HSCs. Here, we sought to further understand murine TLC development and the roles of Flk2 and IL7Rα, two cytokine receptors with known function in traditional lymphopoiesis. Using Flk2- and Il7r-Cre lineage tracing, we found that peritoneal B1a cells, splenic marginal zone B (MZB) cells, lung ILC2s and regulatory T cells (Tregs) were highly labeled. Despite high labeling, loss of Flk2 minimally affected the generation of these cells. In contrast, loss of IL7Rα, or combined deletion of Flk2 and IL7Rα, dramatically reduced the number of B1a cells, MZBs, ILC2s and Tregs, both in situ and upon transplantation, indicating an intrinsic and essential role for IL7Rα. Surprisingly, reciprocal transplants of wild-type HSCs showed that an IL7Rα−/− environment selectively impaired reconstitution of TLCs when compared with TLC numbers in situ. Taken together, our data defined Flk2- and IL7Rα-positive TLC differentiation paths, and revealed functional roles of Flk2 and IL7Rα in TLC establishment. Summary: Tissue-resident lymphoid cells develop via IL7Rα-positive progenitors and are repopulated by transplanted adult hematopoietic stem cells; however, such TLC lymphopoiesis cannot be fully rescued in IL7Rα−/− recipient mice.
Collapse
Affiliation(s)
- Atesh K Worthington
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Taylor Cool
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Donna M Poscablo
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Program in Biomedical Science and Engineering: Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Adeel Hussaini
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anna E Beaudin
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.,Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Park SC, Shim D, Kim H, Bak Y, Choi DY, Yoon JH, Kim CH, Shin SJ. Fms-Like Tyrosine Kinase 3-Independent Dendritic Cells Are Major Mediators of Th2 Immune Responses in Allergen-Induced Asthmatic Mice. Int J Mol Sci 2020; 21:ijms21249508. [PMID: 33327561 PMCID: PMC7765069 DOI: 10.3390/ijms21249508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DCs) are the main mediators of Th2 immune responses in allergic asthma, and Fms-like tyrosine kinase 3 ligand (Flt3L) is an important growth factor for the development and homeostasis of DCs. This study identified the DC populations that primarily cause the initiation and development of allergic lung inflammation using Fms-like tyrosine kinase 3 (Flt3) knockout (KO) mice with allergen-induced allergic asthma. We observed type 2 allergic lung inflammation with goblet cell hyperplasia in Flt3 KO mice, despite a significant reduction in total DCs, particularly CD103+ DCs, which was barely detected. In addition, bone marrow-derived dendritic cells (BMDCs) from Flt3 KO mice directed Th2 immune responses in vitro, and the adoptive transfer of these BMDCs exacerbated allergic asthma with more marked Th2 responses than that of BMDCs from wild-type (WT) mice. Furthermore, we found that Flt3L regulated the in vitro expression of OX40 ligand (OX40L) in DCs, which is correlated with DC phenotype in in vivo models. In conclusion, we revealed that Flt3-independent CD11b+ DCs direct Th2 responses with the elevated OX40L and are the primary cause of allergic asthma. Our findings suggest that Flt3 is required to control type 2 allergic inflammation.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Korea;
| | - Dahee Shim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
| | - Hongmin Kim
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Yeeun Bak
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea; (D.S.); (H.K.); (Y.B.)
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Da Yeon Choi
- Hallym University Industry-Academic Cooperation Foundation, Chuncheon 24252, Korea;
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul 03722, Korea;
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| | - Sung Jae Shin
- Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Global Research Laboratory for Allergic Airway Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: (C.-H.K.); (S.J.S.); Tel.: +82-2-2228-3609 (C.-H.K.); +82-2-2228-1813 (S.J.S.)
| |
Collapse
|
4
|
Li DY, Xiong XZ. ICOS + Tregs: A Functional Subset of Tregs in Immune Diseases. Front Immunol 2020; 11:2104. [PMID: 32983168 PMCID: PMC7485335 DOI: 10.3389/fimmu.2020.02104] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 01/02/2023] Open
Abstract
Recent studies have reported the pathological effect of ICOS+ T cells, but ICOS signals also widely participate in anti-inflammatory responses, particularly ICOS+ regulatory T (Treg) cells. The ICOS signaling pathway endows Tregs with increased generation, proliferation, and survival abilities. Furthermore, there is enough evidence to suggest a superior capacity of ICOS+ Tregs, which is partly attributable to IL-10 induced by ICOS, yet the associated mechanism needs further investigation. In this review, we discuss the complicated role of ICOS+ Tregs in several classical autoimmune diseases, allergic diseases, and cancers and investigate the related therapeutic applications in these diseases. Moreover, we identify ICOS as a potential biomarker for disease treatment and prognostic prediction. In addition, we believe that anti-ICOS/ICOSL monoclonal antibodies exhibit excellent clinical application potential. A thorough understanding of the effect of ICOS+ Tregs and the holistic role of ICOS toward the immune system will help to improve the therapeutic schedule of diseases.
Collapse
Affiliation(s)
- Dan-Yang Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian-Zhi Xiong
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Belhaj R, Kaabachi W, Khalfallah I, Hamdi B, Hamzaoui K, Hamzaoui A. Gene Variants, mRNA and NOD1/2 Protein Levels in Tunisian Childhood Asthma. Lung 2019; 197:377-385. [PMID: 30874883 DOI: 10.1007/s00408-019-00209-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Asthma is a common respiratory childhood disease that results from an interaction between genetic, environmental and immunologic factors. The implication of nucleotide-binding and oligomerization domain 1 and 2 (NOD1/CARD4, NOD2/CARD15) was highlighted in many inflammatory diseases. METHODS In this case-control study, we analyzed the association of three NOD2 polymorphisms and one NOD1 variant, in 338 Tunisian asthmatic children and 425 healthy Controls, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. We also assessed NOD1 and NOD2 mRNA and protein levels by qRT-PCR and ELISA techniques. RESULTS The homozygous AA genotype of rs2075820 was a risk factor for asthma (OR 2.39). The influence of the E266K variant in the presence of the heterozygous AG genotype was higher in male than female groups. The homozygous AA genotype was a risk factor associated with asthma, for patients aged between 6 and 18 years OR 2.39, IC95% (1.04-5.49) p < 0.01. The mRNA expression of NOD1, but not NOD2, was enhanced in asthma patients compared to Controls. We noted a significant difference between asthmatics and healthy controls in NOD1 protein expression (asthma patients : 31.18 ± 10.9 pg/ml, Controls: 20.10 ± 2.58 pg/ml; p < 0.001). CONCLUSIONS The NOD1 rs2075820 variant was associated with a higher childhood asthma risk and the NOD1 expression at mRNA and protein levels was significantly increased in asthma patients.
Collapse
Affiliation(s)
- Rafik Belhaj
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia. .,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.
| | - Wajih Kaabachi
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia
| | - Ikbel Khalfallah
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Basma Hamdi
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Kamel Hamzaoui
- University of Sciences Tunis, Tunis El Manar University, Tunis, Tunisia.,Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia
| | - Agnes Hamzaoui
- Expression Moléculaire des Interactions Cellulaires et de leurs modes de Communication dans le Poumon, Medical Faculty of Tunis, UR/12-SP15, Tunis El Manar University, 15 Rue Djebel Lakdar 1007, Tunis, Tunisia.,Department of Respiratory Diseases, Hospital A. Mami, Pavillon B, Ariana, Tunisia.,Unit Research Homeostasis and Cell dysfunction, Medicine Faculty of Tunis, 15 Rue Djebel Lakdar 1007, Tunisia, Tunisia
| |
Collapse
|
6
|
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol 2016; 9:428-43. [PMID: 26286232 PMCID: PMC4677460 DOI: 10.1038/mi.2015.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 02/04/2023]
Abstract
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency.
Collapse
|
7
|
Ghali JR, O’Sullivan KM, Eggenhuizen PJ, Holdsworth SR, Kitching AR. FMS-like tyrosine kinase 3 ligand treatment does not ameliorate experimental rapidly progressive glomerulonephritis. PLoS One 2015; 10:e0123118. [PMID: 25849330 PMCID: PMC4388844 DOI: 10.1371/journal.pone.0123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/18/2015] [Indexed: 11/27/2022] Open
Abstract
Fms-like tyrosine kinase 3-ligand (FL) is a growth factor that may expand dendritic cell and regulatory T cell populations. We hypothesised that FL-induced regulatory T cells would protect mice from experimental rapidly progressive glomerulonephritis. To determine if FL was able to enhance regulatory T cell populations, C57BL/6 mice received 10 days of daily intraperitoneal injections of either FL or phosphate buffered saline. To induce accelerated autologous-phase anti-mouse glomerular basement membrane glomerulonephritis, mice were sensitized to sheep globulin 4 days prior to the induction of glomerulonephritis with sheep anti-mouse glomerular basement membrane globulin, and experiments ended 10 days later. FL was administered before, throughout and during the sensitization phase of this glomerulonephritis model. Renal disease and systemic immunity to the nephritogenic antigen were assessed. FL increased regulatory T cell and plasmacytoid dendritic cell proportions within spleen and lymph nodes. FL administration prior to glomerulonephritis did not protect mice from renal injury. When FL was given throughout the model, FL treated mice had reduced survival, with more interstitial neutrophils and glomerular CD11c+ cells than controls. Systemic immune responses showed increased IL-17A production from splenocytes, with more CD11c+ cells, but reduced plasmacytoid dendritic cell proportions in spleen and lymph nodes, despite increased regulatory T cell proportions. Under homeostatic conditions, FL expanded regulatory T cell and plasmacytoid dendritic cell populations, but FL enhanced systemic inflammatory responses and conventional dendritic cell populations when given during experimental glomerulonephritis, suggesting selective attempts to suppress pathogenic immunity by dendritic cell manipulation may be harmful.
Collapse
Affiliation(s)
- Joanna R. Ghali
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- * E-mail:
| | - Kim M. O’Sullivan
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stephen R. Holdsworth
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
| | - A. Richard Kitching
- Centre for Inflammatory Diseases, Department of Medicine, Monash University, Clayton, Victoria, Australia
- Department of Nephrology, Monash Health, Clayton, Victoria, Australia
- Department of Paediatric Nephrology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Furukawa T, Sakagami T, Koya T, Hasegawa T, Kawakami H, Kimura Y, Hoshino Y, Sakamoto H, Shima K, Tsukioka K, Toyama M, Hayashi M, Kagamu H, Suzuki EI, Narita I. Characteristics of eosinophilic and non-eosinophilic asthma during treatment with inhaled corticosteroids. J Asthma 2014; 52:417-22. [PMID: 25329682 DOI: 10.3109/02770903.2014.975357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Eosinophilic inflammation in the respiratory tract is a hallmark of bronchial asthma. In naïve cases, the inflammatory profile is associated with disease severity and reactivity to inhaled corticosteroids (ICS). Sustained airway eosinophilia has been reported during ICS treatment. However, the immunological characteristics of these cases are not known and it is unclear if this situation contributes to asthma control. This study was performed to determine the answer of these questions. METHODS To compare phenotypes of eosinophilic and non-eosinophilic asthma (EA and NEA, respectively) under ICS treatment, clinical data were obtained from asthmatic subjects (n = 22) and healthy controls (n = 10), and the leukocyte compositions of induced sputum and peripheral blood were determined. T lymphocyte profiles in systemic blood were assessed by flow cytometry. RESULTS A higher frequency of emergency room visits was observed in the NEA group, which had a higher neutrophil count relative to the total inflammatory cell population in induced sputum than the EA group (59.5 versus 36.6%; p < 0.01). The fraction of helper T (Th)17 lymphocytes as well as the ratio of Th17 to regulatory T cells (Treg) in the peripheral blood was higher in the NEA than in the EA group (0.24 versus 0.13; p < 0.05). CONCLUSIONS Th17 were more prevalent than Treg cells in the peripheral blood of NEA patients under ICS treatment, corresponding to neutrophil-dominant airway inflammation and a severe asthmatic phenotype. Thus, an imbalance in Th17/Treg may be associated with the pathogenesis of NEA in patients undergoing ICS treatment.
Collapse
Affiliation(s)
- Toshiki Furukawa
- Division of Respiratory Medicine, Department of Homeostatic Regulation and Development, Graduate School of Medical and Dental Sciences, Niigata University , Niigata , Japan , and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sakthivel P, Gereke M, Breithaupt A, Fuchs D, Gigliotti L, Gruber AD, Dianzani U, Bruder D. Attenuation of immune-mediated influenza pneumonia by targeting the inducible co-stimulator (ICOS) molecule on T cells. PLoS One 2014; 9:e100970. [PMID: 25029240 PMCID: PMC4100737 DOI: 10.1371/journal.pone.0100970] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Inducible Co-stimulator (ICOS) plays a critical role in mediating T cell differentiation and function and is considered a key player in balancing T effector and T regulatory (Treg) cell responses. Here we show that activation of the ICOS signalling pathway during acute influenza A virus (IAV) infection by application of an agonistic ICOS antibody reduced the frequency of CD8+ T cells in the respiratory tract of IAV infected animals and delayed pathogen elimination. In line with this, immune-mediated influenza pneumonia was significantly ameliorated in mice that received ICOS agonist as indicated by significantly reduced alveolar infiltrations and bronchointerstitial pneumonia, while at the same time virus-related pathology remained unaffected. Importantly, ICOS agonist treatment resulted in expansion of CD4+Foxp3+ Tregs in IAV infected mice, which was associated with elevated levels of the immunosuppressive cytokine IL-10 in the alveolar space. Together, our findings suggest a prominent role of ICOS signaling during acute IAV infection by increasing the Treg/CD8+ T cell ratio with beneficial outcome on immune-mediated pneumonia and underline the suitability of ICOS as potential therapeutic target for immune intervention in those infectious conditions characterized by strong immunopathology rather than virus-mediated cytopathic effects.
Collapse
Affiliation(s)
- Priya Sakthivel
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Marcus Gereke
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
| | - Angele Breithaupt
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Luca Gigliotti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Achim D. Gruber
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Free University, Berlin, Germany
| | - Umberto Dianzani
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Dunja Bruder
- Immune Regulation Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
10
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
11
|
Abstract
The lungs are constantly exposed to antigens, most of which are non-pathogenic and do not require the induction of an immune response. Dendritic cells (DCs) are situated at the basolateral site of the lungs and continuously scan the environment to detect the presence of pathogens and subsequently initiate an immune response. They are a heterogeneous population of antigen-presenting cells that exert specific functions. Compelling evidence is now provided that DCs are both sufficient and necessary to induce allergic responses against several inhaled harmless allergens. How various DC subsets exactly contribute to the induction of allergic asthma is currently a subject of intense investigation. We here review the current progress in this field.
Collapse
|
12
|
Key mediators in the immunopathogenesis of allergic asthma. Int Immunopharmacol 2014; 23:316-29. [PMID: 24933589 DOI: 10.1016/j.intimp.2014.05.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
Asthma is described as a chronic inflammatory disorder of the conducting airways. It is characterized by reversible airway obstruction, eosinophil and Th2 infiltration, airway hyper-responsiveness and airway remodeling. Our findings to date have largely been dependent on work done using animal models, which have been instrumental in broadening our understanding of the mechanism of the disease. However, using animals to model a uniquely human disease is not without its drawbacks. This review aims to examine some of the key mediators and cells of allergic asthma learned from animal models and shed some light on emerging mediators in the pathogenesis allergic airway inflammation in acute and chronic asthma.
Collapse
|
13
|
Abstract
Acute pancreatitis is a common severe disease involving a complicated cascade of events. The intestinal lymphatic system plays an important role in the development of acute pancreatitis. The intestinal lymph channel is an important pathway for bacterial translocation and endotoxin translocation. The entry of endotoxin into the intestinal lymph system induces the expression of numerous inflammatory factors and cytokines. The increase in tumor necrosis factors (TNFs) and interleukins (ILs) aggravates acute pancreatic injury. Intestinal lymphocytes also play an important role in maintaining a balance of intestinal immune function. Therefore, it is of great significance to understand the role of the intestinal lymph system in the pathogenesis of acute pancreatitis.
Collapse
|
14
|
Helyes Z, Hajna Z. Endotoxin-Induced Airway Inflammation and Asthma Models. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2012. [DOI: 10.1007/978-1-62703-077-9_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Chen X, Oppenheim JJ. Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int Immunopharmacol 2011; 11:1489-96. [PMID: 21635972 PMCID: PMC3183123 DOI: 10.1016/j.intimp.2011.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 12/29/2022]
Abstract
Authenticating markers for the functional suppressive CD4(+)FoxP3(+) regulatory T cells (Tregs) are important for the quantitative identification and enrichment of viable Tregs for possible therapeutic use. CD25 as a surrogate marker of Tregs has some limitations, which prompted investigators to identify more specific marker(s) of Tregs. The search for a firm molecular definition of Tregs resulted in the identification of FoxP3 as a better marker of this subset of CD4 cells. Nevertheless, FoxP3(+) Tregs are phenotypically and functionally heterogeneous. Even in normal mice, only a minority of FoxP3(+) T cells are potent suppressor cells. Therefore, additional marker(s) are required for delineation of truly functional Tregs. In this review, the studies identifying markers of functional Tregs, both in mouse and in human, and their functional implications are discussed. Our finding that TNFR2, which mediates the effect of TNF on the activation of Tregs, is a superb marker of the most suppressive subset of mouse Tregs and its application in the identification of functional human Tregs will also be reviewed.
Collapse
Affiliation(s)
- Xin Chen
- Basic Science Program, SAIC-Frederick, Inc, Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, NCI-Frederick, Frederick, Maryland 21702, United States.
| | | |
Collapse
|
16
|
Smit JJ, Bol-Schoenmakers M, Hassing I, Fiechter D, Boon L, Bleumink R, Pieters RHH. The role of intestinal dendritic cells subsets in the establishment of food allergy. Clin Exp Allergy 2011; 41:890-8. [PMID: 21477183 DOI: 10.1111/j.1365-2222.2011.03738.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Food allergy affects approximately 6% of children and is the leading cause of hospitalization for anaphylactic reactions in westernized countries. Crucial in the establishment of allergy is the activation of dendritic cells (DC) leading to T helper 2-mediated responses. OBJECTIVE We, therefore, investigated whether changes in DC subsets precede the establishment of food allergy, and which DC subsets have functional relevance during allergic sensitization in a mouse model. METHODS Changes in DC populations in the intestine were analysed after exposure to cholera toxin alone and in combination with peanut extract (PE) as an allergen. To study the functional role of DC subsets in relation to food allergy, we used expansion of DC in vivo by treatment with Flt3L. RESULTS Sensitization to PE in this mouse model was accompanied by a shift in DC subsets in intestinal tissues towards more CD11b(+) DC and less CD103(+) DC. No significant changes in the plasmacytoid DC (pDC) numbers were observed. Flt3L treatment, resulting in the expansion of all DC subtypes, inhibited allergic manifestations in our model, including Th2 cytokine production, PE-specific IgE and PE-induced mast cell degranulation. pDC depletion reversed Flt3L-induced inhibition of IgE responses and mast cell degranulation. conclusions and clinical relevance: The establishment of food allergy is accompanied by profound changes in DC subsets in the intestine towards more inflammatory CD11b(+) DC. In addition, expansion of DC numbers by Flt3L, in particular pDC, inhibits the establishment of allergic manifestations in the intestine. These findings are of relevance for understanding the role of DC subsets early during the process of allergic sensitization, and may lead to new therapeutic or prophylactic opportunities to prevent food allergy.
Collapse
Affiliation(s)
- J J Smit
- Institute for Risk Assessment Sciences, Division of Toxicology, Immunotoxicology group, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Advances have been made in defining the mechanisms for the control of allergic airway inflammation in response to inhaled antigens. Several genes, including ADAM33, DPP10, PHF11, GPRA, TIM-1, PDE4D, OPN3, and ORMDL3, have been implicated in the pathogenesis and susceptibility to atopy and asthma. Growing evidence associates asthma with a systemic propensity for allergic T-helper type 2 cytokines. Disordered coagulation and fibrinolysis also exacerbate asthma symptoms. Balance among functionally distinct dendritic cell subsets contributes to the outcome of T-cell-mediated immunity. Allergen-specific T-regulatory cells play a pivotal role in the development of tolerance to allergens and immune suppression. The major emphasis on immunotherapy for asthma during the past decade has been to direct the immune response to a type 1 response, or immune tolerance. In this review, we discuss the current information on the pathogenesis of allergic airway inflammation and potential immunotherapy, which could be beneficial in the treatment of airway inflammation, allergy, and asthma.
Collapse
Affiliation(s)
- Devendra K Agrawal
- Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, Omaha, NE 68178, USA.
| | | |
Collapse
|
18
|
Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunol 2010; 3:193-205. [PMID: 19924119 DOI: 10.1038/mi.2009.130] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Innate responses combine with adaptive immunity to generate the most effective form of anti-Aspergillus immune resistance. Although some degree of inflammation is required for protection, progressive inflammation may worsen disease and ultimately prevents pathogen eradication. To define molecular pathways leading to or diverting from pathogenic inflammation in infection, we resorted to dendritic cells (DCs), known to activate distinct signaling pathways in response to pathogens. We found that distinct intracellular pathways mediated the sensing of conidia and hyphae by lung DCs in vitro, which translate in vivo in the activation of protective Th1/Treg responses by conidia or inflammatory Th2/Th17 responses by hyphae. In vivo targeting inflammatory (PI3K/Akt/mTOR) or anti-inflammatory (STAT3/IDO) DC pathways by intranasally delivered small interfering RNA (siRNA) accordingly modified inflammation and immunity to infection. Thus, the screening of signaling pathways in DCs through a systems biology approach may be exploited for the development of siRNA therapeutics to attenuate inflammation in respiratory fungal infections and diseases.
Collapse
|
19
|
McGee HS, Stallworth AL, Agrawal T, Shao Z, Lorence L, Agrawal DK. Fms-like tyrosine kinase 3 ligand decreases T helper type 17 cells and suppressors of cytokine signaling proteins in the lung of house dust mite-sensitized and -challenged mice. Am J Respir Cell Mol Biol 2009; 43:520-9. [PMID: 19933379 DOI: 10.1165/rcmb.2009-0241oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously reported that Fms-like tyrosine kinase 3 ligand (Flt3-L) reversed airway hyperresponsiveness (AHR) and airway inflammation, and increased the number of regulatory CD11c(high)CD8α(high)CD11b(low) dendritic cells and CD4(+)CD25(+)ICOS(+)Foxp3(+)IL-10(+) T-regulatory cells in the lung of allergen-sensitized and -challenged mice. In this study, we evaluated the effect of Flt3-L on Th17 cells and expression of suppressors of cytokine signaling (SOCS) proteins in the lungs of house dust mite (HDM)-sensitized and -challenged mice. BALB/c mice were sensitized and challenged with HDM, and AHR to methacholine was established. Mice were treated with Flt3-L (5 μg, intraperitoneal) daily for 10 days. Levels of IL-4, -5, -6, -8, and -13, and transforming growth factor (TGF)-β in the bronchoalveolar lavage fluid (BALF) were examined by ELISA. Flt3-L treatment reversed existing AHR to methacholine and substantially decreased eosinophils, neutrophils, IL-5, -6, -8, and IL-13, and TGF-β levels in the BALF. HDM-sensitized and -challenged mice showed a significant increase in lung CD4(+)IL-17(+)IL-23R(+)CD25⁻ T cells with high expression of retinoic acid-related orphan receptor (ROR)-γt transcripts. However, administration of Flt3-L substantially decreased the number of lung CD4(+)IL-17(+)IL-23R(+)CD25⁻ T cells, with significantly decreased expression of ROR-γt mRNA in these cells. HDM sensitization caused a significant increase in the expression of SOCS-1, -3, and -5 in the lung. Flt3-L treatment abolished the increase in SOCS-1 and SOCS-3 proteins, whereas SOCS-5 expression was significantly reduced. These data suggest that the therapeutic effect of Flt3-L in reversing the hallmarks of allergic asthma in a mouse model is mediated by decreasing IL-6 and TGF-β levels in the BALF, which, in turn, decrease CD4(+)IL-17(+)IL-23R(+)ROR-γt(+)CD25⁻ T cells and the expression of SOCS-1 and SOCS-3 in the lung of HDM-sensitized and -challenged mice.
Collapse
Affiliation(s)
- Halvor S McGee
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, Nebraska 68178, USA
| | | | | | | | | | | |
Collapse
|
20
|
Shao Z, Makinde TO, McGee HS, Wang X, Agrawal DK. Fms-like tyrosine kinase 3 ligand regulates migratory pattern and antigen uptake of lung dendritic cell subsets in a murine model of allergic airway inflammation. THE JOURNAL OF IMMUNOLOGY 2009; 183:7531-8. [PMID: 19917684 DOI: 10.4049/jimmunol.0901341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fms-like tyrosine kinase 3 ligand (Flt3L) reverses the features of allergic airway inflammation and increases a Th2-suppressive regulatory lung CD11c(high)CD11b(low) dendritic cell (DC) subset in a mouse model. We examined the migratory pattern and Ag uptake efficiency of lung DC subsets in the therapeutic effect of Flt3L. Lung CD11c(high)CD11b(low) and CD11c(low)CD11b(high) DCs from PBS-treated, OVA-sensitized, and Flt3L-treated/OVA-sensitized BALB/c mice were sorted using MACS and FACS for phenotype analysis. Lymphatic chemokine expression in thoracic lymph nodes was determined by immunohistochemistry. Migration of two lung DC subsets to lymphatic chemokines was examined in vitro using a Transwell chemotaxis assay. Labeled Ag was intranasally delivered into mouse lung to track the migration and Ag uptake of lung DCs. The in vitro cytokine secretion of mediastinal lymph node cells was determined using ELISA. CD11c(low)CD11b(high) DCs have higher expression of CCR5, CCR6, and CCR7, but lower expression of CCR2 than CD11c(high)CD11b(low) DCs. CD11c(low)CD11b(high) DCs in Flt3L-treated/OVA-sensitized mice demonstrated a less mature phenotype, inefficiency in Ag uptake, and impaired migration in vitro to lymphatic chemokine than those in OVA-sensitized mice. Administration of Flt3L decreased the expression of CCR5 and CCR7 in CD11c(low)CD11b(high) DCs in OVA-sensitized mice. Fewer Ag-carrying cells were detected in the lungs and lymph nodes in Flt3L-treated/OVA-sensitized mice than OVA-sensitized mice with a greater decrease in CD11c(low)CD11b(high) DCs. Mediastinal lymph node cells from Flt3L-treated mice secreted higher levels of Th1 cytokines and IL-10 than OVA-sensitized mice in vitro. In conclusion, Flt3L-generated lung immunogenic CD11c(low)CD11b(high) DCs have a less mature phenotype, impaired Ag uptake, and impaired migration to draining lymph nodes.
Collapse
Affiliation(s)
- Zhifei Shao
- Department of Biomedical Sciences, Creighton University of School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | |
Collapse
|
21
|
McGee HS, Yagita H, Shao Z, Agrawal DK. Programmed Death-1 antibody blocks therapeutic effects of T-regulatory cells in cockroach antigen-induced allergic asthma. Am J Respir Cell Mol Biol 2009; 43:432-42. [PMID: 19901343 DOI: 10.1165/rcmb.2009-0258oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We recently reported that the adoptive transfer of T-regulatory cells (Tregs) isolated from lung and spleen tissue of green fluorescent protein-transgenic mice reversed airway hyperresponsiveness and airway inflammation. Because Programmed Death-1 (PD-1) is a pivotal receptor regulating effector T-cell activation by Tregs, we evaluated whether PD-1 is involved in the therapeutic effect of naturally occurring Tregs (NTregs) and inducible Tregs (iTregs) in cockroach (CRA)-sensitized and challenged mice. The CD4(+)CD25(+) NTregs and CD4(+)CD25(-) iTregs isolated from the lungs and spleens of BALB/c mice were adoptively transferred into CRA-sensitized and CRA-challenged mice with and without anti-PD-1 antibody (100 μg/mice). The CD4(+)CD25(+) T cells in the lung were phenotyped after adoptive transfer. Concentrations of IL-4, IL-5, IL-10, IFN-γ, and IL-13 in bronchoalveolar lavage fluid (BALF) were measured using ELISA. The NTregs and iTregs from either lung or spleen tissue reversed airway hyperresponsiveness for at least 4 wk. However, the therapeutic effect was blocked by administering the anti-PD-1 antibody. The administration of Tregs-recipient mice with anti-PD-1 antibody significantly decreased cytotoxic T-lymphocyte antigen-4 expression, with low concentrations of Forkhead-winged transcriptional factor box 3 (Foxp3) mRNA transcripts in lung CD4(+)CD25(+) T cells. These mice had substantially higher concentrations of BALF IL-4, IL-5, and IL-13, but significantly decreased levels of BALF IL-10. Adoptive therapy recipients without the anti-PD-1 antibody exhibited high levels of CTLA-4 expression and Foxp3 transcripts in lung CD4(+)CD25(+) T cells, with a significant decrease in BALF IL-4, IL-5, and IL-13 concentrations and a substantial increase in BALF IL-10 concentrations. These data suggest that the reversal of airway hyperresponsiveness and airway inflammation by Tregs is mediated in part by PD-1, because other costimulatory molecules (e.g., inducible costimulatory molecule [ICOS] or CTLA-4) have been shown to play a role in Treg-mediated suppression.
Collapse
Affiliation(s)
- Halvor S McGee
- Department of Biomedical Sciences, Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|