1
|
Corteselli EM, Sharafi M, Hondal R, MacPherson M, White S, Lam YW, Gold C, Manuel AM, van der Vliet A, Schneebeli ST, Anathy V, Li J, Janssen-Heininger YMW. Structural and functional fine mapping of cysteines in mammalian glutaredoxin reveal their differential oxidation susceptibility. Nat Commun 2023; 14:4550. [PMID: 37507364 PMCID: PMC10382592 DOI: 10.1038/s41467-023-39664-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity. To date, GLRX cysteines that are oxidatively modified and their relative susceptibilities remain unknown. We utilized molecular modeling approaches, activity assays using recombinant GLRX, coupled with site-directed mutagenesis of each cysteine both individually and in combination to address the oxidizibility of GLRX cysteines. These approaches reveal that C8 and C83 are targets for S-glutathionylation and oxidation by hydrogen peroxide in vitro. In silico modeling and experimental validation confirm a prominent role of C8 for dimer formation and aggregation. Lastly, combinatorial mutation of C8, C26, and C83 results in increased activity of GLRX and resistance to oxidative inactivation and aggregation. Results from these integrated computational and experimental studies provide insights into the relative oxidizability of GLRX's cysteines and have implications for the use of GLRX as a therapeutic in settings of dysregulated protein glutathionylation.
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Mona Sharafi
- Department of Chemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Robert Hondal
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Maximilian MacPherson
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Sheryl White
- Neuroscience Cellular and Molecular Core, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Ying-Wai Lam
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Clarissa Gold
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont, Burlington, VT, 05405, USA
| | - Allison M Manuel
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Albert van der Vliet
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Severin T Schneebeli
- Department of Industrial and Physical Pharmacy and Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Jianing Li
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory of Medicine, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| |
Collapse
|
2
|
Oxidative stress-induced FABP5 S-glutathionylation protects against acute lung injury by suppressing inflammation in macrophages. Nat Commun 2021; 12:7094. [PMID: 34876574 PMCID: PMC8651733 DOI: 10.1038/s41467-021-27428-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 11/19/2021] [Indexed: 11/26/2022] Open
Abstract
Oxidative stress contributes to the pathogenesis of acute lung injury. Protein S-glutathionylation plays an important role in cellular antioxidant defense. Here we report that the expression of deglutathionylation enzyme Grx1 is decreased in the lungs of acute lung injury mice. The acute lung injury induced by hyperoxia or LPS is significantly relieved in Grx1 KO and Grx1fl/flLysMcre mice, confirming the protective role of Grx1-regulated S-glutathionylation in macrophages. Using a quantitative redox proteomics approach, we show that FABP5 is susceptible to S-glutathionylation under oxidative conditions. S-glutathionylation of Cys127 in FABP5 promotes its fatty acid binding ability and nuclear translocation. Further results indicate S-glutathionylation promotes the interaction of FABP5 and PPARβ/δ, activates PPARβ/δ target genes and suppresses the LPS-induced inflammation in macrophages. Our study reveals a molecular mechanism through which FABP5 S-glutathionylation regulates macrophage inflammation in the pathogenesis of acute lung injury. Redox-dependent regulation plays a key role in the pathogenesis of acute lung injury, but its mechanism is unclear. Here the authors show Grx1-regulated S-glutathionylation of FABP5 controls macrophage inflammation and alleviates acute lung injury.
Collapse
|
3
|
Xi Y, Li Y, Xu P, Li S, Liu Z, Tung HC, Cai X, Wang J, Huang H, Wang M, Xu M, Ren S, Li S, Zhang M, Lee YJ, Huang L, Yang D, He J, Huang Z, Xie W. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. SCIENCE ADVANCES 2021; 7:eabg9241. [PMID: 34516906 PMCID: PMC8442864 DOI: 10.1126/sciadv.abg9241] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/08/2021] [Indexed: 02/05/2023]
Abstract
Activation of the hepatic stellate cells (HSCs) is a key pathogenic event in liver fibrosis. Protein S-glutathionylation (PSSG) of cysteine residues is a distinct form of oxidative response that modifies protein structures and functions. Glutaredoxin-1 (GLRX) reverses PSSG by liberating glutathione (GSH). In this study, we showed that pirfenidone (PFD), an anti-lung fibrosis drug, inhibited HSC activation and liver fibrosis in a GLRX-dependent manner. Glrx depletion exacerbated liver fibrosis, and decreased GLRX and increased PSSG were observed in fibrotic mouse and human livers. In contrast, overexpression of GLRX inhibited PSSG and liver fibrosis. Mechanistically, the inhibition of HSC activation by GLRX may have been accounted for by deglutathionylation of Smad3, which inhibits Smad3 phosphorylation, leading to the suppression of fibrogenic gene expression. Our results have established GLRX as the therapeutic target of PFD and uncovered an important role of PSSG in liver fibrosis. GLRX/PSSG can be both a biomarker and a therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Yue Xi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanping Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sihan Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhengsheng Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hung-chun Tung
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingyuan Wang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Haozhe Huang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yong J. Lee
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Da Yang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jinhan He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
4
|
Dalle-Donne I, Garavaglia ML, Colombo G, Astori E, Lionetti MC, La Porta CAM, Santucci A, Rossi R, Giustarini D, Milzani A. Cigarette smoke and glutathione: Focus on in vitro cell models. Toxicol In Vitro 2020; 65:104818. [PMID: 32135238 DOI: 10.1016/j.tiv.2020.104818] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/05/2020] [Accepted: 02/28/2020] [Indexed: 01/20/2023]
Abstract
Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.
Collapse
Affiliation(s)
- Isabella Dalle-Donne
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy.
| | - Maria L Garavaglia
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Graziano Colombo
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Emanuela Astori
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| | - Maria C Lionetti
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Caterina A M La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Ranieri Rossi
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Daniela Giustarini
- Department of Biotechnology, Chemistry and Pharmacy (Department of Excellence 2018-2022), University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Aldo Milzani
- Department of Biosciences (Department of Excellence 2018-2022), Università degli Studi di Milano, via Celoria, 26, 20133 Milano, Italy
| |
Collapse
|
5
|
Chia SB, Elko EA, Aboushousha R, Manuel AM, van de Wetering C, Druso JE, van der Velden J, Seward DJ, Anathy V, Irvin CG, Lam YW, van der Vliet A, Janssen-Heininger YMW. Dysregulation of the glutaredoxin/ S-glutathionylation redox axis in lung diseases. Am J Physiol Cell Physiol 2019; 318:C304-C327. [PMID: 31693398 DOI: 10.1152/ajpcell.00410.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutathione is a major redox buffer, reaching millimolar concentrations within cells and high micromolar concentrations in airways. While glutathione has been traditionally known as an antioxidant defense mechanism that protects the lung tissue from oxidative stress, glutathione more recently has become recognized for its ability to become covalently conjugated to reactive cysteines within proteins, a modification known as S-glutathionylation (or S-glutathiolation or protein mixed disulfide). S-glutathionylation has the potential to change the structure and function of the target protein, owing to its size (the addition of three amino acids) and charge (glutamic acid). S-glutathionylation also protects proteins from irreversible oxidation, allowing them to be enzymatically regenerated. Numerous enzymes have been identified to catalyze the glutathionylation/deglutathionylation reactions, including glutathione S-transferases and glutaredoxins. Although protein S-glutathionylation has been implicated in numerous biological processes, S-glutathionylated proteomes have largely remained unknown. In this paper, we focus on the pathways that regulate GSH homeostasis, S-glutathionylated proteins, and glutaredoxins, and we review methods required toward identification of glutathionylated proteomes. Finally, we present the latest findings on the role of glutathionylation/glutaredoxins in various lung diseases: idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Evan A Elko
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Allison M Manuel
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Cheryl van de Wetering
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Joseph E Druso
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Jos van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - David J Seward
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Charles G Irvin
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | | |
Collapse
|
6
|
ZIMET Z, BILBAN M, OSREDKAR J, POLJŠAK B, FABJAN T, SUHADOLC K. Three Day Environmental Exposure May Trigger Oxidative Stress Development and Provoke Adaptive Response Resulting in Altered Antioxidant Activity. IRANIAN JOURNAL OF PUBLIC HEALTH 2019; 48:1284-1291. [PMID: 31497550 PMCID: PMC6708549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We aimed to investigate the polluted working environment triggers oxidative stress and alter enzymatic antioxidant activity by a short-term interval. METHODS The experimental study, performed in 2014, involved 94 workers from the Velenje Coalmine in Slovenia, arranged into three groups according to a number of consecutive working days in a mineshaft, supported by a control group. Levels of the antioxidant enzymes (GPx, CAT, SOD) together with TAC (the combined effect of all antioxidants) and 8-isoprostane (a biological marker of oxidative stress/damage) were measured in human plasma. RESULTS Workers occupationally exposed for three consecutive working days had significantly increased 8-isoprostane biomarker, a parameter of oxidative stress (P<0.001). The antioxidant levels of TAC (P<0.001), CAT (P<0.001) and SOD (P<0.001) were all significantly decreased compared to a control group. CONCLUSION Workers in polluted working environment had significantly increased oxidative stress and altered antioxidant activity already on a third consecutive working day.
Collapse
Affiliation(s)
- Zlatko ZIMET
- National Institute of Public Health, Ljubljana, Slovenia,Corresponding Author:
| | - Marjan BILBAN
- Department of Public Health, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Joško OSREDKAR
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Borut POLJŠAK
- Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Teja FABJAN
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Kristina SUHADOLC
- Institute of Clinical Chemistry and Biochemistry, University Medical Center Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Ebrahimpour A, Shrestha S, Bonnen MD, Eissa NT, Raghu G, Ghebre YT. Nicotine Modulates Growth Factors and MicroRNA to Promote Inflammatory and Fibrotic Processes. J Pharmacol Exp Ther 2019; 368:169-178. [PMID: 30446578 PMCID: PMC6323623 DOI: 10.1124/jpet.118.252650] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease that destroys the structure and function of the lungs. Risk factors include advanced age and genetic predisposition. However, tobacco use is the chief modifiable risk factor. The prevalence of tobacco use in IPF reaches up to 80%. Although tobacco smoke contains over 5000 chemicals, nicotine is a major component. Nicotine is a bioactive molecule that acts upon nicotinic acetylcholine receptors expressed on neuronal and non-neuronal cells including endothelial cells. Accordingly, it has a pleiotropic effect on cell proliferation and angiogenesis. The angiogenic effect is partly mediated by stimulation of growth factors including fibroblast, platelet-derived, and vascular endothelial growth factors. Nintedanib, a Food and Drug Administration-approved drug for IPF, works by inhibiting receptors for these growth factors, suggesting a pathobiologic role of the growth factors in IPF and a potential mechanism by which tobacco use may exacerbate the disease process; additionally, nicotine downregulates anti-inflammatory microRNAs (miRs) in lung cells. Here, we profiled the expression of miRs in lung tissues explanted from a lung injury model and examined the effect of nicotine on one of the identified miRs (miR-24) and its downstream targets. Our data show that miR-24 is downregulated during lung injury and is suppressed by nicotine. We also found that nicotine upregulates the expression of inflammatory cytokines targeted by miR-24. Finally, nicotine stimulated growth factors, fibroblast proliferation, collagen release, and expression of myofibroblast markers. Taken together, nicotine, alone or as a component of tobacco smoke, may accelerate the disease process in IPF through stimulation of growth factors and downregulation of anti-inflammatory miRs.
Collapse
Affiliation(s)
- Afshin Ebrahimpour
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| | - Samana Shrestha
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| | - Mark D Bonnen
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| | - N Tony Eissa
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| | - Ganesh Raghu
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| | - Yohannes T Ghebre
- Departments of Radiation Oncology (A.E., S.S., M.D.B., Y.T.G.) and Medicine, Section on Pulmonary and Critical Care Medicine (N.T.E., Y.T.G.), Baylor College of Medicine, Houston, Texas; and Division of Pulmonary and Critical Care Medicine, Center for Interstitial Lung Disease, University of Washington, Seattle, Washington (G.R.)
| |
Collapse
|
8
|
Weinberg EO, Ferran B, Tsukahara Y, Hatch MMS, Han J, Murdoch CE, Matsui R. IL-33 induction and signaling are controlled by glutaredoxin-1 in mouse macrophages. PLoS One 2019; 14:e0210827. [PMID: 30682073 PMCID: PMC6347181 DOI: 10.1371/journal.pone.0210827] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
Interleukin (IL)-33 is an interleukin-1 like cytokine that enhances Th2 responses and mediates mucosal immunity and allergic inflammation but the mechanism regulating endogenous IL-33 production are still under investigation. In macrophages, lipopolysaccharide (LPS) administration resulted in marked induction of IL-33 mRNA that was blunted in macrophages from glutaredoxin-1 (Glrx) knockout mice and in RAW264.7 macrophages with Glrx knockdown by siRNA. Glutaredoxin-1 is a small cytosolic thioltransferase that controls a reversible protein thiol modification, S-glutationylation (protein-GSH adducts), thereby regulating redox signaling. In this study, we examined the mechanism of Glrx regulation of endogenous IL-33 induction in macrophages. Glrx knockdown resulted in impaired de-glutathionylation of TRAF6, which is required for TRAF6 activation, and inhibited downstream IKKβ and NF-κB activation. Inhibitors of NF-κB suppressed IL-33 induction and chromatin IP sequencing data analysis confirmed that IL-33 is an NF-κB-responsive gene. Since TRAF6-NF-κB activation is also essential for IL-33 signaling through its receptor, ST2L, we next tested the involvement of Glrx in exogenous IL-33 responses in RAW264.7 cells. Recombinant IL-33 (rIL-33) administration induced IL-33 mRNA expression in RAW264.7 macrophages, and this was inhibited by Glrx knockdown. Interestingly, rIL-33-induced IL-33 protein was identified as the 20 kDa cleaved form whereas LPS-induced IL-33 protein was identified as full-length IL-33, which may be less active than the cleaved form. In a clinically-relevant mouse model of asthma, intra-tracheal cockroach antigen treatment induced Glrx protein in wild type mouse lungs but Glrx induction was attenuated in IL-33 knockout mouse lungs, suggesting that IL-33 may regulate Glrx induction in vivo in response to allergen challenge. In summary, our data reveal a novel mechanism by which Glrx controls both LPS- and IL-33-mediated NF-κB activation leading to IL-33 production, and paracrine IL-33 can induce Glrx to further regulate inflammatory reactions.
Collapse
Affiliation(s)
- Ellen O. Weinberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Beatriz Ferran
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yuko Tsukahara
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Michaela M. S. Hatch
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jingyan Han
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Colin E. Murdoch
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Reiko Matsui
- Department of Medicine, Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
OBJECTIVES A number of studies have suggested that acrolein-induced lung injury and pulmonary diseases are associated with the depletion of antioxidants and the production of reactive oxygen species. Therefore, compounds that scavenge reactive oxygen species may exert protective effects against acrolein-induced apoptosis. Because hesperetin, a natural flavonoid, has been reported to have an antioxidant activity, we investigated the effect of hesperitin against acrolein-induced apoptosis of lung cells. METHODS We evaluated the protective role of hesperetin in acrolein-induced lung injury using Lewis lung carcinoma (LLC) cells and mice. RESULTS Upon exposure of LLC cells and mice to acrolein, hesperetin ameliorated the lung inbjury through attenuation of oxidative stress. CONCLUSION In the present report, we demonstrate that hesperetin exhibits a protective effect against acrolein-induced apoptosis of lung cells in both in vitro and in vivo models. Our study provides a useful model to investigate the potential application of hesperetin for the prevention of lung diseases associated with acrolein toxicity.
Collapse
Affiliation(s)
- Jung Hyun Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea.,b Department of Food and Biotechnology , Korea University , Sejong , Korea
| | - Hyeong Jun Ku
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea
| | - Jeen-Woo Park
- a School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group , Kyungpook National University , Taegu , Korea
| |
Collapse
|
10
|
Idh2 Deficiency Exacerbates Acrolein-Induced Lung Injury through Mitochondrial Redox Environment Deterioration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1595103. [PMID: 29456784 PMCID: PMC5804324 DOI: 10.1155/2017/1595103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 11/01/2017] [Indexed: 11/17/2022]
Abstract
Acrolein is known to be involved in acute lung injury and other pulmonary diseases. A number of studies have suggested that acrolein-induced toxic effects are associated with depletion of antioxidants, such as reduced glutathione and protein thiols, and production of reactive oxygen species. Mitochondrial NADP+-dependent isocitrate dehydrogenase (idh2) regulates mitochondrial redox balance and reduces oxidative stress-induced cell injury via generation of NADPH. Therefore, we evaluated the role of idh2 in acrolein-induced lung injury using idh2 short hairpin RNA- (shRNA-) transfected Lewis lung carcinoma (LLC) cells and idh2-deficient (idh2-/- ) mice. Downregulation of idh2 expression increased susceptibility to acrolein via induction of apoptotic cell death due to elevated mitochondrial oxidative stress. Idh2 deficiency also promoted acrolein-induced lung injury in idh2 knockout mice through the disruption of mitochondrial redox status. In addition, acrolein-induced toxicity in idh2 shRNA-transfected LLC cells and in idh2 knockout mice was ameliorated by the antioxidant, N-acetylcysteine, through attenuation of oxidative stress resulting from idh2 deficiency. In conclusion, idh2 deficiency leads to mitochondrial redox environment deterioration, which causes acrolein-mediated apoptosis of LLC cells and acrolein-induced lung injury in idh2-/- mice. The present study supports the central role of idh2 deficiency in inducing oxidative stress resulting from acrolein-induced disruption of mitochondrial redox status in the lung.
Collapse
|
11
|
Dalle-Donne I, Colombo G, Gornati R, Garavaglia ML, Portinaro N, Giustarini D, Bernardini G, Rossi R, Milzani A. Protein Carbonylation in Human Smokers and Mammalian Models of Exposure to Cigarette Smoke: Focus on Redox Proteomic Studies. Antioxid Redox Signal 2017; 26:406-426. [PMID: 27393565 DOI: 10.1089/ars.2016.6772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Oxidative stress is one mechanism whereby tobacco smoking affects human health, as reflected by increased levels of several biomarkers of oxidative stress/damage isolated from tissues and biological fluids of active and passive smokers. Many investigations of cigarette smoke (CS)-induced oxidative stress/damage have been carried out in mammalian animal and cellular models of exposure to CS. Animal models allow the investigation of many parameters that are similar to those measured in human smokers. In vitro cell models may provide new information on molecular and functional differences between cells of smokers and nonsmokers. Recent Advances: Over the past decade or so, a growing number of researches highlighted that CS induces protein carbonylation in different tissues and body fluids of smokers as well as in in vivo and in vitro models of exposure to CS. CRITICAL ISSUES We review recent findings on protein carbonylation in smokers and models thereof, focusing on redox proteomic studies. We also discuss the relevance and limitations of these models of exposure to CS and critically assess the congruence between the smoker's condition and laboratory models. FUTURE DIRECTIONS The identification of protein targets is crucial for understanding the mechanism(s) by which carbonylated proteins accumulate and potentially affect cellular functions. Recent progress in redox proteomics allows the enrichment, identification, and characterization of specific oxidative protein modifications, including carbonylation. Therefore, redox proteomics can be a powerful tool to gain new insights into the onset and/or progression of CS-related diseases and to develop strategies to prevent and/or treat them. Antioxid. Redox Signal. 26, 406-426.
Collapse
Affiliation(s)
| | - Graziano Colombo
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Rosalba Gornati
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Maria L Garavaglia
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| | - Nicola Portinaro
- 3 Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano and Pediatric Orthopaedic Unit, Humanitas Clinical and Research Center , Rozzano (Milan), Italy
| | | | - Giovanni Bernardini
- 2 Department of Biotechnology and Life Sciences, University of Insubria , Varese, Italy
| | - Ranieri Rossi
- 4 Department of Life Sciences, University of Siena , Siena, Italy
| | - Aldo Milzani
- 1 Department of Biosciences, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
12
|
Herold S, Staab-Weijnitz CA. Glutathione on the fas track. A novel drug target for the treatment of pseudomonas infection? Am J Respir Crit Care Med 2014; 189:386-9. [PMID: 24528316 DOI: 10.1164/rccm.201401-0063ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Susanne Herold
- 1 Department of Internal Medicine II Justus-Liebig-University, Universities Giessen & Marburg Lung Center Member of the German Center for Lung Research Giessen, Germany
| | | |
Collapse
|
13
|
Thatcher TH, Hsiao HM, Pinner E, Laudon M, Pollock SJ, Sime PJ, Phipps RP. Neu-164 and Neu-107, two novel antioxidant and anti-myeloperoxidase compounds, inhibit acute cigarette smoke-induced lung inflammation. Am J Physiol Lung Cell Mol Physiol 2013; 305:L165-74. [PMID: 23686858 DOI: 10.1152/ajplung.00036.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke is a profound proinflammatory stimulus that causes acute lung inflammation and chronic lung disease, including chronic obstructive pulmonary disease (COPD, emphysema, and chronic bronchitis), via a variety of mechanisms, including oxidative stress. Cigarette smoke contains high levels of free radicals, whereas inflammatory cells, including macrophages and neutrophils, express enzymes, including NADPH oxidase, nitric oxide synthase, and myeloperoxidase, that generate reactive oxygen species in situ and contribute to inflammation and tissue damage. Neu-164 and Neu-107 are small-molecule inhibitors of myeloperoxidase, as well as potent antioxidants. We hypothesized that Neu-164 and Neu-107 would inhibit acute cigarette smoke-induced inflammation. Adult C57BL/6J mice were exposed to mainstream cigarette smoke for 3 days to induce acute inflammation and were treated daily by inhalation with Neu-164, Neu-107, or dexamethasone as a control. Inflammatory cells and cytokines were assessed by bronchoalveolar lavage and histology. mRNA levels of endogenous antioxidant genes heme oxygenase-1 and glutamate-cysteine ligase modifier subunit were determined by qPCR. Cigarette smoke exposure induced acute lung inflammation with accumulation of neutrophils and upregulation of proinflammatory cytokines, including IL-6, macrophage inflammatory protein-2, and keratinocyte-derived cytokine. Both Neu-164 and Neu-107 significantly reduced the accumulation of inflammatory cells and the expression of inflammatory cytokines as effectively as dexamethasone. Upregulation of endogenous antioxidant genes was dampened. Neu-164 and Neu-107 inhibit acute cigarette smoke-induced inflammation by scavenging reactive oxygen species in cigarette smoke and by inhibiting further oxidative stress caused by inflammatory cells. These compounds may have promise in preventing or treating lung disease associated with chronic smoke exposure, including COPD.
Collapse
Affiliation(s)
- Thomas H Thatcher
- Department of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
15
|
Rahman I, Kinnula VL. Strategies to decrease ongoing oxidant burden in chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol 2012; 5:293-309. [PMID: 22697592 DOI: 10.1586/ecp.12.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity globally, and its development is mainly associated with tobacco/biomass smoke-induced oxidative stress. Hence, targeting systemic and local oxidative stress with agents that can balance the antioxidant/redox system can be expected to be useful in the treatment of COPD. Preclinical and clinical trials have revealed that antioxidants/redox modulators can detoxify free radicals and oxidants, control expression of redox and glutathione biosynthesis genes, chromatin remodeling and inflammatory gene expression; and are especially useful in preventing COPD exacerbations. In this review, various novel approaches and problems associated with these approaches in COPD are reviewed.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
16
|
Altered cigarette smoke-induced lung inflammation due to ablation of Grx1. PLoS One 2012; 7:e38984. [PMID: 22723915 PMCID: PMC3377591 DOI: 10.1371/journal.pone.0038984] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 05/17/2012] [Indexed: 11/19/2022] Open
Abstract
Glutaredoxins (Grx) are redox enzymes that remove glutathione bound to protein thiols, know as S-glutathionylation (PSSG). PSSG is a reservoir of GSH and can affect the function of proteins. It inhibits the NF-κB pathway and LPS aspiration in Grx1 KO mice with decreased inflammatory cytokine levels. In this study we investigated whether absence of Grx1 similarly repressed cigarette smoke-induced inflammation in an exposure model in mice. Cigarette smoke exposure for four weeks decreased lung PSSG levels, but increased PSSG in lavaged cells and lavage fluid (BALF). Grx1 KO mice had increased levels of PSSG in lung tissue, BALF and BAL cells in response to smoke compared to wt mice. Importantly, levels of multiple inflammatory mediators in the BALF were decreased in Grx1 KO animals following cigarette smoke exposure compared to wt mice, as were levels of neutrophils, dendritic cells and lymphocytes. On the other hand, macrophage numbers were higher in Grx1 KO mice in response to smoke. Although cigarette smoke in vivo caused inverse effects in inflammatory and resident cells with respect to PSSG, primary macrophages and epithelial cells cultured from Grx1 KO mice both produced less KC compared to cells isolated from WT mice after smoke extract exposure. In this manuscript, we provide evidence that Grx1 has an important role in regulating cigarette smoke-induced lung inflammation which seems to diverge from its effects on total PSSG. Secondly, these data expose the differential effect of cigarette smoke on PSSG in inflammatory versus resident lung cells.
Collapse
|
17
|
Lee IT, Yang CM. Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 2012; 84:581-90. [PMID: 22587816 DOI: 10.1016/j.bcp.2012.05.005] [Citation(s) in RCA: 309] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/01/2012] [Accepted: 05/02/2012] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are products of normal cellular metabolism and are known to act as second messengers. Under physiological conditions, ROS participate in maintenance of cellular 'redox homeostasis' in order to protect cells against oxidative stress. In addition, regulation of redox state is important for cell activation, viability, proliferation, and organ function. However, overproduction of ROS, most frequently due to excessive stimulation of either reduced nicotinamide adenine dinucleotide phosphate (NADPH) by pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) or the mitochondrial electron transport chain and xanthine oxidase, results in oxidative stress. Oxidative stress is a deleterious process that leads to airway and lung damage and consequently to several respiratory inflammatory diseases/injuries, including acute respiratory distress syndrome (ARDS), asthma, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD). Many of the known inflammatory target proteins, such as matrix metalloproteinase-9 (MMP-9), intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A(2) (cPLA(2)), are associated with NADPH oxidase activation and ROS overproduction in response to pro-inflammatory mediators. Thus, oxidative stress regulates both key inflammatory signal transduction pathways and target proteins involved in airway and lung inflammation. In this review, we discuss mechanisms of NADPH oxidase/ROS in the expression of inflammatory target proteins involved in airway and lung diseases. Knowledge of the mechanisms of ROS regulation could lead to the pharmacological manipulation of antioxidants in airway and lung inflammation and injury.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | |
Collapse
|
18
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kuipers I, Bracke KR, Brusselle GG, Wouters EFM, Reynaert NL. Smoke decreases reversible oxidations S-glutathionylation and S-nitrosylation in mice. Free Radic Res 2012; 46:164-73. [PMID: 22145974 DOI: 10.3109/10715762.2011.647011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cigarette smoke causes irreversible oxidations in lungs, but its impact on reversible and physiologically relevant redox-dependent protein modifications remains to be investigated. Here the effect of cigarette smoke exposure in mice was investigated on the covalent binding of glutathione to protein thiols, known as S-glutathionylation (PSSG), which can be reversed by glutaredoxins (Grx). Also, protein S-nitrosylation (PSNO) which is the modification of protein thiols by NO and which is reversed by the enzyme alcohol dehydrogenase (ADH) 5 was examined. Both PSSG and PSNO levels in lung tissue were markedly decreased after 4 weeks of cigarette smoke exposure. This coincided with attenuated protein free thiol levels and increased protein carbonylation. The expression of NOX4, DHE sensitive oxidant production and iNOS levels were induced by smoke, whereas Grx1 mRNA expression and activity were attenuated. Free GSH levels, protein expression and activity of ADH5 were unaffected by smoke. Taken together, smoke exposure decreases reversible cysteine oxidations PSSG and PSNO and enhances protein carbonylation. These alterations are not associated with differences in some of the regulatory enzymes, but are likely the result of oxidative stress.
Collapse
Affiliation(s)
- Ine Kuipers
- Department of Respiratory Medicine, Nutrim School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | | | | | | |
Collapse
|
20
|
Rahman I. Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta Mol Basis Dis 2011; 1822:714-28. [PMID: 22101076 DOI: 10.1016/j.bbadis.2011.11.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 10/15/2022]
Abstract
Cigarette/tobacco smoke/biomass fuel-induced oxidative and aldehyde/carbonyl stress are intimately associated with the progression and exacerbation of chronic obstructive pulmonary disease (COPD). Therefore, targeting systemic and local oxidative stress with antioxidants/redox modulating agents, or boosting the endogenous levels of antioxidants are likely to have beneficial effects in the treatment/management of COPD. Various antioxidant agents, such as thiol molecules (glutathione and mucolytic drugs, such as N-acetyl-L-cysteine and N-acystelyn, erdosteine, fudosteine, ergothioneine, and carbocysteine), have been reported to modulate various cellular and biochemical aspects of COPD. These antioxidants have been found to scavenge and detoxify free radicals and oxidants, regulate of glutathione biosynthesis, control nuclear factor-kappaB (NF-kappaB) activation, and hence inhibiting inflammatory gene expression. Synthetic molecules, such as specific spin traps like α-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a superoxide dismutase mimetic M40419, iNOS and myeloperoxidase inhibitors, lipid peroxidation inhibitors/blockers edaravone, and lazaroids/tirilazad have also been shown to have beneficial effects by inhibiting cigarette smoke-induced inflammatory responses and other carbonyl/oxidative stress-induced cellular alterations. A variety of oxidants, free radicals, and carbonyls/aldehydes are implicated in the pathogenesis of COPD, it is therefore, possible that therapeutic administration or supplementation of multiple antioxidants and/or boosting the endogenous levels of antioxidants will be beneficial in the treatment of COPD. This review discusses various novel pharmacological approaches adopted to enhance lung antioxidant levels, and various emerging beneficial and/or prophylactic effects of antioxidant therapeutics in halting or intervening the progression of COPD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|