1
|
Abbasi A, Wang D, Stringer WW, Casaburi R, Rossiter HB. Immune system benefits of pulmonary rehabilitation in chronic obstructive pulmonary disease. Exp Physiol 2024. [PMID: 39456127 DOI: 10.1113/ep091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/04/2024] [Indexed: 10/28/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by pulmonary and systemic inflammation. Inflammatory mediators show relationships with shortness of breath, exercise intolerance and health related quality of life. Pulmonary rehabilitation (PR), a comprehensive education and exercise training programme, is the most effective therapy for COPD and is associated with reduced exacerbation and hospitalization rates and increased survival. Exercise training, the primary physiological intervention within PR, is known to exert a beneficial anti-inflammatory effect in health and chronic diseases. The question of this review article is whether exercise training can also make such a beneficial anti-inflammatory effect in COPD. Experimental studies using smoke exposure mice models suggest that the response of the immune system to exercise training is favourably anti-inflammatory. However, the evidence about the response of most known inflammatory mediators (C-reactive protein, tumour necrosis factor α, interleukin 6, interleukin 10) to exercise training in COPD patients is inconsistent, making it difficult to conclude whether regular exercise training has an anti-inflammatory effect in COPD. It is also unclear whether COPD patients with more persistent inflammation are a subgroup that would benefit more from hypothesized immunomodulatory effects of exercise training (i.e., personalized treatment). Nevertheless, it seems that PR combined with maintenance exercise training (i.e., lifestyle change) might be more beneficial in controlling inflammation and slowing disease progress in COPD patients, specifically in those with early stages of disease.
Collapse
Affiliation(s)
- Asghar Abbasi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - David Wang
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - William W Stringer
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Richard Casaburi
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Harry B Rossiter
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| |
Collapse
|
2
|
Wu X, Du F, Zhang A, Zhang G, Xu R, Du X. KDELR2 is necessary for chronic obstructive pulmonary disease airway Mucin5AC hypersecretion via an IRE1α/XBP-1s-dependent mechanism. J Cell Mol Med 2024; 28:e70125. [PMID: 39365189 PMCID: PMC11451269 DOI: 10.1111/jcmm.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4μ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Respiratory and Critical Care MedicineSuining Central HospitalSuiningSichuanChina
| | - Fawang Du
- Department of Respiratory and Critical Care MedicineSuining Central HospitalSuiningSichuanChina
| | - Aijie Zhang
- Basic Laboratory, Key Laboratory of Metabolic DiseasesSuining Central HospitalSuiningChina
| | - Guoyue Zhang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Rui Xu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xianzhi Du
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
3
|
Fung NH, Nguyen QA, Owczarek C, Wilson N, Doomun NE, De Souza D, Quinn K, Selemidis S, McQualter J, Vlahos R, Wang H, Bozinovski S. Early-life house dust mite aeroallergen exposure augments cigarette smoke-induced myeloid inflammation and emphysema in mice. Respir Res 2024; 25:161. [PMID: 38614991 PMCID: PMC11016214 DOI: 10.1186/s12931-024-02774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.
Collapse
Affiliation(s)
- Nok Him Fung
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Quynh Anh Nguyen
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Owczarek
- Research and Development, CSL Limited, Bio21 Institute, Melbourne, Australia
| | - Nick Wilson
- Research and Development, CSL Limited, Bio21 Institute, Melbourne, Australia
| | - Nadeem Elahee Doomun
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - David De Souza
- Metabolomics Australia, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Kylie Quinn
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Stavros Selemidis
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Jonathan McQualter
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Ross Vlahos
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hao Wang
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.
| | - Steven Bozinovski
- Centre for Respiratory Science & Health, School of Health & Biomedical Sciences, RMIT University, Melbourne, Australia.
| |
Collapse
|
4
|
Jo YS, Rhee CK, Yoon HK, Park CK, Lim JU, Joon AT, Hur J. Evaluation of asthma-chronic obstructive pulmonary disease overlap using a mouse model of pulmonary disease. J Inflamm (Lond) 2022; 19:25. [PMID: 36474247 PMCID: PMC9728005 DOI: 10.1186/s12950-022-00322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Features of asthma and chronic obstructive pulmonary disease (COPD) can coexist in the same patient, in a condition termed asthma- chronic obstructive pulmonary disease overlap (ACO). ACO is heterogeneous condition exhibiting various combinations of asthma and COPD features. No clinically acceptable experimental model of ACO has been established. We aimed to establish an animal model of ACO. METHODS We generated two phenotypes of ACO by administering ovalbumin and porcine pancreatic elastase in combination, and papain. The proinflammatory cytokines and cell types in bronchoalveolar lavage fluid (BALF) were investigated, and lung function parameters were measured using the FlexiVent system. RESULTS Greater airway inflammation was observed in the asthma and both ACO models, and emphysema was found in the COPD and both ACO models. The proportion of eosinophils in BALF was elevated in the asthma and ACO-a model. Type 2 inflammatory cytokine levels were highest in the ACO-a model, and the neutrophil gelatinase-associated lipocalin level was elevated in the asthma and ACO-a model. Of lung function parameters, compliance was greater in the COPD and ACO-b model, in which elastance was lower than in the asthma model. Airway resistance increased with the methacholine concentration in the asthma and both ACO models, but not in the control or COPD model. CONCLUSION We established two murine models of ACO that exhibit features of asthma and COPD. We validated the clinical relevance of the ACO models based on changes in cytokine profiles and lung function. These models will be useful in further studies of the pathogenesis of, and therapeutic targets for ACO.
Collapse
Affiliation(s)
- Yong Suk Jo
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chin Kook Rhee
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chan Kwon Park
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Uk Lim
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - An Tai Joon
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung Hur
- grid.411947.e0000 0004 0470 4224Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
5
|
Pathophysiology of Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunol Allergy Clin North Am 2022; 42:521-532. [DOI: 10.1016/j.iac.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Tu X, Kim RY, Brown AC, de Jong E, Jones-Freeman B, Ali MK, Gomez HM, Budden KF, Starkey MR, Cameron GJM, Loering S, Nguyen DH, Nair PM, Haw TJ, Alemao CA, Faiz A, Tay HL, Wark PAB, Knight DA, Foster PS, Bosco A, Horvat JC, Hansbro PM, Donovan C. Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. J Allergy Clin Immunol 2022; 150:817-829.e6. [PMID: 35643377 DOI: 10.1016/j.jaci.2022.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Emma de Jong
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Guy J M Cameron
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Svenja Loering
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Duc H Nguyen
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Prema Mono Nair
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Charlotte A Alemao
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Alen Faiz
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Hock L Tay
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Darryl A Knight
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Paul S Foster
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Anthony Bosco
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, Australia.
| | - Chantal Donovan
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
7
|
Kawagoe J, Maeda Y, Kikuchi R, Takahashi M, Fuchikami JI, Tsuji T, Kono Y, Abe S, Yamaguchi K, Koyama N, Nakamura H, Aoshiba K. Differential effects of dexamethasone and roflumilast on asthma in mice with or without short cigarette smoke exposure. Pulm Pharmacol Ther 2021; 70:102052. [PMID: 34214693 DOI: 10.1016/j.pupt.2021.102052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023]
Abstract
Appropriate drug treatment for smoking asthmatics is uncertain because most smokers with asthma are less sensitive to treatment with glucocorticoids compared with non-smokers with asthma. We hypothesized that roflumilast (Rof), a selective phosphodiesterases-4 inhibitor regarded as an add-on therapy for chronic obstructive pulmonary disease, might be more effective than glucocorticoids for improving asthma in smokers. To investigate this hypothesis, we compared the therapeutic effects of dexamethasone (Dex) and Rof in a mouse model of ovalbumin-induced asthma with or without concurrent cigarette smoke (CS) exposure for 2 weeks. We found that recurrent asthma attacks increased lung tissue resistance. CS exposure in asthmatic mice decreased the central airway resistance, increased lung compliance, and attenuated airway hyper-responsiveness (AHR). CS exposure in asthmatic mice also increased the number of neutrophils and macrophages in the bronchoalveolar fluid. Treatment with Dex in asthmatic mice without CS exposure reduced airway resistance, AHR and airway eosinophilia. In asthmatic mice with CS exposure, however, Dex treatment unexpectedly increased lung tissue resistance and restored AHR that had been otherwise suppressed. Dex treatment in asthmatic mice with CS exposure inhibited eosinophilic inflammation but conversely exacerbated neutrophilic inflammation. On the other hand, treatment with Rof in asthmatic mice without CS exposure reduced airway resistance and airway eosinophilia, although the inhibitory effect of Rof on AHR was unremarkable. In asthmatic mice with CS exposure, Rof treatment did not exacerbate lung tissue resistance but modestly restored AHR, without any significant effects on airway inflammation. These results suggest that CS exposure mitigates sensitivity to both Dex and Rof. In asthmatic mice with CS exposure, Dex is still effective in reducing eosinophilic inflammation but increases lung tissue resistance, AHR and neutrophilic inflammation. Rof is ineffective in improving lung function and inflammation in asthmatic mice with CS exposure. This study did not support our initial hypothesis that Rof might be more effective than glucocorticoids for improving asthma in smokers. However, glucocorticoids may have a detrimental effect on smoking asthmatics.
Collapse
Affiliation(s)
- Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Maki Takahashi
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Jun-Ichi Fuchikami
- CMIC Pharma Science Co.,Ltd., Bioresearch Center, 10221 Kobuchisawa-cho, Hokuto-shi, Yamanashi, 408-0044, Japan.
| | - Takao Tsuji
- Otsuki Municipal Hospital, 1225 Hanasaki, Otsuki-machi, 401-0015 Yamanashi, Japan.
| | - Yuta Kono
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shinji Abe
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki 300-0395, Japan.
| |
Collapse
|
8
|
Morissette M, Godbout K, Côté A, Boulet LP. Asthma COPD overlap: Insights into cellular and molecular mechanisms. Mol Aspects Med 2021; 85:101021. [PMID: 34521557 DOI: 10.1016/j.mam.2021.101021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Although there is still no consensus on the definition of Asthma-COPD Overlap (ACO), it is generally accepted that some patients with airway disease have features of both asthma and COPD. Just as its constituents, ACO consists of different phenotypes, possibly depending on the predominance of the underlying asthma or COPD-associated pathophysiological mechanisms. The clinical picture is influenced by the development of airway inflammatory processes either eosinophilic, neutrophilic or mixed, in addition to glandular changes leading to mucus hypersecretion and a variety of other airway structural changes. Although animal models have exposed how smoking-related changes can interact with those observed in asthma, much remains to be known about their interactions in humans and the additional modulating effects of environmental exposures. There is currently no solid evidence to establish the optimal treatment of ACO but it should understandably include an avoidance of environmental triggers such as smoking and relevant allergens. The recognition and targeting of "treatable traits" following phenotyping is a pragmatic approach to select the optimal pharmacological treatment for ACO, although an association of inhaled corticosteroids and bronchodilators is always required in these patients. This association acts both as an anti-inflammatory treatment for the asthma component and as a functional antagonist for the airway remodeling features. Research should be promoted on well phenotyped subgroups of ACO patients to determine their optimal management.
Collapse
Affiliation(s)
- Mathieu Morissette
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| | - Krystelle Godbout
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Andréanne Côté
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada
| | - Louis-Philippe Boulet
- Quebec Heart and Lung Institute - Université Laval, Canada; Department of Medicine, Université Laval, Québec, Canada.
| |
Collapse
|
9
|
Lu K, Lai KP, Stoeger T, Ji S, Lin Z, Lin X, Chan TF, Fang JKH, Lo M, Gao L, Qiu C, Chen S, Chen G, Li L, Wang L. Detrimental effects of microplastic exposure on normal and asthmatic pulmonary physiology. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126069. [PMID: 34492895 DOI: 10.1016/j.jhazmat.2021.126069] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Concerns that airborne microplastics (MP) may be detrimental to human health are rising. However, research on the effects of MP on the respiratory system are limited. We tested the effect of MP exposure on both normal and asthmatic pulmonary physiology in mice. We show that MP exposure caused pulmonary inflammatory cell infiltration, bronchoalveolar macrophage aggregation, increased TNF-α level in bronchoalveolar lavage fluid (BALF), and increased plasma IgG1 production in normal mice. MP exposure also affected asthma symptoms by increasing mucus production and inflammatory cell infiltration with notable macrophage aggregation. Further, we found co-labeling of macrophage markers with MP incorporating fluorescence, which indicates phagocytosis of the MP by macrophages. A comparative transcriptomic analysis showed that MP exposure altered clusters of genes related to immune response, cellular stress response, and programmed cell death. A bioinformatics analysis further uncovered the molecular mechanism whereby MP stimulated production of tumor necrosis factor and immunoglobulins to activate a group of transmembrane B-cell antigens, leading to the modulation of cellular stress and programmed cell death in the asthma model. In summary, we show that MP exposure had detrimental effects on the respiratory system in both healthy and asthmatic mice, which calls for urgent discourse and action to mitigate environmental microplastic pollutants.
Collapse
Affiliation(s)
- Kuo Lu
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China; Department of Chemistry, City University Hong Kong, Hong Kong SAR, China
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg and Member of the German Center for Lung Research, Germany
| | - Shuqin Ji
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Ziyi Lin
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiao Lin
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - James Kar-Hei Fang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Michael Lo
- Department of Chemistry, City University Hong Kong, Hong Kong SAR, China
| | - Liang Gao
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Chen Qiu
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Shanze Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China
| | - Guobing Chen
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China; Institute of Geriatric Immunology, Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lei Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China.
| | - Lingwei Wang
- The Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China; Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Tu X, Donovan C, Kim RY, Wark PAB, Horvat JC, Hansbro PM. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev 2021; 30:30/159/190185. [PMID: 33597123 PMCID: PMC9488725 DOI: 10.1183/16000617.0185-2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Pathological features of both asthma and COPD coexist in some patients and this is termed asthma-COPD overlap (ACO). ACO is heterogeneous and patients exhibit various combinations of asthma and COPD features, making it difficult to characterise the underlying pathogenic mechanisms. There are no controlled studies that define effective therapies for ACO, which arises from the lack of international consensus on the definition and diagnostic criteria for ACO, as well as scant in vitro and in vivo data. There remain unmet needs for experimental models of ACO that accurately recapitulate the hallmark features of ACO in patients. The development and interrogation of such models will identify underlying disease-causing mechanisms, as well as enabling the identification of novel therapeutic targets and providing a platform for assessing new ACO therapies. Here, we review the current understanding of the clinical features of ACO and highlight the approaches that are best suited for developing representative experimental models of ACO. Understanding the pathogenesis of asthma-COPD overlap is critical for improving therapeutic approaches. We present current knowledge on asthma-COPD overlap and the requirements for developing an optimal animal model of disease.https://bit.ly/3lsjyvm
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Both authors contributed equally
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia.,Both authors contributed equally
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia.,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia .,Centre for Inflammation, Centenary Institute, Camperdown, Australia.,University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| |
Collapse
|
11
|
Schmidt M, Hopp L, Arakelyan A, Kirsten H, Engel C, Wirkner K, Krohn K, Burkhardt R, Thiery J, Loeffler M, Loeffler-Wirth H, Binder H. The Human Blood Transcriptome in a Large Population Cohort and Its Relation to Aging and Health. Front Big Data 2020; 3:548873. [PMID: 33693414 PMCID: PMC7931910 DOI: 10.3389/fdata.2020.548873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The blood transcriptome is expected to provide a detailed picture of an organism's physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research. We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications.
Collapse
Affiliation(s)
- Maria Schmidt
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Lydia Hopp
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- BIG, Group of Bioinformatics, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Holger Kirsten
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Christoph Engel
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Kerstin Wirkner
- IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Knut Krohn
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Ralph Burkhardt
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany.,Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Markus Loeffler
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany.,IMISE, Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Henry Loeffler-Wirth
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | - Hans Binder
- IZBI, Interdisciplinary Centre for Bioinformatics, Universität Leipzig, Leipzig, Germany.,Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Ueha R, Ueha S, Kondo K, Nishijima H, Yamasoba T. Effects of Cigarette Smoke on the Nasal Respiratory and Olfactory Mucosa in Allergic Rhinitis Mice. Front Neurosci 2020; 14:126. [PMID: 32132898 PMCID: PMC7040099 DOI: 10.3389/fnins.2020.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Cigarette smoke (CS) exposure reportedly enhances allergic airway inflammation. However, some studies have shown an association between current cigarette smoke exposure and a low risk for allergic rhinitis. Thus, the impact of CS exposure on allergic rhinitis remains poorly understood. The purpose of this study was to investigate the effects of CS on the respiratory mucosa (RM) and the olfactory epithelium (OE) of mice with allergic rhinitis, as the effects may differ depending on the nasal histological compartments. Methods Eight-week-old male BALB/c mice were used for this study. We developed a mouse model of smoking by intranasally administering 10 doses of a CS solution (CSS), and a mouse model of allergic rhinitis by sensitization with intraperitoneal ovalbumin (OVA) injection and intranasal challenge with OVA. We examined the effects of CS on the nasal RM and OE in mice with or without allergic rhinitis using histological, serum, and genetic analyses. First, we examine whether CSS exposure induces allergic responses and then, examined allergic responses in the OVA-sensitized allergic rhinitis mice with or without CSS exposure. Results Short-term CSS administration intensified allergic responses including increased infiltration of eosinophils and inflammatory cells and upregulation of interleukin-5 expression in the nasal RM of OVA-immunized mice, although only CSS induced neither allergic responses nor impairment of the RM and OE. Notably, repetitive OVA-immunization partially impaired the OE in the upper-lateral area, but CSS administration did not reinforce this impairment in OVA-induced allergic mice. Conclusion Short-term CSS exposure strengthened allergic responses in the nasal RM and did not change the structure of the OE. These results suggest that patients with allergic rhinitis could experience exacerbation of allergic symptoms after CS exposure.
Collapse
Affiliation(s)
- Rumi Ueha
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kenji Kondo
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| | | | - Tatsuya Yamasoba
- Department of Otolaryngology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Lee A, Lee SY, Lee KS. The Use of Heated Tobacco Products is Associated with Asthma, Allergic Rhinitis, and Atopic Dermatitis in Korean Adolescents. Sci Rep 2019; 9:17699. [PMID: 31776400 PMCID: PMC6881368 DOI: 10.1038/s41598-019-54102-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/08/2019] [Indexed: 01/27/2023] Open
Abstract
The increasing use of new and emerging tobacco products has raised public health concern worldwide. This study aimed to assess the association between tobacco product use and the risk of allergic diseases. We used cross-sectional data of 58,336 students aged 12–18 years from the 2018 Korea Youth Risk Behavior Survey. This study considered three tobacco products, namely cigarettes, electronic cigarettes (e-cigarettes), and heated tobacco products. Descriptive analyses, as well as simple and multinomial logistic regression analyses with a complex sampling design, were performed. Multiple tobacco use had an association with the risk of each allergic disease. Use of each tobacco product was significantly associated with an increased risk of multi-morbidity of asthma, allergic rhinitis, and atopic dermatitis. Furthermore, lifetime use of each tobacco product was associated with the prevalence of atopic dermatitis. This highlights the importance of paying close attention to smoking by adolescents and its association with allergy epidemics. Future research should consider intensity of smoking and/or severity of allergic symptoms.
Collapse
Affiliation(s)
- Ahnna Lee
- Department of Public Health, Graduate School, The Catholic University of Korea, Seoul, Korea.,Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sook Young Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kang-Sook Lee
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
14
|
Pareek S, Traboulsi H, Allard B, Rico de Souza A, Eidelman DH, Baglole CJ. Pulmonary neutrophilia caused by absence of the NF-κB member RelB is dampened by exposure to cigarette smoke. Mol Immunol 2019; 114:395-409. [PMID: 31476634 DOI: 10.1016/j.molimm.2019.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/23/2019] [Accepted: 08/14/2019] [Indexed: 01/01/2023]
Abstract
Inflammation is a response to injury and infection. Although protective under physiological conditions, excessive and persistent inflammation is linked to numerous diseases. As the lungs are continuously exposed to the external environment, the respiratory system is particularly liable to damage from inflammation. RelB is a member of the non-canonical NF-κB pathway that may control lung inflammation caused by cigarette smoke (CS), a leading cause of morbidity and mortality worldwide. Our lab has previously shown that RelB protects against CS-induced inflammation in vitro, leading us to hypothesize that RelB would protect against acute CS-induced pulmonary inflammation in vivo. We exposed wild-type (Relb+/+) and RelB-deficient mice (Relb-/-) mice to room air or to CS and found that CS exposure caused a sustained decrease in pulmonary granulocytes in Relb-/- mice that was predominated by a decrease in neutrophils. Pulmonary inflammation caused by other irritants, including chlorine, ovalbumin (OVA; to mimic features of asthma) and lipopolysaccharide (LPS) was not controlled by RelB. Differential cytokine analysis suggests that alterations in chemotactic cytokines do not fully account for the CS-specific decrease in neutrophils in Relb-/- mice. Flow cytometric analysis of the bronchoalveolar lavage and bone marrow cells also reveal that it is unlikely that the sustained decrease is caused by excessive cell death or decreased hematopoiesis from the bone marrow. Overall, our results indicate that RelB regulates acute CS-induced pulmonary inflammation. Understanding how RelB regulates CS-induced inflammation may potentiate the discovery of new therapeutic strategies for many of the inflammatory diseases caused by CS.
Collapse
Affiliation(s)
- Swati Pareek
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Pathology, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Benoit Allard
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Departments of Pathology, McGill University, Montreal, Quebec, Canada; Medicine, McGill University, Montreal, Quebec, Canada; Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
The Effect of Flavored E-cigarettes on Murine Allergic Airways Disease. Sci Rep 2019; 9:13671. [PMID: 31541174 PMCID: PMC6754426 DOI: 10.1038/s41598-019-50223-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/09/2019] [Indexed: 12/14/2022] Open
Abstract
Flavored e-cigarettes are preferred by the majority of users yet their potential toxicity is unknown. Therefore our aim was to determine the effect of selected flavored e-cigarettes, with or without nicotine, on allergic airways disease in mice. Balb/c mice were challenged with PBS or house dust mite (HDM) (Days 0, 7, 14-18) and exposed to room air or e-cigarette aerosol for 30 min twice daily, 6 days/week from Days 0-18 (n = 8-12/group). Mice were exposed to Room Air, vehicle control (50%VG/%50PG), Black Licorice, Kola, Banana Pudding or Cinnacide without or with 12 mg/mL nicotine. Mice were assessed at 72 hours after the final HDM challenge. Compared to mice challenged with HDM and exposed to Room Air, nicotine-free Cinnacide reduced airway inflammation (p = 0.045) and increased peripheral airway hyperresponsiveness (p = 0.02), nicotine-free Banana Pudding increased soluble lung collagen (p = 0.049), with a trend towards increased airway inflammation with nicotine-free Black Licorice exposure (p = 0.089). In contrast, all e-cigarettes containing nicotine suppressed airway inflammation (p < 0.001 for all) but did not alter airway hyperresponsiveness or airway remodeling. Flavored e-cigarettes without nicotine had significant but heterogeneous effects on features of allergic airways disease. This suggests that some flavored e-cigarettes may alter asthma pathophysiology even when used without nicotine.
Collapse
|
16
|
Critical role of interleukin-23 in development of asthma promoted by cigarette smoke. J Mol Med (Berl) 2019; 97:937-949. [PMID: 31020341 DOI: 10.1007/s00109-019-01768-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
It has been recently reported that cigarette smoke exposure during allergen sensitization facilitates the development of allergic asthma; however, the underlying mechanisms remain elusive. We evaluated the role of interleukin (IL-23) in a cigarette smoke extract (CSE)-induced Dermatophagoides pteronyssinus (Dp)-allergic asthma mouse model. BALB/c mice were exposed to CSE during allergen sensitization period. Anti-IL-23p19 or IL-23R antibody was administered during the sensitization period. And we evaluated several immunological responses. The expression of IL-23 and IL-23 receptor (IL-23R) was examined in lung tissue. IL-23 and IL-23R expression was increased in the airway epithelium of Dp/CSE co-administered mice. CSE administration during the sensitization promoted Dp-allergic sensitization and the development of asthma phenotypes. Additionally, the proportion of innate lymphoid type 2 cells (ILC2) was also increased by CSE and Dp co-instillation. Anti-IL-23 or IL-23R antibody treatment during allergen sensitization significantly diminished phenotypes of allergic asthma and the ILC2 population. The levels of IL-33 and thymic stromal lymphopoietin (TSLP) were also significantly reduced by anti-IL-23 or IL-23R antibody treatment. IL-23 may thus play a significant role in cigarette smoke-induced allergic sensitization and asthma development. Clinically, the increase in allergen sensitization due to cigarette exposure causes onset of asthma, and IL-23 may be important in this mechanism. KEY MESSAGES: IL-23 and IL-23R expression was increased in the lung epithelium of Dp and CSE co-exposed mice during sensitization period. The population of ILC2s was increased in Dp and CSE co-exposed mice during sensitization period. Anti-IL23 or IL-23R antibody treatment with co-administration of CSE and HDM during sensitization period significantly suppresses ILC2. In vitro, IL-23 blockade in Dp and CSE-stimulated epithelial cells suppressed IL-13 expression in ILC2.
Collapse
|
17
|
Goudarzi H, Konno S, Kimura H, Araki A, Miyashita C, Itoh S, Ait Bamai Y, Kimura H, Shimizu K, Suzuki M, Ito YM, Nishimura M, Kishi R. Contrasting associations of maternal smoking and pre-pregnancy BMI with wheeze and eczema in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:1601-1609. [PMID: 29929322 DOI: 10.1016/j.scitotenv.2018.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/12/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Childhood allergies are dynamic and associated with environmental factors. The influence of prenatal maternal smoking and obesity on childhood allergies and their comorbidities remains unclear, especially in prospective cohorts with serial longitudinal observations. OBJECTIVE We examined time trends in the prevalence and comorbidity of childhood allergies, including wheeze, eczema, and rhinoconjunctivitis, using a large-scale, population-based birth cohort in Japan, and assessed the effects of prenatal maternal smoking and BMI on the risk of childhood allergies. METHODS Parents completed the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaires about symptoms of allergies and their risk factors at age 1, 2, 4, and 7 years. Complete data from all pre- and postnatal questionnaires at age 1, 2, 4, and 7 were available for 3296 mother-child pairs. RESULTS We observed significant overlap of childhood allergies at 1, 2, 4, and 7 years. Maternal serum cotinine during pregnancy was associated with increased risk of wheezing in the children at age 1, 2, and 4 but disappeared at age 7. In contrast, maternal cotinine levels were inversely associated with the prevalence of eczema in children at age 7. We additionally observed that maternal pre-pregnancy BMI, not children's BMI, had a positive association with wheeze and an inverse association with eczema in 7-year-old children, respectively. We did not find any association of examined maternal factors and rhinoconjunctivitis. CONCLUSIONS We demonstrated contrasting association of prenatal maternal smoking and high BMI with postnatal wheeze and eczema. For precise assessment of allergy-associated risk factors, we need to contrast risk factors for different allergic diseases since focusing solely on one allergic disease may result in misleading information on the role of different risk factors.
Collapse
Affiliation(s)
- Houman Goudarzi
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Satoshi Konno
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan.
| | - Hirokazu Kimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Atsuko Araki
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sachiko Itoh
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroki Kimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Kaoruko Shimizu
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Masaru Suzuki
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaharu Nishimura
- First Department of Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Gahring LC, Myers EJ, Dunn DM, Weiss RB, Rogers SW. Lung eosinophilia induced by house dust mites or ovalbumin is modulated by nicotinic receptor α7 and inhibited by cigarette smoke. Am J Physiol Lung Cell Mol Physiol 2018; 315:L553-L562. [PMID: 29975102 PMCID: PMC6230881 DOI: 10.1152/ajplung.00230.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 07/03/2018] [Indexed: 12/16/2022] Open
Abstract
Eosinophilia (EOS) is an important component of airway inflammation and hyperresponsiveness in allergic reactions including those leading to asthma. Although cigarette smoking (CS) is a significant contributor to long-term adverse outcomes in these lung disorders, there are also the curious reports of its ability to produce acute suppression of inflammatory responses including EOS through poorly understood mechanisms. One possibility is that proinflammatory processes are suppressed by nicotine in CS acting through nicotinic receptor α7 (α7). Here we addressed the role of α7 in modulating EOS with two mouse models of an allergic response: house dust mites (HDM; Dermatophagoides sp.) and ovalbumin (OVA). The influence of α7 on EOS was experimentally resolved in wild-type mice or in mice in which a point mutation of the α7 receptor (α7E260A:G) selectively restricts normal signaling of cellular responses. RNA analysis of alveolar macrophages and the distal lung epithelium indicates that normal α7 function robustly impacts gene expression in the epithelium to HDM and OVA but to different degrees. Notable was allergen-specific α7 modulation of Ccl11 and Ccl24 (eotaxins) expression, which was enhanced in HDM but suppressed in OVA EOS. CS suppressed EOS induced by both OVA and HDM, as well as the inflammatory genes involved, regardless of α7 genotype. These results suggest that EOS in response to HDM or OVA is through signaling pathways that are modulated in a cell-specific manner by α7 and are distinct from CS suppression.
Collapse
Affiliation(s)
- Lorise C Gahring
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center , Salt Lake City, Utah
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine , Salt Lake City, Utah
| | - Elizabeth J Myers
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine , Salt Lake City, Utah
| | - Diane M Dunn
- Department of Human Genetics, University of Utah School of Medicine , Salt Lake City, Utah
| | - Robert B Weiss
- Department of Human Genetics, University of Utah School of Medicine , Salt Lake City, Utah
| | - Scott W Rogers
- Geriatric Research, Education, and Clinical Center, Salt Lake City Department of Veterans Affairs Medical Center , Salt Lake City, Utah
- Department of Neurobiology and Anatomy, University of Utah School of Medicine , Salt Lake City, Utah
| |
Collapse
|
19
|
Leigh LY, Spergel JM. An in-depth characterization of a large cohort of adult patients with eosinophilic esophagitis. Ann Allergy Asthma Immunol 2018; 122:65-72.e1. [PMID: 30223114 DOI: 10.1016/j.anai.2018.09.452] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/21/2018] [Accepted: 09/11/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic, allergic, immune-mediated disease associated with increased risk of comorbid atopic conditions. OBJECTIVE To perform an in-depth characterization of a large cohort of manually verified adult patients with EoE, including evaluation of less studied associations, such as pollen food allergy syndrome, anaphylaxis, autoimmunity, and psychiatric comorbidities. METHODS We performed a manual retrospective electronic medical record review of 1,218 patients with EoE identified by International Classification of Diseases, Ninth Revision and International Classification of Disease, 10th Revision codes from the University of Pennsylvania Health Systems. Through manual medical record review, we evaluated patient demographics, family and smoking history, laboratory and endoscopic findings, treatment, and comorbid atopic, autoimmune, and psychiatric conditions. RESULTS A total of 950 of the 1,218 patients had biopsy-proven EoE. This cohort was predominantly male, white, and never-smokers who presented most commonly with dysphagia, with an initial biopsy results showing 49 eosinophils per high-powered field, a serum absolute eosinophilic count of 446,000/µL, and mean total IgE level of 243 IU/mL. Of the patients, 55% had impaction (of which 38% required endoscopic removal), and 56% had strictures or fibrosis (of which 56% underwent dilatation). Therapy used was predominantly (77%) medical only. Comorbid atopy, pollen food allergy syndrome, drug allergy, anaphylaxis, autoimmunity, and psychiatric illnesses were higher in the EoE cohort compared with the general University of Pennsylvania Health Systems population. CONCLUSION Our adult cohort of manually verified, biopsy-proven EoE had an increased risk of pollen food allergy syndrome, anaphylaxis, and comorbid autoimmune and psychiatric conditions compared with the University of Pennsylvania Health Systems population. There was also an increased prevalence of impaction and stricture or fibrosis requiring endoscopic intervention compared with the pediatric population.
Collapse
Affiliation(s)
- Lyvia Y Leigh
- Section of Allergy and Immunology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Saco TV, Breitzig MT, Lockey RF, Kolliputi N. Epigenetics of Mucus Hypersecretion in Chronic Respiratory Diseases. Am J Respir Cell Mol Biol 2018; 58:299-309. [PMID: 29096066 DOI: 10.1165/rcmb.2017-0072tr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Asthma, chronic obstructive pulmonary disease, and cystic fibrosis are three chronic pulmonary diseases that affect an estimated 420 million individuals across the globe. A key factor contributing to each of these conditions is mucus hypersecretion. Although management of these diseases is vastly studied, researchers have only begun to scratch the surface of the mechanisms contributing to mucus hypersecretion. Epigenetic regulation of mucus hypersecretion, other than microRNA post-translational modification, is even more scarcely researched. Detailed study of epigenetic mechanisms, such as DNA methylation and histone modification, could not only help to better the understanding of these respiratory conditions but also reveal new treatments for them. Because mucus hypersecretion is such a complex event, there are innumerable genes involved in the process, which are beyond the scope of a single review. Therefore, the purpose of this review is to narrow the focus and summarize specific epigenetic research that has been conducted on a few aspects of mucus hypersecretion in asthma, chronic obstructive pulmonary disease, cystic fibrosis, and some cancers. Specifically, this review emphasizes the contribution of DNA methylation and histone modification of particular genes involved in mucus hypersecretion to identify possible targets for the development of future therapies for these conditions. Elucidating the role of epigenetics in these respiratory diseases may provide a breath of fresh air to millions of affected individuals around the world.
Collapse
Affiliation(s)
- Tara V Saco
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Mason T Breitzig
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
21
|
Belvisi MG, Baker K, Malloy N, Raemdonck K, Dekkak B, Pieper M, Nials AT, Birrell MA. Modelling the asthma phenotype: impact of cigarette smoke exposure. Respir Res 2018; 19:89. [PMID: 29747661 PMCID: PMC5946402 DOI: 10.1186/s12931-018-0799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Asthmatics that are exposed to inhaled pollutants such as cigarette smoke (CS) have increased symptom severity. Approximately 25% of adult asthmatics are thought to be active smokers and many sufferers, especially in the third world, are exposed to high levels of inhaled pollutants. The mechanism by which CS or other airborne pollutants alter the disease phenotype and the effectiveness of treatment in asthma is not known. The aim of this study was to determine the impact of CS exposure on the phenotype and treatment sensitivity of rodent models of allergic asthma. Methods Models of allergic asthma were configured that mimicked aspects of the asthma phenotype and the effect of CS exposure investigated. In some experiments, treatment with gold standard asthma therapies was investigated and end-points such as airway cellular burden, late asthmatic response (LAR) and airway hyper-Reactivity (AHR) assessed. Results CS co-exposure caused an increase in the LAR but interestingly attenuated the AHR. The effectiveness of LABA, LAMA and glucocorticoid treatment on LAR appeared to be retained in the CS-exposed model system. The eosinophilia or lymphocyte burden was not altered by CS co-exposure, nor did CS appear to alter the effectiveness of glucocorticoid treatment. Steroids, however failed to reduce the neutrophilic inflammation in sensitized mice exposed to CS. Conclusions These model data have certain parallels with clinical findings in asthmatics, where CS exposure did not impact the anti-inflammatory efficacy of steroids but attenuated AHR and enhanced symptoms such as the bronchospasm associated with the LAR. These model systems may be utilised to investigate how CS and other airborne pollutants impact the asthma phenotype; providing the opportunity to identify novel targets.
Collapse
Affiliation(s)
- Maria G Belvisi
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden.,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK
| | - Katie Baker
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Nicole Malloy
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Kristof Raemdonck
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.,Department of Anatomy, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.,Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto, Rua Dr. Plácido da Costa, 4200-450, Porto, Portugal
| | - Bilel Dekkak
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Michael Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Rhein, Germany
| | | | - Mark A Birrell
- Respiratory Pharmacology, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Exhibition Road, London, SW7 2AZ, UK. .,Respiratory, Inflammation Autoimmunity RIA IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden. .,MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, UK.
| |
Collapse
|
22
|
Mertens TCJ, Karmouty-Quintana H, Taube C, Hiemstra PS. Use of airway epithelial cell culture to unravel the pathogenesis and study treatment in obstructive airway diseases. Pulm Pharmacol Ther 2017; 45:101-113. [PMID: 28502841 DOI: 10.1016/j.pupt.2017.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are considered as two distinct obstructive diseases. Both chronic diseases share a component of airway epithelial dysfunction. The airway epithelium is localized to deal with inhaled substances, and functions as a barrier preventing penetration of such substances into the body. In addition, the epithelium is involved in the regulation of both innate and adaptive immune responses following inhalation of particles, allergens and pathogens. Through triggering and inducing immune responses, airway epithelial cells contribute to the pathogenesis of both asthma and COPD. Various in vitro research models have been described to study airway epithelial cell dysfunction in asthma and COPD. However, various considerations and cautions have to be taken into account when designing such in vitro experiments. Epithelial features of asthma and COPD can be modelled by using a variety of disease-related invoking substances either alone or in combination, and by the use of primary cells isolated from patients. Differentiation is a hallmark of airway epithelial cells, and therefore models should include the ability of cells to differentiate, as can be achieved in air-liquid interface models. More recently developed in vitro models, including precision cut lung slices, lung-on-a-chip, organoids and human induced pluripotent stem cells derived cultures, provide novel state-of-the-art alternatives to the conventional in vitro models. Furthermore, advanced models in which cells are exposed to respiratory pathogens, aerosolized medications and inhaled toxic substances such as cigarette smoke and air pollution are increasingly used to model e.g. acute exacerbations. These exposure models are relevant to study how epithelial features of asthma and COPD are affected and provide a useful tool to study the effect of drugs used in treatment of asthma and COPD. These new developments are expected to contribute to a better understanding of the complex gene-environment interactions that contribute to development and progression of asthma and COPD.
Collapse
Affiliation(s)
- Tinne C J Mertens
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Christian Taube
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
23
|
Jones JT, Tassew DD, Herrera LK, Walton-Filipczak SR, Montera MA, Chand HS, Delgado M, Mebratu YA, Tesfaigzi Y. Extent of allergic inflammation depends on intermittent versus continuous sensitization to house dust mite. Inhal Toxicol 2017; 29:106-112. [PMID: 28413916 DOI: 10.1080/08958378.2017.1311389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE House dust mite (HDM) exposure is used to model experimental asthma in mice. However, a direct comparison of inflammatory responses following continuous versus intermittent HDM exposure has not been reported. Therefore, we investigated whether the HDM dose at sensitization or challenge affects extent of inflammation in mice that were either continuously or intermittently sensitized with HDM. MATERIALS AND METHODS C57BL/6 mice received either 10 continuous exposures with 10 μg HDM per exposure or two intermittent HDM exposures over a period of two weeks and were subsequently challenged by three instillations with HDM during the third week. For the intermittent model, mice were sensitized with 1 or 10 μg HDM and challenged on three consecutive days with 1 or 10 μg HDM. Inflammatory cells in the bronchoalveolar lavage fluid and epithelial cell hyperplasia and mucous cell metaplasia were quantified. RESULTS Significantly higher levels of inflammation and mucous cell metaplasia were observed when mice were sensitized intermittently compared with continuously. Intermittent sensitization and challenge with 10 μg HDM caused maximum inflammation, mucous cell metaplasia, and epithelial cell hyperplasia. However, sensitization with 1 μg HDM only also showed increased inflammation when challenged with 10 μg HDM. DISCUSSION These findings suggest major differences in adaptive immunity, depending on the sensitization protocol. CONCLUSIONS Because of significant differences, the HDM sensitization protocol should be carefully considered when designing studies to investigate the underlying mechanisms of immunity in mouse models of asthma.
Collapse
Affiliation(s)
- Jane Tully Jones
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Dereje D Tassew
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Lois K Herrera
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | | | - Marena A Montera
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Hitendra S Chand
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Monica Delgado
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Yohannes A Mebratu
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Yohannes Tesfaigzi
- a COPD Program, Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
24
|
Danyal K, de Jong W, O'Brien E, Bauer RA, Heppner DE, Little AC, Hristova M, Habibovic A, van der Vliet A. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. Am J Physiol Lung Cell Mol Physiol 2016; 311:L913-L923. [PMID: 27612966 DOI: 10.1152/ajplung.00276.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca2+-dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens.
Collapse
Affiliation(s)
- Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Willem de Jong
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Edmund O'Brien
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Andrew C Little
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
25
|
Smith GJ, Thrall RS, Cloutier MM, Manautou JE, Morris JB. Acetaminophen Attenuates House Dust Mite-Induced Allergic Airway Disease in Mice. J Pharmacol Exp Ther 2016; 358:569-79. [PMID: 27402277 DOI: 10.1124/jpet.116.233684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Epidemiologic evidence suggests that N-acetyl-para-aminophenol (APAP) may play a role in the pathogenesis of asthma, likely through pro-oxidant mechanisms. However, no studies have investigated the direct effects of APAP on the development of allergic inflammation. To determine the likelihood of a causal relationship between APAP and asthma pathogenesis, we explored the effects of APAP on inflammatory responses in a murine house dust mite (HDM) model of allergic airway disease. We hypothesized that APAP would enhance the development of HDM-induced allergic inflammation. The HDM model consisted of once daily intranasal instillations for up to 2 weeks with APAP or vehicle administration 1 hour prior to HDM during either week 1 or 2. Primary assessment of inflammation included bronchoalveolar lavage (BAL), cytokine expression in lung tissue, and histopathology. Contrary to our hypothesis, the effects of HDM treatment were substantially diminished in APAP-treated groups compared with controls. APAP-treated groups had markedly reduced airway inflammation: including decreased inflammatory cells in the BAL fluid, lower cytokine expression in lung tissue, and less perivascular and peribronchiolar immune cell infiltration. The anti-inflammatory effect of APAP was not abrogated by an inhibitor of cytochrome P450 (P450) metabolism, suggesting that the effect was due to the parent compound or a non-P450 generated metabolite. Taken together, our studies do not support the biologic plausibility of the APAP hypothesis that APAP use may contribute to the causation of asthma. Importantly, we suggest the mechanism by which APAP modulates airway inflammation may provide novel therapeutic targets for asthma.
Collapse
Affiliation(s)
- Gregory J Smith
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Roger S Thrall
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Michelle M Cloutier
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| | - John B Morris
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (G.J.S., J.E.M., J.B.M); Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut (R.S.T.); Connecticut Children's Medical Center, Hartford, Connecticut (M.M.C.)
| |
Collapse
|
26
|
Tilp C, Bucher H, Haas H, Duechs MJ, Wex E, Erb KJ. Effects of conventional tobacco smoke and nicotine-free cigarette smoke on airway inflammation, airway remodelling and lung function in a triple allergen model of severe asthma. Clin Exp Allergy 2016; 46:957-72. [PMID: 26502779 DOI: 10.1111/cea.12665] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/14/2015] [Accepted: 10/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Patients with asthma who smoke have reduced lung function, increased exacerbation rates and increased steroid resistance compared to non-smoking asthmatics. In mice, cigarette smoke has been reported to have both pro- and anti-Th2 response effects. OBJECTIVE We hypothesized that combining tobacco cigarette smoke (tCS) with allergen exposure increases inflammation, airway remodelling and lung function in mice. To test this hypothesis, we combined a severe triple allergen model with tCS exposure and investigated whether effects were due to Toll-like receptor 4 signalling and/or nicotine and also observed when nicotine-free cigarettes were used. METHODS Mice were sensitized with ovalbumin, cockroach and house dust mite allergen in alum followed by intratracheal challenges with allergen twice a week for 6 weeks or additionally exposed to tCS during the allergen challenge period. Nicotine or nicotine-free herbal cigarette smoke was also applied to allergen challenged mice. RESULTS tCS significantly reduced eosinophil numbers, IL-4 and IL-5 concentrations in the lung, total and allergen-specific IgE in serum, improved lung function and reduced collagen I levels. With the exception of collagen I all parameters reduced by tobacco cigarette smoke were also reduced in Toll-like receptor 4-deficient mice. Nicotine-free cigarette smoke also had significant anti-inflammatory effects on eosinophils, IL-4 and IL-5 concentrations in the lung and reduced airway hyperreactivity, albeit weaker than tobacco smoke. Applying nicotine alone also reduced Th2 cytokine levels and eosinophil numbers in the airways. CONCLUSION Our experiments show that tCS exposure reduces allergen-induced Th2 response in the lung and associated collagen I production and development of airway hyperreactivity. With the exception on collagen I formation, these effects were not dependent on Toll-like receptor 4. The observed anti-Th2 effects of both nicotine and nicotine-free herbal cigarette smoke together suggests that tCS reduces the Th2 responses through nicotine and other products released by burning tobacco.
Collapse
Affiliation(s)
- C Tilp
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Bucher
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - H Haas
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - M J Duechs
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - E Wex
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| | - K J Erb
- Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Germany
| |
Collapse
|
27
|
Ishiguro T, Takayanagi N, Uozumi R, Tada M, Kagiyama N, Takaku Y, Shimizu Y, Sugita Y, Morita S. The Long-term Clinical Course of Chronic Eosinophilic Pneumonia. Intern Med 2016; 55:2373-7. [PMID: 27580536 DOI: 10.2169/internalmedicine.55.6765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Objective The long-term clinical course and prognosis of patients with chronic eosinophilic pneumonia (CEP) including factors predictive of the relapse of CEP have not been fully investigated. The aim of the present study was to investigate these issues. Methods We retrospectively investigated the rate of relapse and prognosis in 73 patients diagnosed as having CEP. Results Systemic corticosteroid therapy was administered at a prednisolone dose of 29.4±7.6 mg/day. During a median follow-up period of 1,939 days, 27 patients suffered from relapse of CEP. Two patients developed steroid-induced diabetes mellitus, and 1 patient developed pulmonary nontuberculous mycobacteriosis. Five patients died; however, none died of CEP. A history of smoking was the only independent negative risk factor for relapse of CEP [hazard ratio, 0.37 (0.14-0.98)]. Conclusion Patients with CEP frequently relapse. During the follow-up, metabolic and infectious complications under prolonged corticosteroid therapy are problematic. A history of smoking was a negative factor for predicting the risk of CEP relapse.
Collapse
Affiliation(s)
- Takashi Ishiguro
- Department of Respiratory Medicine, Saitama Cardiovascular and Respiratory Center, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo Q, Lin J, Zhang L, Li H, Pan L. The anti-malaria drug artesunate inhibits cigarette smoke and ovalbumin concurrent exposure-induced airway inflammation and might reverse glucocorticoid insensitivity. Int Immunopharmacol 2015; 29:235-245. [PMID: 26590116 DOI: 10.1016/j.intimp.2015.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/03/2015] [Accepted: 11/09/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The anti-malaria drug artesunate has been shown to attenuate experimental allergic asthma via inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This study was to further determine the effects of artesunate on cigarette smoke and ovalbumin (OVA) concurrent exposure-induced airway inflammation, the related mechanism, and glucocorticoid insensitivity. METHODS AND RESULTS In vivo: Female BALB/c mice concurrently exposed to cigarette smoke and OVA developed mixed eosinophilic and neutrophilic airway inflammation. Airway hyper-responsiveness, total and differential cell counts, and pro-inflammatory cytokine levels (interleukin (IL)-4, IL-8, IL-13 and tumor necrosis factor (TNF)-α) in bronchoalveolar lavage fluid (BALF) were measured. Lung tissue sections were stained for histological analysis, and proteins were extracted for Western blotting. Artesunate reduced methacholine-induced airway hyper-responsiveness, suppressed pulmonary inflammation cell recruitment and IL-4, IL-8, IL-13 and TNF-α levels, selectively inhibited PI3Kδ/Akt pathway, and restored HDAC2 activity. In vitro: BEAS-2B cells were exposed to cigarette smoke extract (CSE) for 6h and then stimulated with TNF-α overnight. Glucocorticoid sensitivity was evaluated by the inhibition of TNF-α-induced IL-8 production by dexamethasone. CSE reduced the effects of dexamethasone on TNF-α-induced IL-8 production in BEAS-2B cells, while artesunate reversed CSE-induced glucocorticoid insensitivity and restored HDAC2 deactivation induced by CSE. CONCLUSION Artesunate ameliorated cigarette smoke and OVA concurrent exposure-induced airway inflammation, inhibited the PI3Kδ/Akt pathway, restored HDAC2 activity, and reversed CSE-induced glucocorticoid insensitivity in BEAS-2B cells. These findings indicate that artesunate might play a protective role in asthma induced by cigarette smoke and glucocorticoid insensitivity.
Collapse
Affiliation(s)
- Qiongzhen Luo
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiangtao Lin
- Department of Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lu Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Li
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Lin Pan
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
29
|
Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA, White N, Mori M, Pham TH, Ward CK, Criner GJ, Marchetti N, Mustelin T, Erjefalt JS, Kolbeck R, Humbles AA. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 2015; 42:566-79. [PMID: 25786179 DOI: 10.1016/j.immuni.2015.02.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/29/2014] [Accepted: 01/15/2015] [Indexed: 10/23/2022]
Abstract
Cigarette smoking is a major risk factor for chronic obstructive pulmonary disease and is presumed to be central to the altered responsiveness to recurrent infection in these patients. We examined the effects of smoke priming underlying the exacerbated response to viral infection in mice. Lack of interleukin-33 (IL-33) signaling conferred complete protection during exacerbation and prevented enhanced inflammation and exaggerated weight loss. Mechanistically, smoke was required to upregulate epithelial-derived IL-33 and simultaneously alter the distribution of the IL-33 receptor ST2. Specifically, smoke decreased ST2 expression on group 2 innate lymphoid cells (ILC2s) while elevating ST2 expression on macrophages and natural killer (NK) cells, thus altering IL-33 responsiveness within the lung. Consequently, upon infection and release, increased local IL-33 significantly amplified type I proinflammatory responses via synergistic modulation of macrophage and NK cell function. Therefore, in COPD, smoke alters the lung microenvironment to facilitate an alternative IL-33-dependent exaggerated proinflammatory response to infection, exacerbating disease.
Collapse
MESH Headings
- Animals
- Female
- Gene Expression Regulation
- Humans
- Immunity, Innate/drug effects
- Influenza A virus/immunology
- Interleukin-1 Receptor-Like 1 Protein
- Interleukin-33
- Interleukins/deficiency
- Interleukins/genetics
- Interleukins/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Lung/drug effects
- Lung/immunology
- Lung/pathology
- Lymphocytes/drug effects
- Lymphocytes/immunology
- Lymphocytes/pathology
- Macrophages/immunology
- Macrophages/pathology
- Mice, Transgenic
- Orthomyxoviridae Infections/etiology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/pathology
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/pathology
- Receptors, Interleukin/deficiency
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/immunology
- Respiratory Mucosa/pathology
- Signal Transduction
- Smoke/adverse effects
- Nicotiana/chemistry
- Weight Loss
Collapse
Affiliation(s)
- Jennifer Kearley
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jonathan S Silver
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Caroline Sanden
- Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Zheng Liu
- Department of Translational Sciences, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Aaron A Berlin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Natalie White
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Michiko Mori
- Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Tuyet-Hang Pham
- Department of Translational Sciences, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Christine K Ward
- Department of Translational Sciences, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Gerard J Criner
- Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Nathaniel Marchetti
- Pulmonary and Critical Care Medicine, Department of Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Tomas Mustelin
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Jonas S Erjefalt
- Department of Experimental Medical Science, Lund University, Lund 22184, Sweden
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA
| | - Alison A Humbles
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune LLC, Gaithersburg, MD 20878, USA.
| |
Collapse
|
30
|
Takeda K, Shiraishi Y, Ashino S, Han J, Jia Y, Wang M, Lee NA, Lee JJ, Gelfand EW. Eosinophils contribute to the resolution of lung-allergic responses following repeated allergen challenge. J Allergy Clin Immunol 2015; 135:451-60. [PMID: 25312762 PMCID: PMC4587899 DOI: 10.1016/j.jaci.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils accumulate at the site of allergic inflammation and are critical effector cells in allergic diseases. Recent studies have also suggested a role for eosinophils in the resolution of inflammation. OBJECTIVE To determine the role of eosinophils in the resolution phase of the response to repeated allergen challenge. METHODS Eosinophil-deficient (PHIL) and wild-type (WT) littermates were sensitized and challenged to ovalbumin (OVA) 7 or 11 times. Airway inflammation, airway hyperresponsiveness (AHR) to inhaled methacholine, bronchoalveolar lavage (BAL) cytokine levels, and lung histology were monitored. Intracellular cytokine levels in BAL leukocytes were analyzed by flow cytometry. Groups of OVA-sensitized PHIL mice received bone marrow from WT or IL-10(-/-) donors 30 days before the OVA challenge. RESULTS PHIL and WT mice developed similar levels of AHR and numbers of leukocytes and cytokine levels in BAL fluid after OVA sensitization and 7 airway challenges; no eosinophils were detected in the PHIL mice. Unlike WT mice, sensitized PHIL mice maintained AHR, lung inflammation, and increased levels of IL-4, IL-5, and IL-13 in BAL fluid after 11 challenges whereas IL-10 and TGF-β levels were decreased. Restoration of eosinophil numbers after injection of bone marrow from WT but not IL-10-deficient mice restored levels of IL-10 and TGF-β in BAL fluid as well as suppressed AHR and inflammation. Intracellular staining of BAL leukocytes revealed the capacity of eosinophils to produce IL-10. CONCLUSIONS After repeated allergen challenge, eosinophils appeared not essential for the development of AHR and lung inflammation but contributed to the resolution of AHR and inflammation by producing IL-10.
Collapse
Affiliation(s)
- Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yoshiki Shiraishi
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Shigeru Ashino
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Junyan Han
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo
| | - Nancy A Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - James J Lee
- Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colo.
| |
Collapse
|
31
|
Ierodiakonou D, Postma DS, Koppelman GH, Gerritsen J, ten Hacken NHT, Timens W, Boezen HM, Vonk JM. TGF-β1 polymorphisms and asthma severity, airway inflammation, and remodeling. J Allergy Clin Immunol 2012; 131:582-5. [PMID: 23111237 DOI: 10.1016/j.jaci.2012.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 07/06/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
|
32
|
Konno S, Hizawa N, Fukutomi Y, Taniguchi M, Kawagishi Y, Okada C, Tanimoto Y, Takahashi K, Akasawa A, Akiyama K, Nishimura M. The prevalence of rhinitis and its association with smoking and obesity in a nationwide survey of Japanese adults. Allergy 2012; 67:653-60. [PMID: 22335609 DOI: 10.1111/j.1398-9995.2012.02793.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Rhinitis is a common disease, and its prevalence is increasing worldwide. Several studies have provided evidence of a strong association between asthma and rhinitis. Although smoking and obesity have been extensively analyzed as risk factors of asthma, associations with rhinitis are less clear. OBJECTIVE The aims of our study were (i) to evaluate the prevalence of rhinitis using the European Community Respiratory Health Survey (ECRHS) questionnaire in Japanese adults and (ii) to evaluate the associations of smoking and body mass index (BMI) with rhinitis. METHODS Following our study conducted in 2006-2007 to determine the prevalence of asthma using the ECRHS questionnaire, our present analysis evaluates the prevalence of rhinitis and its association with smoking and BMI in Japanese adults 20-79 years of age (N = 22819). We classified the subjects (20-44 or 45-79 years) into four groups as having (i) neither rhinitis nor asthma; (ii) rhinitis without asthma; (iii) asthma without rhinitis; or (iv) rhinitis with asthma. We then evaluated associations with smoking and BMI in each group. RESULTS The overall age-adjusted prevalence of rhinitis was 35.1% in men and 39.3% in women. A higher prevalence was observed in the younger population than in the older population. Active smoking and obesity were positively associated with asthma without rhinitis. In contrast, particularly in the 20- to 44-year age-group, active smoking and obesity were negatively associated with rhinitis without asthma. CONCLUSION The results of the present study suggest that smoking and obesity may have different effects on the development of rhinitis and asthma.
Collapse
Affiliation(s)
- S. Konno
- First Department of Medicine; School of Medicine; Hokkaido University; Hokkaido; Japan
| | - N. Hizawa
- Department of Pulmonary Medicine; Institute of Clinical Medicine; University of Tsukuba; Tsukuba; Japan
| | | | - M. Taniguchi
- Clinical Research Center for Allergy and Rheumatology; Sagamihara National Hospital; Kanagawa; Japan
| | - Y. Kawagishi
- Department of Internal Medicine; Kurobe City Hospital; Toyama; Japan
| | | | - Y. Tanimoto
- Department of Hematology, Oncology, Allergy and Respiratory Medicine; Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Okayama; Japan
| | - K. Takahashi
- National Hospital Organization; Minami-Okayama Medical Center; Okayama; Japan
| | - A. Akasawa
- Department of Allergy; Tokyo Metropolitan Children's Medical Center; Tokyo; Japan
| | - K. Akiyama
- Clinical Research Center for Allergy and Rheumatology; Sagamihara National Hospital; Kanagawa; Japan
| | - M. Nishimura
- First Department of Medicine; School of Medicine; Hokkaido University; Hokkaido; Japan
| |
Collapse
|