1
|
Pistocchini E, Carrillo Heredero AM, Mazan M, Couetil L, Bertini S, Calzetta L. Clinical efficacy of inhaled corticosteroids in equine asthma: A meta-analysis and number needed to treat. Pulm Pharmacol Ther 2024; 88:102342. [PMID: 39645223 DOI: 10.1016/j.pupt.2024.102342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Equine asthma, a prevalent chronic inflammatory condition affecting the equine population, significantly compromises the performance and quality of life in affected horses. Inhaled corticosteroids (ICS) are often the first-line pharmacological intervention due to their potent anti-inflammatory properties. This meta-analysis investigates the clinical efficacy of ICS in treating equine asthma, emphasizing the number needed to treat (NNT) and the likelihood of achieving a clinical response. A comprehensive literature search identified relevant studies comparing ICS with placebo (PCB) controlled treatments. Data were synthesized from four clinical trials involving 252 asthmatic horses. Results indicate an overall NNT of 3.2 (95 % CI 2.3-4.7), meaning that approximately three horses must be treated with ICS for one to achieve a significant clinical response. Additionally, the relative risk of achieving clinical improvement with ICS versus PCB was 1.73 (95 % CI 1.47-2.02), demonstrating a marked increase in therapeutic effectiveness. Subgroup analysis revealed an NNT of 3.0 for severe cases, underscoring the efficacy of ICS across different severity levels. Despite potential biases noted in some studies, sensitivity analyses confirmed the robustness of these findings. The GRADE assessment rated the quality of evidence as high. These results highlight the therapeutic value of ICS in managing equine asthma, providing evidence-based recommendations for their clinical use. Future research should explore long-term outcomes and potential synergistic effects of ICS combined with other treatments to enhance clinical efficacy in managing equine asthma.
Collapse
Affiliation(s)
- Elena Pistocchini
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Melissa Mazan
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Laurent Couetil
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Simone Bertini
- Department of Veterinary Sciences, University of Parma, Parma, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
2
|
Lendl L, Barton AK. Equine Asthma Diagnostics: Review of Influencing Factors and Difficulties in Diagnosing Subclinical Disease. Animals (Basel) 2024; 14:3504. [PMID: 39682469 DOI: 10.3390/ani14233504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
This literature review focuses on diagnostics of equine asthma (EA), possible influencing factors on diagnostic techniques and latest developments in diagnosing horses during EA remission or with subclinical disease. Routine EA diagnostics include a clinical examination of the respiratory system with percussion and auscultation including a rebreathing examination, and clinical pathology including white blood cells and arterial blood gas analysis. Subsequent diagnostics include bronchoscopy to evaluate the amount and viscosity of respiratory secretion, bronchoalveolar lavage, and the cytology of tracheal aspirates (TAs) and bronchoalveolar lavage fluid (BALF). The grading of EA severity is built on respiratory effort at rest, which is increased in severe equine asthma. The inflammatory subtype is based on BALF cytology, while TA cytology helps to rule out previous bacterial infections. Different factors have an impact on the airways regarding the structure of the epithelium, cytology, and inflammatory markers possibly influencing the diagnosis of EA. Short-term exercise increases the total cell count and inflammatory mediators identified in the BALF of human patients, asymptomatic horses, and other species. Other factors involve cold or chlorinated air, long-term training effects, and concurrent additional respiratory disease, in particular exercise-induced pulmonary hemorrhage. As BALF cytology may be unremarkable during EA remission and low-grade disease, exercise tests and other factors stressing the bronchial epithelium may help to diagnose these patients.
Collapse
Affiliation(s)
- Lioba Lendl
- Equine Clinic Hochmoor, Ruthmannstr. 10, 48712 Gescher, Germany
| | | |
Collapse
|
3
|
Meiseberg LK, Delarocque J, de Buhr N, Ohnesorge B. Clinical variability of equine asthma phenotypes and analysis of diagnostic steps in phenotype differentiation. Acta Vet Scand 2024; 66:51. [PMID: 39294710 PMCID: PMC11409572 DOI: 10.1186/s13028-024-00773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Equine asthma is a common, non-infectious, chronic lung disease that affects up to 80% of the horse population. Strict phenotyping and identification of subclinically asthmatic horses can be challenging. The aim of this study was to describe equine asthma phenotypes (mild, moderate, and severe asthma) defined by BALF cytology and occurrence of clinical signs in a population of privately owned horses and to identify the variables and examination steps with best discriminative potential. The standardised examination protocol included clinical examinations, blood work, airway endoscopy with bronchoalveolar lavage fluid analysis, arterial blood gas analysis and radiography under clinical conditions performed by one veterinarian. RESULTS Out of 26 horses, four were diagnosed with mild (subclinical), seven with moderate, and seven with severe asthma based on clinical examination and BALF cytology. Eight horses served as controls. Cough with history of coughing was the strongest variable in phenotype differentiation. Factor analysis revealed an increasing clinical variability with disease severity and an overlapping of clinical presentations between phenotypes. Elevated mast cell (4/4 horses) and neutrophil counts (3/4 horses) in bronchoalveolar lavage cytology differentiated mild asthmatic horses from healthy horses. Moderate and severe asthmatic horses were characterised by clinical signs and neutrophil counts. CONCLUSIONS The results indicate that medical history, clinical examination and bronchoalveolar lavage cytology are minimum indispensable steps to diagnose equine asthma and that phenotypes are clinically overlapping. A differentiation of three phenotypes without neutrophil and mast cell counts in bronchoalveolar lavage cytology is not sufficient for clinical diagnostics. A comparably exact diagnosis cannot be achieved by relying on alternative examinations used in this study. Screenings of inconspicuous horses with bronchoalveolar lavage can aid in diagnosing subclinically affected animals, however, group size was small, the procedure is invasive and clinical relevance of slightly elevated cells in bronchoalveolar lavage remains unclear. Clinical relevance could not be clarified in this study, since follow-up examinations or lung function testing were not performed.
Collapse
Affiliation(s)
- Lia Kristin Meiseberg
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany.
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
| | - Julien Delarocque
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 9, 30559, Hannover, Germany
| |
Collapse
|
4
|
Leduc L, Leclère M, Lavoie JP. Towards personalized medicine for the treatment of equine asthma. Vet J 2024; 305:106125. [PMID: 38704018 DOI: 10.1016/j.tvjl.2024.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Although horses with asthma share similar clinical signs, the heterogeneity of the disease in terms of severity, triggering factors, inflammatory profile, and pathological features has hindered our ability to define biologically distinct subgroups. The recognition of phenotypes and endotypes could enable the development of precision medicine, including personalized, targeted therapy, to benefit affected horses. While in its infancy in horses, this review outlines the phenotypes of equine asthma and discusses how knowledge gained from targeted therapy in human medicine can be applied to evaluate the potential opportunities for personalized medicine in equine asthma and to suggest avenues for research to advance this emerging field.
Collapse
Affiliation(s)
- Laurence Leduc
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Mathilde Leclère
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
5
|
Diez de Castro E, Fernandez-Molina JM. Environmental Management of Equine Asthma. Animals (Basel) 2024; 14:446. [PMID: 38338089 PMCID: PMC10854533 DOI: 10.3390/ani14030446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Environmental practices related to the inhalation of airborne dust have been identified as the main cause of equine asthma (EA) and reasonably, they are truly relevant in its treatment and control, especially for horses with its severe form. Vast research regarding environmental recommendations has been conducted in recent years. However, no recent exhaustive reviews exist that gather all this new evidence. The aim of this review is to report and compare the most pertinent information concerning the environmental management of EA. The main findings highlight the importance of the type of forage used for feeding but also its method of production and possible contamination during manufacture and/or storage. Procedures to reduce this, such as soaking and steaming hay, improve its hygienic quality, although they also decrease forage's nutritional value, making dietetic supplementation necessary. Regarding stabling, despite some conflicting results, avoiding straw as bedding and improving barn ventilation continue to be the common recommendations if turning to pasture is not feasible. Finally, owners' compliance has been identified as the most critical point in correct environmental control. Educating owners about the genuine benefits of these measures should be a cornerstone of EA management.
Collapse
Affiliation(s)
- Elisa Diez de Castro
- Veterinary Teaching Hospital, University of Cordoba, 14014 Córdoba, Spain
- Department of Animal Medicine and Surgery, University of Cordoba, 14014 Córdoba, Spain
| | | |
Collapse
|
6
|
Westerfeld R, Payette F, Dubuc V, Manguin E, Picotte K, Beauchamp G, Bédard C, Leclere M. Effects of soaked hay on lung function and airway inflammation in horses with severe asthma. J Vet Intern Med 2024; 38:469-476. [PMID: 37930110 PMCID: PMC10800199 DOI: 10.1111/jvim.16919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Reducing inhaled dust particles improves lung function in horses with severe asthma. Soaked hay is commonly used by owners, but its efficacy in improving lung function and inflammation has not been documented. OBJECTIVES To measure the effects of soaked hay and alfalfa pellets in horses with severe asthma. ANIMALS Ten adult horses with severe asthma from a research colony. METHODS Prospective controlled trial. Horses in clinical exacerbation were housed indoors and allocated to be fed either soaked hay (n = 5) or alfalfa pellets (n = 5) for 6 weeks. Soaked hay was immersed for 45 minutes and dried out hay was discarded between meals. Pulmonary function and clinical scores were measured before and after 2, 4, and 6 weeks. Tracheal mucus scores and bronchoalveolar lavages were performed before and after 6 weeks. Lung function was analyzed with a linear mixed model using log-transformed data. RESULTS Lung resistance decreased from (median (range)) 2.47 (1.54-3.95) to 1.59 (0.52-2.10) cmH2 O/L/s in the pellets group and from 1.89 (1.2-3.54) to 0.61 (0.42-2.08) cmH2 O/L/s in the soaked hay group over the 6-week period for an average difference of 1.06 cmH2 O/L/s for pellets (95% confidence interval [95% CI]: 0.09-2.04, P = .03, not significant after correction) and 1.31 cmH2 O/L/s for soaked hay (95% CI: -0.23 to 2.85, P < .001, significant). CONCLUSION AND CLINICAL IMPORTANCE Soaked hay can control airway obstruction in horses with severe asthma. The strict protocol for soaking and discarding dried-out hay in this study could however be considered too great of an inconvenience by owners.
Collapse
Affiliation(s)
- Roxane Westerfeld
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Flavie Payette
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Valérie Dubuc
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Estelle Manguin
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Khristine Picotte
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Guy Beauchamp
- Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Christian Bédard
- Department of Pathology and Microbiology, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| | - Mathilde Leclere
- Department of Clinical Sciences, Faculté de Médecine VétérinaireUniversité de MontréalQuebecCanada
| |
Collapse
|
7
|
Simões J, Tilley P. Decision Making in Severe Equine Asthma-Diagnosis and Monitoring. Animals (Basel) 2023; 13:3872. [PMID: 38136909 PMCID: PMC10740644 DOI: 10.3390/ani13243872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Decision making consists of gathering quality data in order to correctly assess a situation and determine the best course of action. This process is a fundamental part of medicine and is what enables practitioners to accurately diagnose diseases and select appropriate treatment protocols. Despite severe equine asthma (SEA) being a highly prevalent lower respiratory disease amongst equids, clinicians still struggle with the optimization of routine diagnostic procedures. The use of several ancillary diagnostic tests has been reported for disease identification and monitoring, but many are only suitable for research purposes or lack practicality for everyday use. The aim of this paper is to assist the equine veterinarian in the process of decision making associated with managing SEA-affected patients. This review will focus on disease diagnosis and monitoring, while also presenting a flow-chart which includes the basic data that the clinician must obtain in order to accurately identify severely asthmatic horses in their everyday routine practice. It is important to note that European and American board-certified specialists on equine internal medicine can provide assistance in the diagnosis and treatment plan of SEA-affected horses.
Collapse
Affiliation(s)
- Joana Simões
- Equine Health and Welfare Academic Division, Faculty of Veterinary Medicine, Lusófona University, Campo Grande 376, 1749-024 Lisbon, Portugal
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4Animals), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Paula Tilley
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4Animals), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
8
|
Pybus HJ, O'Dea RD, Brook BS. A dynamical model of TGF-β activation in asthmatic airways. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:238-265. [PMID: 37285178 DOI: 10.1093/imammb/dqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
Excessive activation of the regulatory cytokine transforming growth factor $\beta $ (TGF-$\beta $) via contraction of airway smooth muscle (ASM) is associated with the development of asthma. In this study, we develop an ordinary differential equation model that describes the change in density of the key airway wall constituents, ASM and extracellular matrix (ECM), and their interplay with subcellular signalling pathways leading to the activation of TGF-$\beta $. We identify bistable parameter regimes where there are two positive steady states, corresponding to either reduced or elevated TGF-$\beta $ concentration, with the latter leading additionally to increased ASM and ECM density. We associate the former with a healthy homeostatic state and the latter with a diseased (asthmatic) state. We demonstrate that external stimuli, inducing TGF-$\beta $ activation via ASM contraction (mimicking an asthmatic exacerbation), can perturb the system irreversibly from the healthy state to the diseased one. We show that the properties of the stimuli, such as their frequency or strength, and the clearance of surplus active TGF-$\beta $, are important in determining the long-term dynamics and the development of disease. Finally, we demonstrate the utility of this model in investigating temporal responses to bronchial thermoplasty, a therapeutic intervention in which ASM is ablated by applying thermal energy to the airway wall. The model predicts the parameter-dependent threshold damage required to obtain irreversible reduction in ASM content, suggesting that certain asthma phenotypes are more likely to benefit from this intervention.
Collapse
Affiliation(s)
- Hannah J Pybus
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Reuben D O'Dea
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
9
|
Yang Q, Miao Q, Chen H, Li D, Luo Y, Chiu J, Wang HJ, Chuvanjyan M, Parmacek MS, Shi W. Myocd regulates airway smooth muscle cell remodeling in response to chronic asthmatic injury. J Pathol 2023; 259:331-341. [PMID: 36484734 PMCID: PMC10107741 DOI: 10.1002/path.6044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Abnormal growth of airway smooth muscle cells is one of the key features in asthmatic airway remodeling, which is associated with asthma severity. The mechanisms underlying inappropriate airway smooth muscle cell growth in asthma remain largely unknown. Myocd has been reported to act as a key transcriptional coactivator in promoting airway-specific smooth muscle development in fetal lungs. Whether Myocd controls airway smooth muscle remodeling in asthma has not been investigated. Mice with lung mesenchyme-specific deletion of Myocd after lung development were generated, and a chronic asthma model was established by sensitizing and challenging the mice with ovalbumin for a prolonged period. Comparison of the asthmatic pathology between the Myocd knockout mice and the wild-type controls revealed that abrogation of Myocd mitigated airway smooth muscle cell hypertrophy and hyperplasia, accompanied by reduced peri-airway inflammation, decreased fibrillar collagen deposition on airway walls, and attenuation of abnormal mucin production in airway epithelial cells. Our study indicates that Myocd is a key transcriptional coactivator involved in asthma airway remodeling. Inhibition of Myocd in asthmatic airways may be an effective approach to breaking the vicious cycle of asthmatic progression, providing a novel strategy in treating severe and persistent asthma. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Qin Yang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, PR China
| | - Qing Miao
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hui Chen
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Duo Li
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yongfeng Luo
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joanne Chiu
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hong-Jun Wang
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael Chuvanjyan
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael S Parmacek
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Shi
- Department of Surgery, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Olave CJ, Ivester KM, Couetil LL, Burgess J, Park JH, Mukhopadhyay A. Effects of low-dust forages on dust exposure, airway cytology, and plasma omega-3 concentrations in Thoroughbred racehorses: A randomized clinical trial. J Vet Intern Med 2022; 37:338-348. [PMID: 36478588 PMCID: PMC9889630 DOI: 10.1111/jvim.16598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Racehorses commonly develop evidence of mild asthma in response to dust exposure. Diets deficient in omega-3 polyunsaturated fatty acids (Ω-3) might exacerbate this response. HYPOTHESIS To compare dust exposure, bronchoalveolar lavage fluid (BALF) cytology, and plasma Ω-3 and specialized pro-resolving mediators (SPM) concentrations amongst racehorses fed dry hay, steamed hay, and haylage. ANIMALS Forty-three Thoroughbred racehorses. METHODS Prospective clinical trial. Horses were randomly assigned to be fed dry hay, steamed hay, or haylage for 6 weeks. Measures of exposure to dust in the breathing zone were obtained twice. At baseline, week-3, and week-6, BALF cytology was examined. Plasma lipid profiles and plasma SPM concentrations were examined at baseline and week 6. Generalized linear mixed models examined the effect of forage upon dust exposure, BALF cytology, Ω-3, and SPM concentrations. RESULTS Respirable dust was significantly higher for horses fed hay (least-square mean ± s.e.m. 0.081 ± 0.007 mg/m3 ) when compared with steamed hay (0.056 ± 0.005 mg/m3 , P = .01) or haylage (0.053 ± 0.005 mg/m3 , P < .01). At week 6, BALF neutrophil proportions in horses eating haylage (3.0% ± 0.6%) were significantly lower compared with baseline (5.1 ± 0.7, P = .04) and horses eating hay (6.3% ± 0.8%, P < .01). Plasma eicosapentaenoic acid to arachidonic acid ratios were higher in horses eating haylage for 6 weeks (0.51 ± 0.07) when compared with baseline (0.34 ± 0.05, P < .01) and horses eating steamed (0.24 ± 0.02, P < .01) or dry hay (0.25 ± 0.03, P < .01). CONCLUSIONS AND CLINICAL IMPORTANCE Steamed hay and haylage reduce dust exposure compared with dry hay, but only haylage increased the ratio of anti-inflammatory to pro-inflammatory lipids while reducing BAL neutrophil proportions within 6 weeks.
Collapse
Affiliation(s)
- Carla J. Olave
- Department of Veterinary Clinical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Kathleen M. Ivester
- Department of Veterinary Clinical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Laurent L. Couetil
- Department of Veterinary Clinical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - John Burgess
- Department of Nutrition Science, College of Health and Human SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jae Hong Park
- School of Health Sciences, College of Health and Human SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Abhijit Mukhopadhyay
- Department of Veterinary Clinical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
11
|
Effect of the Administration of a Nutraceutical Supplement in Racehorses with Lower Airway Inflammation. Animals (Basel) 2022; 12:ani12182479. [PMID: 36139339 PMCID: PMC9495102 DOI: 10.3390/ani12182479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Mild−moderate equine asthma (MEA) is a chronic inflammatory disorder of the lower airways of the horse, characterized by tracheal mucus accumulation, cough and poor performance. The therapeutic approach is based on pharmacological treatment and environmental management. Moreover, the efficacy of the administration of antioxidant molecules has been reported. The aim of the present study was to evaluate the effect of the administration of a commercial nutraceutical supplement, composed of several herbal extracts, on lower airway inflammation in racehorses. Twelve Thoroughbreds affected by MEA were selected. All horses underwent a clinical examination with assignment of a clinical score, airway endoscopy and cytological examination of bronchoalveolar lavage fluid. In seven horses, the supplement was administered for 21 days in association with environmental changes, while in five horses only environmental changes were performed. All procedures were repeated at the end of the study. Data concerning the clinical score, the endoscopic scores and the cytology at the beginning and at the end of the study were statistically compared. Data showed a significant reduction (p < 0.0156) of the clinical score and a significant reduction (p < 0.0156) of the tracheal mucus score. The results showed the beneficial effect of the supplement on mild−moderate lower airway inflammation, probably due to its antioxidant activity.
Collapse
|
12
|
Klier J, Fuchs S, Winter G, Gehlen H. Inhalative Nanoparticulate CpG Immunotherapy in Severe Equine Asthma: An Innovative Therapeutic Concept and Potential Animal Model for Human Asthma Treatment. Animals (Basel) 2022; 12:ani12162087. [PMID: 36009677 PMCID: PMC9405334 DOI: 10.3390/ani12162087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary Severe equine asthma is the most common globally widespread non-infectious equine respiratory disease (together with its mild and moderate form), which is associated with exposure to hay dust and mold spores, has certain similarities to human asthma, and continues to represent a therapeutic problem. Immunomodulatory DNA sequences (CpG) bound to nanoparticles were successfully administered by inhalation to severe asthmatic horses in several studies. It was possible to demonstrate a significant, sustained, one-to-eight-week improvement in important clinical parameters: partial oxygen pressure in the blood, quantity and viscosity of tracheal mucus secretion in the airways, and the amount of inflammatory cells in the respiratory tracts of severe asthmatic horses. The immunotherapy with CpG is performed independent of specific allergens. At an immunological level, the treatment leads to decreases in allergic and inflammatory parameters. This innovative therapeutic concept thus opens new perspectives in severe equine asthma treatment and possibly also in human asthma treatment. Abstract Severe equine asthma is the most common globally widespread non-infectious equine respiratory disease (together with its mild and moderate form), which is associated with exposure to hay dust and mold spores, has certain similarities to human asthma, and continues to represent a therapeutic problem. Immunomodulatory CpG-ODN, bound to gelatin nanoparticles as a drug delivery system, were successfully administered by inhalation to severe equine asthmatic patients in several studies. It was possible to demonstrate a significant, sustained, and allergen-independent one-to-eight-week improvement in key clinical parameters: the arterial partial pressure of oxygen, the quantity and viscosity of tracheal mucus, and neutrophilic inflammatory cells in the respiratory tracts of the severe equine asthmatic subjects. At the immunological level, an upregulation of the regulatory antiallergic and anti-inflammatory cytokine IL-10 as well as a downregulation of the proallergic IL-4 and proinflammatory IFN-γ in the respiratory tracts of the severe equine asthmatic patients were identified in the treatment groups. CD4+ T lymphocytes in the respiratory tracts of the asthmatic horses were demonstrated to downregulate the mRNA expression of Tbet and IL-8. Concentrations of matrix metalloproteinase-2 and -9 and tissue inhibitors of metalloproteinase-2 were significantly decreased directly after the treatment as well as six weeks post-treatment. This innovative therapeutic concept thus opens new perspectives in the treatment of severe equine asthma and possibly also that of human asthma.
Collapse
Affiliation(s)
- John Klier
- Equine Clinic, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, 85764 Oberschleißheim, Germany
| | - Sebastian Fuchs
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Gerhard Winter
- Pharmaceutical Technology and Biopharmaceutics, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-University, 81377 Munich, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Department of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
- Correspondence: ; Tel.: +49-30-838-62299; Fax: +49-30-838-4-62529
| |
Collapse
|
13
|
Aslam A, De Luis Cardenas J, Morrison RJ, Lagisetty KH, Litmanovich D, Sella EC, Lee E, Agarwal PP. Tracheobronchomalacia and Excessive Dynamic Airway Collapse: Current Concepts and Future Directions. Radiographics 2022; 42:1012-1027. [PMID: 35522576 DOI: 10.1148/rg.210155] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tracheobronchomalacia (TBM) and excessive dynamic airway collapse (EDAC) are airway abnormalities that share a common feature of expiratory narrowing but are distinct pathophysiologic entities. Both entities are collectively referred to as expiratory central airway collapse (ECAC). The malacia or weakness of cartilage that supports the tracheobronchial tree may occur only in the trachea (ie, tracheomalacia), in both the trachea and bronchi (TBM), or only in the bronchi (bronchomalacia). On the other hand, EDAC refers to excessive anterior bowing of the posterior membrane into the airway lumen with intact cartilage. Clinical diagnosis is often confounded by comorbidities including asthma, chronic obstructive pulmonary disease, obesity, hypoventilation syndrome, and gastroesophageal reflux disease. Additional challenges include the underrecognition of ECAC at imaging; the interchangeable use of the terms TBM and EDAC in the literature, which leads to confusion; and the lack of clear guidelines for diagnosis and treatment. The use of CT is growing for evaluation of the morphology of the airway, tracheobronchial collapsibility, and extrinsic disease processes that can narrow the trachea. MRI is an alternative tool, although it is not as widely available and is not used as frequently for this indication as is CT. Together, these tools not only enable diagnosis, but also provide a road map to clinicians and surgeons for planning treatment. In addition, CT datasets can be used for 3D printing of personalized medical devices such as stents and splints. An invited commentary by Brixey is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Anum Aslam
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Jose De Luis Cardenas
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Robert J Morrison
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Kiran H Lagisetty
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Diana Litmanovich
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Edith Carolina Sella
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Elizabeth Lee
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| | - Prachi P Agarwal
- From the Department of Radiology, Division of Cardiothoracic Imaging (A.A., E.C.S., E.L., P.P.A.), Division of Pulmonary and Critical Care Medicine, Department of Medicine, Section of Thoracic Surgery, Department of Surgery (J.D.L.C.), Department of Otolaryngology-Head and Neck Surgery (R.J.M.), Department of Surgery (K.H.L.), Michigan Medicine, 1500 E Medical Center Dr, Ann Arbor, MI 48109; Department of Surgery, Ann Arbor Veterans Hospital, Ann Arbor, Mich (K.H.L.); and Department of Radiology, Division of Cardiothoracic Imaging, Beth Israel Deaconess Medical Center, Boston, Mass (D.L.)
| |
Collapse
|
14
|
Adamič N, Prpar Mihevc S, Blagus R, Kramarič P, Krapež U, Majdič G, Viel L, Hoffman AM, Bienzle D, Vengust M. Effect of intrabronchial administration of autologous adipose-derived mesenchymal stem cells on severe equine asthma. Stem Cell Res Ther 2022; 13:23. [PMID: 35063028 PMCID: PMC8777441 DOI: 10.1186/s13287-022-02704-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe equine asthma (SEA) is a common chronic respiratory disease and a significant health and well-being problem in horses. Current therapeutic strategies improve pulmonary function and clinical signs in some horses, but in the long-term, return to full athletic function appears to be rare. The aim of this study was to assess the safety and the effect of intrabronchial administration of adipose-derived mesenchymal stem cells (AD-MSC) on pulmonary inflammatory and clinical parameters in horses with SEA. METHODS This was a randomized controlled trial. Twenty adult horses diagnosed with SEA were randomly divided into two groups (n = 10), and treated either with a single intrabronchial application of autologous AD-MSC or oral dexamethasone for three weeks. A targeted clinical examination with determination of clinical score, maximal change in pleural pressure during the breathing cycle, and an endoscopic examination of the airways were performed at baseline and three weeks after treatment. Bronchoalveolar lavage fluid was analyzed cytologically, and IL-1β, IL-4, IL-8, IL-17, TNFα and IFNγ mRNA and protein concentrations were measured at baseline and three weeks. The horses were then monitored over one year for recurrence of SEA. A non-inferiority analysis and a linear mixed-effects model were performed to assess differences between treatments. RESULTS The non-inferiority of AD-MSC treatment was not established. However, AD-MSC administration significantly ameliorated the clinical score (P = 0.01), decreased the expression of IL-17 mRNA (P = 0.05) and IL-1β (P ≤ 0.001), IL-4 (P ≤ 0.001), TNFα (P = 0.02) protein levels, and had a positive long-term effect on SEA-associated clinical signs (P = 0.02). CONCLUSIONS Intrabronchial administration of AD-MSC had limited short-term anti-inflammatory effects but improved the clinical signs of SEA at one year.
Collapse
Affiliation(s)
- Neža Adamič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | | | - Rok Blagus
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Petra Kramarič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Laurent Viel
- Clinical Studies, University of Guelph, Guelph, ON, Canada
| | - Andrew M Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Modest Vengust
- Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Mainguy-Seers S, Boivin R, Pourali Dogaheh S, Beaudry F, Hélie P, Bonilla AG, Martin JG, Lavoie JP. Effects of azithromycin on bronchial remodeling in the natural model of severe neutrophilic asthma in horses. Sci Rep 2022; 12:446. [PMID: 35013387 PMCID: PMC8748876 DOI: 10.1038/s41598-021-03955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/06/2021] [Indexed: 11/09/2022] Open
Abstract
Steroid resistance in asthma has been associated with neutrophilic inflammation and severe manifestations of the disease. Macrolide add-on therapy can improve the quality of life and the exacerbation rate in refractory cases, possibly with greater effectiveness in neutrophilic phenotypes. The mechanisms leading to these beneficial effects are incompletely understood and whether macrolides potentiate the modulation of bronchial remodeling induced by inhaled corticosteroids (ICS) is unknown. The objective of this study was to determine if adding azithromycin to ICS leads to further improvement of lung function, airway inflammation and bronchial remodeling in severe asthma. The combination of azithromycin (10 mg/kg q48h PO) and inhaled fluticasone (2500 µg q12h) was compared to the sole administration of fluticasone for five months in a randomized blind trial where the lung function, airway inflammation and bronchial remodeling (histomorphometry of central and peripheral airways and endobronchial ultrasound) of horses with severe neutrophilic asthma were assessed. Although the proportional reduction of airway neutrophilia was significantly larger in the group receiving azithromycin, the lung function and the peripheral and central airway smooth muscle mass decreased similarly in both groups. Despite a better control of airway neutrophilia, azithromycin did not potentiate the other clinical effects of fluticasone.
Collapse
Affiliation(s)
- Sophie Mainguy-Seers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada.,Laboratoire de Sciences Judiciaires Et de Médecine Légale, Ministère de La Sécurité Publique, Montreal, QC, H2K 3S7, Canada
| | - Sheila Pourali Dogaheh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Francis Beaudry
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Pierre Hélie
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - Alvaro G Bonilla
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada
| | - James G Martin
- Meakins Christie Laboratories, McGill University, McGill University Health Center Research Institute, Montreal, QC, H4A 3J1, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, QC, J2S 2M2, Canada.
| |
Collapse
|
16
|
Stucchi L, Ferrucci F, Bullone M, Dellacà RL, Lavoie JP. Within-Breath Oscillatory Mechanics in Horses Affected by Severe Equine Asthma in Exacerbation and in Remission of the Disease. Animals (Basel) 2021; 12:ani12010004. [PMID: 35011110 PMCID: PMC8749667 DOI: 10.3390/ani12010004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022] Open
Abstract
Oscillometry is a technique that measures the resistance (R) and the reactance (X) of the respiratory system. In humans, analysis of inspiratory and expiratory R and X allows to identify the presence of tidal expiratory flow limitation (EFLt). The aim of this study was to describe inspiratory and expiratory R and X measured by impulse oscillometry system (IOS) in horses with severe asthma (SEA) when in clinical remission (n = 7) or in exacerbation (n = 7) of the condition. Seven healthy, age-matched control horses were also studied. Data at 3, 5, and 7 Hz with coherence > 0.85 at 3 Hz and >0.9 at 5 and 7 Hz were considered. The mean, inspiratory and expiratory R and X and the difference between inspiratory and expiratory X (ΔX) were calculated at each frequency. The data from the three groups were statistically compared. Results indicated that in horses during exacerbation of severe asthma, X during expiratory phase is more negative than during inspiration, such as in humans in presence of EFLt. The evaluation of X during inspiration is promising in discriminating between horses with SEA in remission and control horses.
Collapse
Affiliation(s)
- Luca Stucchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Francesco Ferrucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy;
- Correspondence:
| | - Michela Bullone
- Dipartimento di Scienze Veterinarie, Università di Torino, 10095 Grugliasco, Italy;
| | - Raffaele L. Dellacà
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy;
| | - Jean Pierre Lavoie
- Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| |
Collapse
|
17
|
Bessonnat A, Hélie P, Grimes C, Lavoie JP. Airway remodeling in horses with mild and moderate asthma. J Vet Intern Med 2021; 36:285-291. [PMID: 34877706 PMCID: PMC8783337 DOI: 10.1111/jvim.16333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Background There is a remodeling of the central airways in horses with severe asthma but whether a similar process occurs in horses with the mild or moderate asthma (MMA) is unknown. Objectives To evaluate lesions affecting the central airways of horses with MMA. Animals Twelve horses with MMA and 8 control horses. Methods Case‐control retrospective study of horses classified as MMA affected or controls based on history and bronchoalveolar lavage fluid cytology. Endobronchial biopsies were analyzed using histomorphometry and a semiquantitative histologic scoring system. Results Histomorphometry identified epithelial hyperplasia (47 μm2/μm [34‐57 μm2/μm]; P = .02), a thickened lamina propria (166 μm [73‐336 μm]; P = .04), and smooth muscle fibrosis (42% [33%‐78%]; P = .04) in horses with MMA when compared to controls horses (24 μm2/μm [21‐80 μm2/μm]; 76 μm [36‐176 μm]; and 33% [26%‐52%], respectively). The semiquantitative score results indicated, in horses with MMA, the presence of epithelial hyperplasia (7 of the 12 horses with MMA and only 1 of the 8 control horses had a score of 1/1), and submucosal inflammatory leucocytes in the central airway (11 of the 12 horses with MMA and only 4 of the 8 control horses had a score ≥ 1/2). Conclusions and Clinical Relevance Tissue remodeling of the bronchial lamina propria, epithelium, and smooth muscle was present in horses with MMA.
Collapse
Affiliation(s)
- Amandine Bessonnat
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Pierre Hélie
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Carolyn Grimes
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
18
|
Olave CJ, Ivester KM, Couëtil LL, Franco-Marmolejo J, Mukhopadhyay A, Robinson JP, Park JH. Effects of forages, dust exposure and proresolving lipids on airway inflammation in horses. Am J Vet Res 2021; 83:153-161. [PMID: 34843444 DOI: 10.2460/ajvr.21.08.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the role of omega-3 polyunsaturated fatty acids (Ω-3)-derived proresolving lipid mediators (PRLM) in the resolution of mild airway inflammation in horses. ANIMALS 20 horses with mild airway inflammation. PROCEDURES Horses previously eating hay were fed hay pellets (low Ω-3 content; n = 10) or haylage (high Ω-3 content; 9) for 6 weeks. Dust exposure was measured in the breathing zone with a real-time particulate monitor. Bronchoalveolar lavage (BAL) was performed at baseline, week 3, and week 6. The effect of PRLM on neutrophil apoptosis and efferocytosis was examined in vitro. BAL fluid inflammatory cell proportions, apoptosis of circulating neutrophils, efferocytosis displayed by alveolar macrophages, and plasma lipid concentrations were compared between groups fed low and high amounts of Ω-3 by use of repeated measures of generalized linear models. RESULTS Dust exposure was significantly higher with hay feeding, compared to haylage and pellets, and equivalent between haylage and pellets. BAL fluid neutrophil proportions decreased significantly in horses fed haylage (baseline, 11.8 ± 2.4%; week 6, 2.5 ± 1.1%) but not pellets (baseline, 12.1 ± 2.3%; week 6, 8.5% ± 1.7%). At week 6, horses eating haylage had significantly lower BAL neutrophil proportions than those eating pellets, and a significantly lower concentration of stearic acid than at baseline. PRLM treatments did not affect neutrophil apoptosis or efferocytosis. CLINICAL RELEVANCE Despite similar reduction in dust exposure, horses fed haylage displayed greater resolution of airway inflammation than those fed pellets. This improvement was not associated with increased plasma Ω-3 concentrations. Feeding haylage improves airway inflammation beyond that due to reduced dust exposure, though the mechanism remains unclear.
Collapse
Affiliation(s)
- Carla J Olave
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - Kathleen M Ivester
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - Laurent L Couëtil
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | | | - Abhijit Mukhopadhyay
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN
| | - J Paul Robinson
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jae H Park
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN
| |
Collapse
|
19
|
Dupuis-Dowd F, Lavoie JP. Airway smooth muscle remodelling in mild and moderate equine asthma. Equine Vet J 2021; 54:865-874. [PMID: 34529300 DOI: 10.1111/evj.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 09/03/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Airway smooth muscle remodelling in severe equine asthma includes both thickening of airway smooth muscle, resulting from hyperplasia and hypertrophy, and changes in contractility. However, airway smooth muscle changes have not been studied in milder forms of the disease. OBJECTIVES To investigate bronchial smooth muscle remodelling in horses with mild and moderate asthma (MEA). STUDY DESIGN Retrospective case-control study. METHODS The endobronchial biopsies from 18 horses with MEA referred to the Equine Hospital of the Université de Montréal and from seven healthy age-matched control horses were studied. The diagnosis was based on clinical signs and bronchoalveolar lavage fluid cytology. Airway smooth muscle cell proliferation was measured by quantifying the expression of the proliferating cell nuclear antigen (PCNA) using immunohistochemistry and histomorphometry. The expression of the (+)insert smooth muscle myosin heavy chain (SMMHC) isoform, an hypercontractile protein, was assessed by RT-qPCR. RESULTS Expression of the (+)insert SMMHC isoform in airway smooth muscle was approximately 1.5 times greater in horses with MEA compared with controls (P = .02, mean difference 0.01). Although there were no differences between groups in the proliferation of airway smooth muscle cells (P = .4) or myocyte density (P = .3, mean difference -0.6), the percentage of proliferating myocytes was correlated to pulmonary neutrophilia in horses with neutrophilic inflammation (P = .01, r = .80) and to the expression of the (+)insert SMMHC isoform in asthmatic horses (P = .03, r = .66). MAIN LIMITATIONS Small cohorts of horses were studied, and conclusions are limited to the central airways. CONCLUSIONS These results confirm the presence of bronchial smooth muscle remodelling in mild forms of equine asthma and pave the way for the development of biomarkers to measure asthma progression and response to therapy.
Collapse
Affiliation(s)
- Florence Dupuis-Dowd
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
20
|
Barton AK, Gehlen H. [Remodeling in equine asthma - Effects of antigen avoidance and pharmacological therapy]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2021; 49:320-325. [PMID: 34470055 DOI: 10.1055/a-1581-6231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The term remodeling describes the process resulting in a tissue that is structurally and architecturally altered compared to its healthy counterpart. At least in severe equine asthma, this occurs mainly, but not exclusively, as a consequence of neutrophilic airway inflammation and is characterized by hypertrophy of the smooth muscle layers in airway and arterial walls as well as fibrosis of the bronchial walls and pulmonary interstitial tissue. To date, much less is known for mild to moderate equine asthma. For a long time it was assumed that these processes are irreversible, and at least for the remodeling of airway smooth muscle this is valid until today. In contrast, remodeling of the extracellular matrix disappears almost completely following long-term remission in consequence to strict antigen avoidance and environmental improvement as well as after glucocorticoid therapy. The remodeling of the arterial vasculature is also reversible following at least 12 months of antigen avoidance and bronchodilatory therapy, but not by inhaled glucocorticoids alone. Although not proven to date, the mild to moderate forms with a good prognosis for complete recovery may be a progenitor for severe equine asthma, in which lung function is restricted even during disease remission despite the absence of obvious clinical signs. Early diagnosis and therapy are, therefore, essential for the management of equine asthma prior to the development of irreversible remodeling, in particular of the bronchial smooth muscle. Antigen avoidance is of highest importance, and should be supported by glucocorticoids and bronchodilators.
Collapse
Affiliation(s)
- Ann Kristin Barton
- Klinik für Pferde, allgemeine Chirurgie und Radiologie, Freie Universität Berlin
| | - Heidrun Gehlen
- Klinik für Pferde, allgemeine Chirurgie und Radiologie, Freie Universität Berlin
| |
Collapse
|
21
|
Mainguy-Seers S, Lavoie JP. Glucocorticoid treatment in horses with asthma: A narrative review. J Vet Intern Med 2021; 35:2045-2057. [PMID: 34085342 PMCID: PMC8295667 DOI: 10.1111/jvim.16189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial research efforts to improve the treatment and outcome of horses with asthma, glucocorticoids (GC) remain the cornerstone of drug treatment of this prevalent disease. The high efficacy of GC to relieve airway obstruction explains their extensive use despite potential deleterious effects. However, much is yet to be uncovered concerning GC use in horses with asthma, including the comparative efficacy of the different drugs, the determination of minimal effective doses and the mechanisms underlying their variable modulation of airway inflammation. The objectives of this structured review were to report and compare the plethora of effects of the various GC used in asthmatic horses with a focus on impact on lung function, airway inflammation, and bronchial remodeling. Adverse effects are also briefly described, with an emphasis on those that have been specifically reported in horses with asthma. Ultimately, we aimed to highlight gaps in the literature and to identify future research areas.
Collapse
Affiliation(s)
- Sophie Mainguy-Seers
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
22
|
Millares-Ramirez EM, Lavoie JP. Bronchial angiogenesis in horses with severe asthma and its response to corticosteroids. J Vet Intern Med 2021; 35:2026-2034. [PMID: 34048095 PMCID: PMC8295704 DOI: 10.1111/jvim.16159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background Severe asthma in horses is characterized by structural changes that thicken the lower airway wall, a change that is only partially reversible by current treatments. Increased vascularization contributes to the thickening of the bronchial wall in humans with asthma and is considered a potential new therapeutic target. Objective To determine the presence of angiogenesis in the bronchi of severely asthmatic horses, and if present, to evaluate its reversibility by treatment with corticosteroids. Animals Study 1: Bronchial samples from asthmatic horses in exacerbation (7), in remission (7), and aged‐matched healthy horses. Study 2: Endobronchial biopsy samples from asthmatic horses in exacerbation (6) and healthy horses (6) before and after treatment with dexamethasone. Methods Blinded, randomized controlled study. Immunohistochemistry was performed using collagen IV as a marker for vascular basement membranes. Number of vessels, vascular area, and mean vessel size in the bronchial lamina propria were measured by histomorphometry. Reversibility of vascular changes in Study 2 was assessed after 2 weeks of treatment with dexamethasone. Results The number of vessels and vascular area were increased in the airway walls of asthmatic horses in exacerbation (P = .01 and P = .02, respectively) and in remission (P = .02 and P = .04, respectively) when compared to controls. In Study 2, the differences observed between groups disappeared after 2 weeks of treatment with corticosteroids because of the increased number of vessels in healthy horses. Conclusions and Clinical Importance Angiogenesis contributes to thickening of the airway wall in asthmatic horses and was not reversed by a 2‐week treatment with corticosteroids.
Collapse
Affiliation(s)
- Esther M Millares-Ramirez
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
23
|
Ben Hamouda S, Vargas A, Boivin R, Miglino MA, da Palma RK, Lavoie JP. Recellularization of Bronchial Extracellular Matrix With Primary Bronchial Smooth Muscle Cells. J Equine Vet Sci 2020; 96:103313. [PMID: 33349413 DOI: 10.1016/j.jevs.2020.103313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/28/2022]
Abstract
Severe asthma is associated with an increased airway smooth muscle (ASM) mass and altered composition of the extracellular matrix (ECM). Studies have indicated that ECM-ASM cell interactions contribute to this remodeling and its limited reversibility with current therapy. Three-dimensional matrices allow the study of complex cellular responses to different stimuli in an almost natural environment. Our goal was to obtain acellular bronchial matrices and then develop a recellularization protocol with ASM cells. We studied equine bronchi as horses spontaneously develop a human asthma-like disease. The bronchi were decellularized using Triton/Sodium Deoxycholate. The obtained scaffolds retained their anatomical and histological properties. Using immunohistochemistry and a semi-quantitative score to compare native bronchi to scaffolds revealed no significant variation for matrixial proteins. DNA quantification and electrophoresis revealed that most DNA was 29.6 ng/mg of tissue ± 5.6, with remaining fragments of less than 100 bp. Primary ASM cells were seeded on the scaffolds. Histological analysis of the recellularizations showed that ASM cells migrated and proliferated primarily in the decellularized smooth muscle matrix, suggesting a chemotactic effect of the scaffolds. This is the first report of primary ASM cells preferentially repopulating the smooth muscle matrix layer in bronchial matrices. This protocol is now being used to study the molecular interactions occurring between the asthmatic ECMs and ASM to identify effectors of asthmatic bronchial remodeling.
Collapse
Affiliation(s)
- Selma Ben Hamouda
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Maria Angelica Miglino
- School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
24
|
Ceriotti S, Bullone M, Leclere M, Ferrucci F, Lavoie JP. Severe asthma is associated with a remodeling of the pulmonary arteries in horses. PLoS One 2020; 15:e0239561. [PMID: 33091038 PMCID: PMC7580920 DOI: 10.1371/journal.pone.0239561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/08/2020] [Indexed: 11/18/2022] Open
Abstract
Pulmonary hypertension and cor pulmonale are complications of severe equine asthma, as a consequence of pulmonary hypoxic vasoconstriction. However, as pulmonary hypertension is only partially reversible by oxygen administration, other etiological factors are likely involved. In human chronic obstructive pulmonary disease, pulmonary artery remodeling contributes to the development of pulmonary hypertension. In rodent models, pulmonary vascular remodeling is present as a consequence of allergic airway inflammation. The present study investigated the presence of remodeling of the pulmonary arteries in severe equine asthma, its distribution throughout the lungs, and its reversibility following long-term antigen avoidance strategies and inhaled corticosteroid administration. Using histomorphometry, the total wall area of pulmonary arteries from different regions of the lungs of asthmatic horses and controls was measured. The smooth muscle mass of pulmonary arteries was also estimated on lung sections stained for α-smooth muscle actin. Reversibility of vascular changes in asthmatic horses was assessed after 1 year of antigen avoidance alone or treatment with inhaled fluticasone. Pulmonary arteries showed increased wall area in apical and caudodorsal lung regions of asthmatic horses in both exacerbation and remission. The pulmonary arteries smooth muscle mass was similarly increased. Both treatments reversed the increase in wall area. However, a trend for normalization of the vascular smooth muscle mass was observed only after treatment with antigen avoidance, but not with fluticasone. In conclusion, severe equine asthma is associated with remodeling of the pulmonary arteries consisting in an increased smooth muscle mass. The resulting narrowing of the artery lumen could enhance hypoxic vasoconstriction, contributing to pulmonary hypertension. In our study population, the antigen avoidance strategy appeared more promising than inhaled corticosteroids in controlling vascular remodeling. However, further studies are needed to support the reversibility of vascular smooth muscle mass remodeling after asthma treatment.
Collapse
Affiliation(s)
- Serena Ceriotti
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada.,Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Michela Bullone
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Mathilde Leclere
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano, Italy
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
25
|
Couetil L, Cardwell JM, Leguillette R, Mazan M, Richard E, Bienzle D, Bullone M, Gerber V, Ivester K, Lavoie JP, Martin J, Moran G, Niedźwiedź A, Pusterla N, Swiderski C. Equine Asthma: Current Understanding and Future Directions. Front Vet Sci 2020; 7:450. [PMID: 32903600 PMCID: PMC7438831 DOI: 10.3389/fvets.2020.00450] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
The 2019 Havemeyer Workshop brought together researchers and clinicians to discuss the latest information on Equine Asthma and provide future research directions. Current clinical and molecular asthma phenotypes and endotypes in humans were discussed and compared to asthma phenotypes in horses. The role of infectious and non-infectious causes of equine asthma, genetic factors and proposed disease pathophysiology were reviewed. Diagnostic limitations were evident by the limited number of tests and biomarkers available to field practitioners. The participants emphasized the need for more accessible, standardized diagnostics that would help identify specific phenotypes and endotypes in order to create more targeted treatments or management strategies. One important outcome of the workshop was the creation of the Equine Asthma Group that will facilitate communication between veterinary practice and research communities through published and easily accessible guidelines and foster research collaboration.
Collapse
Affiliation(s)
- Laurent Couetil
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jacqueline M Cardwell
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, United Kingdom
| | - Renaud Leguillette
- College of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Melissa Mazan
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA, United States
| | - Eric Richard
- LABÉO (Frank Duncombe), Normandie Université, UniCaen, Caen, France
| | - Dorothee Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Michela Bullone
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Vinzenz Gerber
- Vetsuisse Faculty, Institut Suisse de Médecine Équine (ISME), University of Bern and Agroscope, Bern, Switzerland
| | - Kathleen Ivester
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, University of Montreal, Montreal, QC, Canada
| | - James Martin
- Meakins Christie Laboratories, McGill University Health Center Research Institute, Montreal, QC, Canada
| | - Gabriel Moran
- Department of Pharmacology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Artur Niedźwiedź
- Department of Internal Diseases With Clinic for Horses, Dogs and Cats, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Cyprianna Swiderski
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
26
|
Mainguy-Seers S, Vargas A, Labrecque O, Bédard C, Hélie P, Lavoie JP. Randomised study of the immunomodulatory effects of azithromycin in severely asthmatic horses. Vet Rec 2020; 185:143. [PMID: 31371681 DOI: 10.1136/vr.105260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 12/29/2022]
Abstract
Neutrophilic inflammation is believed to contribute to the airway obstruction and remodelling in equine asthma. Azithromycin, an antibiotic with immunomodulatory properties, reduces pulmonary neutrophilia and hyper-responsiveness in human asthmatics and decreases airway remodelling in rodent models of asthma. It was therefore hypothesised that azithromycin would improve lung function, mucus accumulation and central airway remodelling by decreasing luminal neutrophilia in severe equine asthma. The effects of a 10-day treatment with either azithromycin or ceftiofur, an antimicrobial without immune-modulating activity, were assessed using a blind, randomised, crossover design with six severe asthmatic horses in clinical exacerbation. Lung function, tracheal mucus accumulation, tracheal wash bacteriology, bronchial remodelling, airway neutrophilia and mRNA expression of proinflammatory cytokines (interleukin (IL)-8, IL-17A, IL-1β, tumour necrosis factor-α) in bronchoalveolar lavage fluid were evaluated. Azithromycin decreased the expression of IL-8 (P=0.03, one-tailed) and IL-1β (P=0.047, one-tailed) but failed to improve the other variables evaluated. Ceftiofur had no effect on any parameter. The reduction of neutrophilic chemoattractants (IL-8, IL-1β) justifies further efforts to investigate the effects of a prolonged treatment with macrolides on airway neutrophilia and remodelling. The lack of efficacy of ceftiofur suggests that severe equine asthma should not be treated with antibiotics at first-line therapy.
Collapse
Affiliation(s)
- Sophie Mainguy-Seers
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Olivia Labrecque
- Laboratoire d'epidemiosurveillance animale du Quebec, Saint-Hyacinthe, Quebec, Canada
| | - Christian Bédard
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Pierre Hélie
- Faculty of Veterinary Medicine, Department of Pathology and Microbiology, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
27
|
Jochmans-Lemoine A, Picotte K, Beauchamp G, Vargas A, Lavoie JP. Effects of a propriety oiled mixed hay feeding system on lung function, neutrophilic airway inflammation and oxidative stress in severe asthmatic horses. Equine Vet J 2020; 52:564-571. [PMID: 31802526 DOI: 10.1111/evj.13218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 09/23/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hay feeding is considered the main triggering factor for airway obstruction and inflammation in severe equine asthma (SEA). Finding alternate strategies allowing hay feeding while controlling clinical signs of SEA is of importance. The Nutri-Foin Système is believed to decrease inhaled dust by incorporating soybean oil to mechanically processed hay. OBJECTIVES We compared airflow obstruction and airway inflammation in horses with SEA fed oiled hay or alfalfa pellet regimen. STUDY DESIGN Controlled trial in asthmatic research horses. METHODS Twelve horses in exacerbation of SEA from a research herd were studied. Horses were fed either oiled treated hay (n = 6) or alfalfa pelleted hay (n = 6) for 3 months while being stabled. Lung function, bronchoalveolar lavage fluid cytology and serum antioxidant enzyme kinetics were sequentially evaluated. RESULTS Pelleted hay and the hay treated with the Nutri-Foin Système similarly improved lung function, airway neutrophilia and serum antioxidant enzyme kinetics over time. MAIN LIMITATIONS The small number of horses in each group. CONCLUSIONS We conclude from this study that Nutri-Foin Système is an appropriate alternative to pelleted hay for the control of the airway obstruction in horses with SEA.
Collapse
Affiliation(s)
- Alexandra Jochmans-Lemoine
- Department of Clinical Sciences of the Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Khristine Picotte
- Department of Clinical Sciences of the Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Guy Beauchamp
- Department of Clinical Sciences of the Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences of the Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences of the Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
28
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
29
|
Bond SL, Greco-Otto P, MacLeod J, Galezowski A, Bayly W, Léguillette R. Efficacy of dexamethasone, salbutamol, and reduced respirable particulate concentration on aerobic capacity in horses with smoke-induced mild asthma. J Vet Intern Med 2020; 34:979-985. [PMID: 31953974 PMCID: PMC7096652 DOI: 10.1111/jvim.15696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background Mild asthma in horses decreases racing performance and impairs gas exchange. The efficacy of treatment on performance is unknown. Hypothesis Treatment targeting lung inflammation improves V˙O2peak in horses with mild asthma. Animals Thoroughbred polo horses (n = 12) with smoke‐induced mild asthma. Horses were exposed to increased ambient particulate matter (35.51 μg/m3 [PM2.5]; day mean, centrally measured) from day −33 to 0, from bushfire smoke (natural model). Methods Prospective, randomized, placebo‐controlled, double‐blinded clinical trial. All horses completed 3 V˙O2peak tests, measuring aerobic and anaerobic variables: day 0 ‐baseline; day 16 ‐after dexamethasone (20 mg IM q24h; DEX, n = 6) or saline treatment (SALINE, n = 6), under improved ambient PM2.5 concentrations (7.04 μg/m3); day 17‐15‐30mins after inhaled salbutamol (1500 μg). Bronchoalveolar lavage and mucus scoring were performed on day −8 and day 20. Linear mixed effects models were used to examine the effects of timepoint and treatment group on BAL differential cell counts, mucus scores, aerobic and anaerobic variables. Results Horses’ mucus scores improved significantly from day −8 to 20 by 1.27 ± .38 (P = .01). There was a significant increase in V˙O2peak of 15.5 ± 4.0 mL(min.kg)−1 from day 0 to 17 (P = .002), representing an average (mean) increase in V˙O2peak of 13.2%. There was no difference in V˙O2peak between treatment groups (SALINE versus DEX) at any timepoint. Conclusions and Clinical Importance This study highlighted the key role of improved air quality on functionally important airway inflammation. Evidence provided is central to increasing owner compliance regarding improved air quality for the treatment and prevention of mild asthma.
Collapse
Affiliation(s)
- Stephanie L Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Jacqueline MacLeod
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angelica Galezowski
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Warwick Bayly
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
30
|
Blais-Lecours P, Laouafa S, Arias-Reyes C, Santos WL, Joseph V, Burgess JK, Halayko AJ, Soliz J, Marsolais D. Metabolic Adaptation of Airway Smooth Muscle Cells to an SPHK2 Substrate Precedes Cytostasis. Am J Respir Cell Mol Biol 2020; 62:35-42. [PMID: 31247144 PMCID: PMC6938129 DOI: 10.1165/rcmb.2018-0397oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Thickening of the airway smooth muscle is central to bronchial hyperreactivity. We have shown that the sphingosine analog (R)-2-amino-4-(4-heptyloxyphenyl)-2-methylbutanol (AAL-R) can reverse preestablished airway hyperreactivity in a chronic asthma model. Because sphingosine analogs can be metabolized by SPHK2 (sphingosine kinase 2), we investigated whether this enzyme was required for AAL-R to perturb mechanisms sustaining airway smooth muscle cell proliferation. We found that AAL-R pretreatment reduced the capacity of live airway smooth muscle cells to use oxygen for oxidative phosphorylation and increased lactate dehydrogenase activity. We also determined that SPHK2 was upregulated in airway smooth muscle cells bearing the proliferation marker Ki67 relative to their Ki67-negative counterpart. Comparing different stromal cell subsets of the lung, we found that high SPHK2 concentrations were associated with the ability of AAL-R to inhibit metabolic activity assessed by conversion of the tetrazolium dye MTT. Knockdown or pharmacological inhibition of SPHK2 reversed the effect of AAL-R on MTT conversion, indicating the essential role for this kinase in the metabolic perturbations induced by sphingosine analogs. Our results support the hypothesis that increased SPHK2 levels in proliferating airway smooth muscle cells could be exploited to counteract airway smooth muscle thickening with synthetic substrates.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Sofien Laouafa
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Christian Arias-Reyes
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
| | - Webster L. Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia
| | - Vincent Joseph
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research and
- GRIAC (Groningen Research Institute for Asthma and COPD), University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew J. Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jorge Soliz
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - David Marsolais
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec and
- Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
31
|
Bond SL, Workentine M, Hundt J, Gilkerson JR, Léguillette R. Effects of nebulized dexamethasone on the respiratory microbiota and mycobiota and relative equine herpesvirus-1, 2, 4, 5 in an equine model of asthma. J Vet Intern Med 2019; 34:307-321. [PMID: 31793692 PMCID: PMC6979091 DOI: 10.1111/jvim.15671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Background Prolonged exposure to environmental antigens or allergens elicits an immune response in both healthy horses and those with mild asthma. Corticosteroids often are used to treat lower airway inflammation. Objective To investigate the changes in equine herpesvirus (EHV)‐1,2,4,5 glycoprotein B gene expression and changes in respiratory bacterial and fungal communities after nebulized dexamethasone treatment of horses with asthma. Animals Horses with naturally occurring mild asthma (n = 16) and healthy control horses (n = 4). Methods Prospective, randomized, controlled, blinded clinical trial. Polymerase chain reaction amplification of EHV‐1,2,4,5 in bronchoalveolar lavage fluid, and 16S (microbiome) and ITS2 (mycobiome) genes with subsequent sequencing was performed on DNA extracted from nasal swabs and transendoscopic tracheal aspirates before and after 13 days treatment with nebulized dexamethasone (15 mg q24h) and saline (control). Results Nebulized dexamethasone treatment decreased microbial diversity; relative abundance of 8 genera in the upper respiratory tract were altered. For both the microbiota and the mycobiota, environment had a dominant effect over treatment. Alternaria, an opportunistic pathogen and allergen in humans recognized as a risk factor for asthma, asthma severity, and exacerbations, was increased with treatment. Treatment affected relative quantification of the equine gamma herpesviruses (EHV‐2 and ‐5); EHV‐2 DNA levels increased and those of EHV‐5 decreased. Conclusions Nebulized dexamethasone treatment affected the upper respiratory tract microbiota, but not the mycobiota, which was overwhelmed by the effect of a sustained dusty environment.
Collapse
Affiliation(s)
- Stephanie L Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matthew Workentine
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jana Hundt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | -
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James R Gilkerson
- Centre for Equine Infectious Disease, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Abs V, Bonicelli J, Kacza J, Zizzadoro C, Abraham G. Equine bronchial fibroblasts enhance proliferation and differentiation of primary equine bronchial epithelial cells co-cultured under air-liquid interface. PLoS One 2019; 14:e0225025. [PMID: 31721813 PMCID: PMC6853605 DOI: 10.1371/journal.pone.0225025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/27/2019] [Indexed: 12/31/2022] Open
Abstract
Interaction between epithelial cells and fibroblasts play a key role in wound repair and remodelling in the asthmatic airway epithelium. We present the establishment of a co-culture model using primary equine bronchial epithelial cells (EBECs) and equine bronchial fibroblasts (EBFs). EBFs at passage between 4 and 8 were seeded on the bottom of 24-well plates and treated with mitomycin C at 80% confluency. Then, freshly isolated (P0) or passaged (P1) EBECs were seeded on the upper surface of membrane inserts that had been placed inside the EBF-containing well plates and grown first under liquid-liquid interface (LLI) then under air-liquid interface (ALI) conditions to induce epithelial differentiation. Morphological, structural and functional markers were monitored in co-cultured P0 and P1 EBEC monolayers by phase-contrast microscopy, scanning and transmission electron microscopy, hematoxylin-eosin, immunocytochemistry as well as by measuring the transepithelial electrical resistance (TEER) and transepithelial transport of selected drugs. After about 15–20 days of co-culture at ALI, P0 and P1 EBEC monolayers showed pseudo-stratified architecture, presence of ciliated cells, typically honeycomb-like pattern of tight junction protein 1 (TJP1) expression, and intact selective barrier functions. Interestingly, some notable differences were observed in the behaviour of co-cultured EBECs (adhesion to culture support, growth rate, differentiation rate) as compared to our previously described EBEC mono-culture system, suggesting that cross-talk between epithelial cells and fibroblasts actually takes place in our current co-culture setup through paracrine signalling. The EBEC-EBF co-culture model described herein will offer the opportunity to investigate epithelial-mesenchymal cell interactions and underlying disease mechanisms in the equine airways, thereby leading to a better understanding of their relevance to pathophysiology and treatment of equine and human asthma.
Collapse
Affiliation(s)
- Vanessa Abs
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Jana Bonicelli
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
| | - Johannes Kacza
- Saxonian Incubator for Clinical Translation, University of Leipzig, Philipp-Rosenthal-Straße, Leipzig, Germany
| | - Claudia Zizzadoro
- Division of Veterinary Pharmacology and Toxicology, Department of Veterinary Medicine, University of Bari, SP 62 per Casamassima, km, Valenzano (BA), Italy
| | - Getu Abraham
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken, Leipzig, Germany
- * E-mail:
| |
Collapse
|
33
|
Bullone M, Lavoie JP. The equine asthma model of airway remodeling: from a veterinary to a human perspective. Cell Tissue Res 2019; 380:223-236. [PMID: 31713728 DOI: 10.1007/s00441-019-03117-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
Human asthma is a complex and heterogeneous disorder characterized by chronic inflammation, bronchospasm and airway remodeling. The latter is a major determinant of the structure-function relationship of the respiratory system and likely contributes to the progressive and accelerated decline in lung function observed in patients over time. Corticosteroids are the cornerstone of asthma treatment. While their action on inflammation and lung function is well characterized, their effect on remodeling remains largely unknown. An important hindrance to the study of airway remodeling as a major focus in asthma research is the lack of reliable non-invasive biomarkers. In consequence, the physiologic and clinical consequences of airway wall thickening and altered composition are not well understood. In this perspective, equine asthma provides a unique and ethical (non-terminal) preclinical model for hypothesis testing and generation. Severe equine asthma is a spontaneous disease affecting adult horses characterized by recurrent and reversible episodes of disease exacerbations. It is associated with bronchoalveolar neutrophilic inflammation, bronchospasm, and excessive mucus secretion. Severe equine asthma is also characterized by bronchial remodeling, which is only partially improved by prolonged period of disease remission induced by therapy or antigen avoidance strategies. This review will focus on the similarities and differences of airway remodeling in equine and human asthma, on the strengths and limitations of the equine model, and on the challenges the model has to face to keep up with human asthma research.
Collapse
Affiliation(s)
- Michela Bullone
- Department of Veterinary Sciences, Università degli Studi di Torino, Grugliasco, Italy
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Sciences, University of Montreal, 3200 rue Sicotte, St-Hyacinthe, Quebec, Canada.
| |
Collapse
|
34
|
Bond SL, Hundt J, Léguillette R. Effect of injected dexamethasone on relative cytokine mRNA expression in bronchoalveolar lavage fluid in horses with mild asthma. BMC Vet Res 2019; 15:397. [PMID: 31694631 PMCID: PMC6833259 DOI: 10.1186/s12917-019-2144-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/15/2019] [Indexed: 11/10/2022] Open
Abstract
Background Mild equine asthma is a common inflammatory airway disease of the horse. The primary treatment of mild equine asthma is corticosteroids. The purpose of this study was to investigate the effects of injected dexamethasone on relative IL-1β, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p35, IL-17, IL-23, IFN-γ, Eotaxin-2 and TNF-α mRNA expression in bronchoalveolar lavage (BAL) fluid in healthy Thoroughbred horses (n = 6), and those with mild equine asthma (n = 7). Results Horses with mild equine asthma had a significantly greater bronchoalveolar lavage mast cell percentage than healthy horses both before and after treatment. Mild equine asthma was associated with a 4.95-fold up-regulation of IL-17 (p = 0.026) and a 2.54-fold down-regulation of IL-10 (p = 0.049) compared to healthy horses. TNF-α was down-regulated in response to dexamethasone treatment in both healthy horses (3.03-fold, p = 0.023) and those with mild equine asthma (1.75-fold, p = 0.023). IL-5 was also down-regulated in horses with mild asthma (2.17-fold, p = 0.048). Conclusions Horses with mild equine asthma have a lower concentration of IL-10 in BAL fluid than healthy controls which concurs with human asthmatics. The marked up-regulation of IL-17 in horses with mild asthma suggests these horses had a true tendency of “allergic” airway inflammation in response to environmental allergens. Dexamethasone administration exerted anti-inflammatory effects associated with down-regulation of TNF-α in all horses, and decreased levels of IL-5 mRNA expression in horses with mild equine asthma. The inhibition of the Th-2 response, without any alterations to the airway cytology, indicates that maintained exposure to environmental allergens perpetuates airway inflammation.
Collapse
Affiliation(s)
- Stephanie L Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Jana Hundt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Renaud Léguillette
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Farmers are routinely exposed to organic dusts and aeroallergens that can have adverse respiratory health effects including asthma. Horses are farm-reared large animals with similar exposures and can develop equine asthma syndrome (EAS). This review aims to compare the etiology, pathophysiology, and immunology of asthma in horses compared to farmers and highlights the horse as a potential translational animal model for organic dust-induced asthma in humans. RECENT FINDINGS Severe EAS shares many clinical and pathological features with various phenotypes of human asthma including allergic, non-allergic, late onset, and severe asthma. EAS disease features include variable airflow obstruction, cough, airway hyperresponsiveness, airway inflammation/remodeling, neutrophilic infiltrates, excess mucus production, and chronic innate immune activation. Severe EAS is a naturally occurring and biologically relevant, translational animal disease model that could contribute to a more thorough understanding of the environmental and immunologic factors contributing to organic dust-induced asthma in humans.
Collapse
Affiliation(s)
- M. Katie Sheats
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Kaori U. Davis
- Comparative Medicine Institute, Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, USA
| | - Jill A. Poole
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Nebraska Medical Center, 985990 Nebraska Medical Center, Omaha, NE 68198-5990, USA
| |
Collapse
|
36
|
White S, Moore‐Colyer M, Marti E, Coüetil L, Hannant D, Richard EA, Alcocer M. Development of a comprehensive protein microarray for immunoglobulin E profiling in horses with severe asthma. J Vet Intern Med 2019; 33:2327-2335. [PMID: 31429513 PMCID: PMC6766494 DOI: 10.1111/jvim.15564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Severe asthma in horses, known as severe equine asthma (SEA), is a prevalent, performance-limiting disease associated with increased allergen-specific immunoglobulin E (IgE) against a range of environmental aeroallergens. OBJECTIVE To develop a protein microarray platform to profile IgE against a range of proven and novel environmental proteins in SEA-affected horses. ANIMALS Six SEA-affected and 6 clinically healthy Warmblood performance horses. METHODS Developed a protein microarray (n = 384) using protein extracts and purified proteins from a large number of families including pollen, bacteria, fungi, and arthropods associated with the horses, environment. Conditions were optimized and assessed for printing, incubation, immunolabeling, biological fluid source, concentration techniques, reproducibility, and specificity. RESULTS This method identified a number of novel allergens, while also identifying an association between SEA and pollen sensitization. Immunolabeling methods confirmed the accuracy of a commercially available mouse anti-horse IgE 3H10 source (R2 = 0.91). Biological fluid source evaluation indicated that sera and bronchoalveolar lavage fluid (BALF) yielded the same specific IgE profile (average R2 = 0.75). Amicon centrifugal filters were found to be the most efficient technique for concentrating BALF for IgE analysis at 40-fold. Overnight incubation maintained the same sensitization profile while increasing sensitivity. Reproducibility was demonstrated (R2 = 0.97), as was specificity using protein inhibition assays. Arthropods, fungi, and pollens showed the greatest discrimination for SEA. CONCLUSIONS AND CLINICAL IMPORTANCE We have established that protein microarrays can be used for large-scale IgE mapping of allergens associated with the environment of horses. This technology provides a sound platform for specific diagnosis, management, and treatment of SEA.
Collapse
Affiliation(s)
- Samuel White
- School of Equine Management and Science, Royal Agricultural UniversityGloucestershireUnited Kingdom
- School of Biosciences, University of NottinghamLoughboroughUnited Kingdom
- Animal and Equine ScienceNottingham Trent UniversityNottinghamshireUnited Kingdom
| | - Meriel Moore‐Colyer
- School of Equine Management and Science, Royal Agricultural UniversityGloucestershireUnited Kingdom
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public HealthUniversity of BernBernSwitzerland
| | - Laurent Coüetil
- Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue UniversityWest LafayetteIndiana, USA
| | - Duncan Hannant
- School of Veterinary Medicine and Science, University of NottinghamLoughboroughUnited Kingdom
| | - Eric A. Richard
- LABÉO Frank DuncombeCaen CedexFrance
- Normandie University, UniCaen, BIOTARGENSaint‐ContestFrance
| | - Marcos Alcocer
- School of Biosciences, University of NottinghamLoughboroughUnited Kingdom
| |
Collapse
|
37
|
Issouf M, Vargas A, Boivin R, Lavoie JP. MicroRNA-221 is overexpressed in the equine asthmatic airway smooth muscle and modulates smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2019; 317:L748-L757. [PMID: 31389734 DOI: 10.1152/ajplung.00221.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Airway wall remodeling, including hyperplasia and hypertrophy of smooth muscle (ASM) cells leading to an increased smooth muscle mass, is considered central to asthma. However, molecular pathways responsible for ASM remodeling remain poorly understood. MicroRNAs (miRNAs) have emerged as key regulators of inflammatory and repair processes affecting the lungs and can downregulate protein expression by inhibiting target mRNA translation. We therefore hypothesized that miRNAs are involved in ASM remodeling in asthma by modulating ASM proliferation. We have analyzed the expression of miRNAs in bronchial smooth muscle from asthmatic horses during disease exacerbation and remission and from controls. Their involvement in ASM cell proliferation was then studied. Our results shown that miR-26a, miR-133, and miR-221 were upregulated in ASM from horses with asthma exacerbation compared with asthma remission and controls. MiR-221 induced cell hyperproliferation and reduced the expression of contractile gene markers in ASM cells. These changes were associated with the decreased mRNA expression of cell cycle regulatory genes (p53, p21, and p27). In conclusion, we demonstrated for the first time an upregulation of miR-221 in asthmatic airway smooth muscle and confirm the involvement of miR-221 in ASM cell proliferation by regulation of the cell cycle arrest genes. Targeting miR-221 network genes may represent a novel approach for the treatment of ASM remodeling in asthma.
Collapse
Affiliation(s)
- Mohamed Issouf
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Amandine Vargas
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Roxane Boivin
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
38
|
Lavoie JP, Bullone M, Rodrigues N, Germim P, Albrecht B, von Salis-Soglio M. Effect of different doses of inhaled ciclesonide on lung function, clinical signs related to airflow limitation and serum cortisol levels in horses with experimentally induced mild to severe airway obstruction. Equine Vet J 2019; 51:779-786. [PMID: 30854685 PMCID: PMC7379559 DOI: 10.1111/evj.13093] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 03/02/2019] [Indexed: 12/20/2022]
Abstract
Background Inhaled corticosteroids are effective for the treatment of equine asthma but they induce cortisol suppression with potential side effects. Objectives To study the efficacy of ciclesonide, an inhaled corticosteroid with an improved safety profile, on lung function, clinical signs related to airway obstruction, and serum cortisol levels in asthmatic horses exposed to a mouldy hay challenge. Study design Cross‐over placebo controlled, blinded, randomised experiment. Methods Sixteen horses were enrolled in three subsequent dose‐titration studies (8 horses/study) to investigate the effects of inhaled ciclesonide administered for 2 weeks at doses ranging from 450 to 2700 μg twice daily or 3712.5 μg once daily. Systemic dexamethasone (0.066 mg/kg per os) was our positive control. A placebo group was also studied. Lung function and clinical scores were blindly performed before and after 7 and 14 days of treatment. Serum cortisol was measured before and after 3, 5, 7, 10, 14 days of treatment as well as 3 and 7 days post treatment. Results After 7 days, dexamethasone induced a significant reduction in pulmonary resistance (from 2.5 ± 0.6 at day 0 to 1.1 ± 0.7 cm H2O/L/s), pulmonary elastance (5.0 ± 2.6 to 1.2 ± 1.0 cm H2O/L), and of the weighted clinical score (14.8 ± 4.7 to 8.0 ± 4.4). Similarly, ciclesonide 1687.5 μg twice daily significantly improved pulmonary resistance (2.7 ± 1.1 to 1.6 ± 0.8 cm H2O/L/s), pulmonary elastance (5.2 ± 3.1 to 2.2 ± 1.3 cm H2O/L), and weighted clinical score (13 ± 2.9 to 10.8 ± 4.2). Serum cortisol suppression (<50 nmol/L) systematically occurred with dexamethasone from day 3 of treatment up to day 3 post treatment, but not with ciclesonide at any tested doses. Placebo did not exert any significant beneficial effect. Main limitations Experimentally induced asthma exacerbations in horses might respond differently to treatment than naturally occurring exacerbations. Conclusions Inhaled ciclesonide is an effective treatment for horses with equine asthma. Serum cortisol was unaffected by treatment.
Collapse
Affiliation(s)
- J-P Lavoie
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - M Bullone
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - N Rodrigues
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - P Germim
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - B Albrecht
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| | | |
Collapse
|
39
|
Mainguy-Seers S, Bessonnat A, Picotte K, Lavoie JP. Nebulisation of dexamethasone sodium phosphate for the treatment of severe asthmatic horses. Equine Vet J 2019; 51:641-645. [PMID: 30849189 DOI: 10.1111/evj.13091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/02/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Inhaled corticosteroids are effective in the treatment of equine asthma. A recent study reported that nebulisation of injectable dexamethasone had low systemic bioavailability in healthy horses and could represent a cost-effective therapy for equine inflammatory lung diseases. OBJECTIVES To determine the effects of dexamethasone nebulisation on lung function in severe asthmatic horses. It was hypothesised that dexamethasone administered by nebulisation would be more effective than the same dose administered orally. STUDY DESIGN Randomised blinded experimental study in severe asthmatic horses. METHODS Twelve severe asthmatic horses in clinical exacerbation were randomly assigned to treatment with 5 mg of dexamethasone sodium phosphate by nebulisation (n = 6) or by oral administration (n = 6), once daily for 7 days. Lung function was evaluated at baseline, after four treatment days (D4) and 24 h after the last dose (D8). The presence of residual bronchospasm was assessed on D8 with N-butylscopolammonium bromide administration (0.3 mg/kg i.v.). A respiratory clinical score was performed daily. Serum cortisol concentration was measured at baseline, D4 and D8. RESULTS The pulmonary elastance was unchanged in both groups while pulmonary resistance was significantly improved in the oral group on D8 (mean reduction in 1 cm H2 O/L/s [CI: 0.34-1.65, P = 0.003]). All horses had residual bronchospasm at the end of the study. There was a group difference in the respiratory clinical score as it was significantly reduced in the oral group, from D5 to D8. Serum cortisol concentration decreased in all subjects. MAIN LIMITATIONS Low number of horses and lack of placebo group. CONCLUSIONS Considering the lack of improvement of lung function and the hypothalamic-pituitary-adrenal axis suppression, the results of this study do not support aerosolisation of an injectable form of dexamethasone for the treatment of severe equine asthma at the dose and with the nebuliser evaluated.
Collapse
Affiliation(s)
- S Mainguy-Seers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - A Bessonnat
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - K Picotte
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - J-P Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
40
|
Tanquerel L, Fillion-Bertrand G, Lavoie JP, Leclere M. Effects of magnesium sulfate infusion on clinical signs and lung function of horses with severe asthma. Am J Vet Res 2018; 79:664-673. [PMID: 30085859 DOI: 10.2460/ajvr.79.6.664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate whether MgSO4 solution administered IV would improve the clinical signs and lung function of horses with severe asthma and potentiate the effects of salbutamol inhalation in those horses. ANIMALS 6 adult horses with severe asthma. PROCEDURES Asthmatic horses were used in 3 crossover design experiments (6 treatments/horse). Clinical scores for nasal flaring and the abdominal component associated with breathing and lung function were determined before and after administration of salbutamol (800 μg, by inhalation), MgSO4 solution (2.2 mg/kg/min, IV, over 20 minutes), and combined MgSO4-salbutamol treatment. The data were collected during experimental procedures to assess salbutamol inhalation versus mock inhalation, MgSO4 infusion versus infusion of saline (NaCl) solution (adjusted to the same osmolarity as the MgSO4 solution), and the combined MgSO4-salbutamol treatment versus salbutamol inhalation alone. RESULTS Infusion of MgSO4 significantly improved clinical scores when administered alone or in combination with salbutamol inhalation. With the combination treatment, lung function improved, albeit not significantly. Tidal volume also increased following combined MgSO4-salbutamol treatment. Salbutamol alone significantly improved lung function, whereas saline solution administration and a mock inhalation procedure had no effect on the studied variables. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that MgSO4 infusion alone or in combination with salbutamol inhalation improved the clinical signs of severely asthmatic horses. The effects of MgSO4 were not associated with significant lung function improvement, which suggested that the changes observed were attributable to alterations in the horses' breathing patterns. Infusion of MgSO4 solution at the studied dose offers little advantage over currently used medications for the treatment of severe equine asthma.
Collapse
|
41
|
Bond S, Léguillette R, Richard EA, Couetil L, Lavoie JP, Martin JG, Pirie RS. Equine asthma: Integrative biologic relevance of a recently proposed nomenclature. J Vet Intern Med 2018; 32:2088-2098. [PMID: 30294851 PMCID: PMC6271326 DOI: 10.1111/jvim.15302] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/11/2018] [Accepted: 07/24/2018] [Indexed: 12/29/2022] Open
Abstract
The term “equine asthma” has been proposed as a unifying descriptor of inflammatory airway disease (IAD), recurrent airway obstruction (RAO), and summer pasture‐associated obstructive airway disease. Whilst the term will increase comprehensibility for both the lay and scientific communities, its biologic relevance must be compared and contrasted to asthma in human medicine, recognizing the limited availability of peer‐reviewed equine‐derived data, which are largely restricted to clinical signs, measures of airway obstruction and inflammation and response to therapy. Such limitations constrain meaningful comparisons with human asthma phenotypes. Suggested minimum inclusion criteria supporting the term asthma, as well as similarities and differences between IAD, RAO, and multiple human asthma phenotypes are discussed. Furthermore, differences between phenotype and severity are described, and typical features for equine asthma subcategories are proposed. Based on shared features, we conclude that mild/moderate (IAD) and severe (RAO) equine asthma are biologically appropriate models for both allergic and non‐allergic human asthma, with RAO (severe equine asthma) also being an appropriate model for late‐onset asthma. With the development of new biologic treatments in humans and the application of more targeted therapeutic approaches in the horse, it would appear appropriate to further investigate the allergic (Th‐2) and non‐allergic (non‐Th‐2) phenotypes of equine asthma. Further research is required to more fully determine the potential clinical utility of phenotype classification.
Collapse
Affiliation(s)
- Stephanie Bond
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta
| | | | - Eric A Richard
- Equine Immunity & Inflammation, LABÉO Frank Duncombe, Caen, France.,BIOTARGEN, Normandie Univ, UniCaen, Biotargen, France
| | - Laurent Couetil
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana
| | - Jean-Pierre Lavoie
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, St-Hyacinthe, Quebec
| | - James G Martin
- Meakins Christie Laboratories, McGill University Health Center Research Institute, McGill University, Montreal, Quebec
| | - R Scott Pirie
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, Scotland, United Kingdom
| |
Collapse
|
42
|
Lavoie JP, Leclere M, Rodrigues N, Lemos KR, Bourzac C, Lefebvre-Lavoie J, Beauchamp G, Albrecht B. Efficacy of inhaled budesonide for the treatment of severe equine asthma. Equine Vet J 2018; 51:401-407. [PMID: 30203854 PMCID: PMC6585971 DOI: 10.1111/evj.13018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 09/06/2018] [Indexed: 01/22/2023]
Abstract
Background Corticosteroids are the most potent drugs for the control of severe equine asthma, but adverse effects limit their chronic systemic administration. Inhaled medications allow for drug delivery directly into the airways, reducing the harmful effects of these drugs. Objectives To evaluate the efficacy of inhaled budesonide specifically formulated for the equine use and administered by a novel inhalation device in horses with severe asthma. Study design Experimental studies in horses with naturally occurring asthma with cross‐over, randomised, blinded experimental designs. Methods In Study 1, budesonide (1800 μg twice daily) administered using a novel Respimat® based inhaler was compared to i.v. dexamethasone (0.04 mg/kg). In Study 2, 3 doses of budesonide (450, 900, and 1800 μg) were compared to oral dexamethasone (0.066 mg/kg). Lung function, bronchoalveolar fluid cytology (Study 1), CBC, serum chemistry, and serum cortisol and adrenocorticotropic hormone (ACTH) values were evaluated. Results In Study 1, there was a marked and significant improvement in the lung function of all horses treated with budesonide and dexamethasone. Neutrophil percentages in bronchoalveolar fluid decreased in all horses treated with dexamethasone and in four of six horses treated with budesonide. Serum cortisol and blood ACTH concentrations decreased with both treatments. In Study 2, there was a significant improvement in the lung function with all dosages of budesonide, and the effects of higher dosages were comparable to those of dexamethasone. Dexamethasone and budesonide at the two higher dosages induced a significant decrease of cortisol concentrations. Main limitations The Respimat® based inhaler is not currently commercially available. Conclusions Administration of budesonide with the Respimat® based inhaler provided dose‐dependent relief of airway obstruction in horses with severe asthma, but also a suppression of serum cortisol.
Collapse
Affiliation(s)
- J P Lavoie
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - M Leclere
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - N Rodrigues
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - K R Lemos
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - C Bourzac
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - J Lefebvre-Lavoie
- Department of Clinical Sciences, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - G Beauchamp
- Department of Veterinary Biomedicine, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - B Albrecht
- Boehringer Ingelheim Vetmedica GmbH, Ingelheim am Rhein, Germany
| |
Collapse
|
43
|
Bougault V, Odashiro P, Turmel J, Orain M, Laviolette M, Joubert P, Boulet L. Changes in airway inflammation and remodelling in swimmers after quitting sport competition. Clin Exp Allergy 2018; 48:1748-1751. [DOI: 10.1111/cea.13257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/19/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Valérie Bougault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
- URePSSS Unité de Recherche Pluridisciplinaire Sport Santé Société Université de Lille Lille France
| | - Patricia Odashiro
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| | - Julie Turmel
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| | - Michèle Orain
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| | - Philippe Joubert
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| | - Louis‐Philippe Boulet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec (CRIUCPQ) Université Laval Québec Québec Canada
| |
Collapse
|
44
|
Mainguy-Seers S, Picotte K, Lavoie JP. Efficacy of tamoxifen for the treatment of severe equine asthma. J Vet Intern Med 2018; 32:1748-1753. [PMID: 30084157 PMCID: PMC6189378 DOI: 10.1111/jvim.15289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/22/2018] [Accepted: 06/26/2018] [Indexed: 01/23/2023] Open
Abstract
Background Tamoxifen, a selective estrogen receptor modulator, decreased airway neutrophilia and improved clinical signs in an experimental model of equine asthma, and induced neutrophilic apoptosis in vitro. Hypothesis/Objectives Tamoxifen reduces airway neutrophilia and improves lung function in severe asthmatic horses. Animals Twelve severe asthmatic horses from a research herd. Methods Randomized controlled blinded study design. The effects of a 12‐day oral treatment with tamoxifen (0.22 mg/kg, q24h) or dexamethasone (0.06 mg/kg, q24h) on lung function, endoscopic tracheal mucus score and bronchoalveolar lavage fluid cytology were compared. Results Tamoxifen significantly improved the pulmonary resistance (RL; mean reduction of 1.15 cm H2O/L/s [CI: 0.29‐2.01, P = .007] on day 13), but had no effect on the other variables evaluated. Dexamethasone normalized lung function (mean reduction of RL of 2.48 cm H2O/L/s [CI: 1.54‐3.43, P < .0001] on day 13), without affecting airway neutrophilia. Conclusions and Clinical Importance Results of this study do not support the use of tamoxifen at the dose studied as an antineutrophilic medication in the treatment of asthmatic horses in chronic exacerbation.
Collapse
Affiliation(s)
- Sophie Mainguy-Seers
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Khristine Picotte
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Jean-Pierre Lavoie
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, QC, Canada
| |
Collapse
|
45
|
Mason VC, Schaefer RJ, McCue ME, Leeb T, Gerber V. eQTL discovery and their association with severe equine asthma in European Warmblood horses. BMC Genomics 2018; 19:581. [PMID: 30071827 PMCID: PMC6090848 DOI: 10.1186/s12864-018-4938-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/11/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Severe equine asthma, also known as recurrent airway obstruction (RAO), is a debilitating, performance limiting, obstructive respiratory condition in horses that is phenotypically similar to human asthma. Past genome wide association studies (GWAS) have not discovered coding variants associated with RAO, leading to the hypothesis that causative variant(s) underlying the signals are likely non-coding, regulatory variant(s). Regions of the genome containing variants that influence the number of expressed RNA molecules are expression quantitative trait loci (eQTLs). Variation associated with RAO that also regulates a gene's expression in a disease relevant tissue could help identify candidate genes that influence RAO if that gene's expression is also associated with RAO disease status. RESULTS We searched for eQTLs by analyzing peripheral blood mononuclear cells (PBMCs) from two half-sib families and one unrelated cohort of 82 European Warmblood horses that were previously treated in vitro with: no stimulation (MCK), lipopolysaccharides (LPS), recombinant cyathostomin antigen (RCA), and hay-dust extract (HDE). We identified high confidence eQTLs that did not violate linear modeling assumptions and were not significant due to single outlier individuals. We identified a mean of 4347 high confidence eQTLs in four treatments of PBMCs, and discovered two trans regulatory hotspots regulating genes involved in related biological pathways. We corroborated previous RAO associated single nucleotide polymorphisms (SNPs), and increased the resolution of past GWAS by analyzing 1,056,195 SNPs in 361 individuals. We identified four RAO-associated SNPs that only regulate gene expression of dexamethasone-induced protein (DEXI), however we found no significant association between DEXI gene expression and presence of RAO. CONCLUSIONS Thousands of genetic variants regulate gene expression in PBMCs of European Warmblood horses in cis and trans. Most high confidence eSNPs are significantly enriched near the transcription start sites of their target genes. Two trans regulatory hotspots on chromosome 11 and 13 regulate many genes involved in transmembrane cell signaling and neurological development respectively when PBMCs are treated with HDE. None of the top fifteen RAO associated SNPs strongly influence disease status through gene expression regulation.
Collapse
Affiliation(s)
- Victor C. Mason
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| | - Robert J. Schaefer
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Molly E. McCue
- Department of Veterinary Population Medicine, University of Minnesota, 1365 Gortner Ave, Saint Paul, MN 55108 USA
| | - Tosso Leeb
- Department of Clinical Research and Veterinary Public Health, Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109A, 3012 Bern, Switzerland
| | - Vinzenz Gerber
- Department of Clinical Veterinary Medicine, Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern, and Agroscope, Länggassstrasse 124, 3012 Bern, Switzerland
| |
Collapse
|
46
|
James AL, Noble PB, Drew SA, Mauad T, Bai TR, Abramson MJ, McKay KO, Green FHY, Elliot JG. Airway smooth muscle proliferation and inflammation in asthma. J Appl Physiol (1985) 2018; 125:1090-1096. [PMID: 30024335 DOI: 10.1152/japplphysiol.00342.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In asthma, it is unclear if the airway smooth muscle cells proliferate more or are increased at the onset of asthma and remain stable. This study aimed to compare smooth muscle cell proliferation in individuals with and without asthma and correlate proliferation rates with cell size and number and with granulocytic airway inflammation. Postmortem airway sections were labeled with proliferating cell nuclear antigen (PCNA) and percent positive muscle cells calculated. On the same sections, smooth muscle cell size and number and the number of eosinophils and neutrophils were estimated and compared in cases of nonfatal ( n = 15) and fatal ( n = 15) asthma and control subjects ( n = 15). The %PCNA+ muscle cells was not significantly different in fatal (29.4 ± 7.7%, mean ± SD), nonfatal asthma (28.6 ± 8.3%), or control subjects (24.6 ± 6.7%) and not related to mean muscle cell size ( r = 0.09), number ( r = 0.36), thickness of the muscle layer ( r = 0.05), or eosinophil numbers ( r = 0.04) in the asthma cases. These data support the hypothesis that in asthma the increased thickness of the smooth muscle layer may be present before or at the onset of asthma and independent of concurrent granulocytic inflammation or exacerbation. NEW & NOTEWORTHY There is debate regarding the origins of the increased airway smooth muscle in asthma. It may be independent of inflammation or arise as a proliferative response to inflammation. The present study found no increase in the proportion of proliferating smooth muscle cells in asthma and no relation of proliferation to numbers of airway smooth muscle cells or inflammation. These results support a stable increase in smooth muscle in asthma that is independent of airway inflammation.
Collapse
Affiliation(s)
- Alan L James
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital , Nedlands, WA , Australia.,School of Medicine and Pharmacology, University of Western Australia , Nedlands, WA , Australia
| | - Peter B Noble
- School of Human Sciences, University of Western Australia , Nedlands, WA , Australia.,Centre for Neonatal Research and Education, School of Paediatrics and Child Health, University of Western Australia , Perth, WA , Australia
| | - Su-Ann Drew
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital , Nedlands, WA , Australia.,School of Human Sciences, University of Western Australia , Nedlands, WA , Australia
| | - Thais Mauad
- University Medical School , Sao Paulo , Brazil
| | - Tony R Bai
- University of British Columbia , Vancouver, BC , Canada
| | - Michael J Abramson
- Department of Epidemiology & Preventive Medicine, Monash University , Melbourne, VIC , Australia
| | - Karen O McKay
- Children's Hospital at Westmead , Sydney, NSW , Australia
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, University of Calgary , Calgary, AB , Canada
| | - John G Elliot
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital , Nedlands, WA , Australia
| |
Collapse
|
47
|
Bullone M, Lavoie JP. Science-in-brief: Equine asthma diagnosis: Beyond bronchoalveolar lavage cytology. Equine Vet J 2018; 49:263-265. [PMID: 28387029 DOI: 10.1111/evj.12679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 12/23/2022]
Affiliation(s)
- M Bullone
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - J-P Lavoie
- Department of Clinical Sciences, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
48
|
Hill MR, Philp CJ, Billington CK, Tatler AL, Johnson SR, O'Dea RD, Brook BS. A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodelling. Biomech Model Mechanobiol 2018; 17:1451-1470. [PMID: 29968161 PMCID: PMC6154265 DOI: 10.1007/s10237-018-1037-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 05/22/2018] [Indexed: 12/28/2022]
Abstract
Inflammation, airway hyper-responsiveness and airway remodelling are well-established hallmarks of asthma, but their inter-relationships remain elusive. In order to obtain a better understanding of their inter-dependence, we develop a mechanochemical morphoelastic model of the airway wall accounting for local volume changes in airway smooth muscle (ASM) and extracellular matrix in response to transient inflammatory or contractile agonist challenges. We use constrained mixture theory, together with a multiplicative decomposition of growth from the elastic deformation, to model the airway wall as a nonlinear fibre-reinforced elastic cylinder. Local contractile agonist drives ASM cell contraction, generating mechanical stresses in the tissue that drive further release of mitogenic mediators and contractile agonists via underlying mechanotransductive signalling pathways. Our model predictions are consistent with previously described inflammation-induced remodelling within an axisymmetric airway geometry. Additionally, our simulations reveal novel mechanotransductive feedback by which hyper-responsive airways exhibit increased remodelling, for example, via stress-induced release of pro-mitogenic and pro-contractile cytokines. Simulation results also reveal emergence of a persistent contractile tone observed in asthmatics, via either a pathological mechanotransductive feedback loop, a failure to clear agonists from the tissue, or a combination of both. Furthermore, we identify various parameter combinations that may contribute to the existence of different asthma phenotypes, and we illustrate a combination of factors which may predispose severe asthmatics to fatal bronchospasms.
Collapse
Affiliation(s)
- Michael R Hill
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C25, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK.
| | - Christopher J Philp
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Charlotte K Billington
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, Nottingham City Hospital, University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Simon R Johnson
- Division of Respiratory Medicine, Nottingham Biomedical Research Centre, University of Nottingham, D Floor, South Block, Queen's Medical Centre Campus, Nottingham, NG7 2UH, UK
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C28, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Room C26, Mathematical Sciences Building, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
49
|
Elliot JG, Noble PB, Mauad T, Bai TR, Abramson MJ, McKay KO, Green FH, James AL. Inflammation‐dependent and independent airway remodelling in asthma. Respirology 2018; 23:1138-1145. [PMID: 29943875 DOI: 10.1111/resp.13360] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- John G. Elliot
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep MedicineSir Charles Gairdner Hospital Perth WA Australia
| | - Peter B. Noble
- School of Human SciencesUniversity of Western Australia Perth WA Australia
- Centre for Neonatal Research and Education, School of Paediatrics and Child HealthUniversity of Western Australia Perth WA Australia
| | - Thais Mauad
- Department of PathologyUniversity Medical School Sao Paulo Brazil
| | - Tony R. Bai
- Department of MedicineUniversity of British Columbia Vancouver BC Canada
| | - Michael J. Abramson
- Department of Epidemiology and Preventive MedicineMonash University Melbourne VIC Australia
| | - Karen O. McKay
- Department of Respiratory MedicineChildren's Hospital at Westmead Sydney NSW Australia
| | - Francis H.Y. Green
- Department of Pathology and Laboratory MedicineUniversity of Calgary Calgary AB Canada
| | - Alan L. James
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep MedicineSir Charles Gairdner Hospital Perth WA Australia
- School of Medicine and PharmacologyUniversity of Western Australia Perth WA Australia
| |
Collapse
|
50
|
Calzetta L, Rogliani P, Pistocchini E, Mattei M, Cito G, Alfonsi P, Page C, Matera MG. Combining long-acting bronchodilators with different mechanisms of action: A pharmacological approach to optimize bronchodilation of equine airways. J Vet Pharmacol Ther 2018; 41:546-554. [PMID: 29582435 DOI: 10.1111/jvp.12504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/05/2018] [Indexed: 12/13/2022]
Abstract
The ultra long-acting β2 -adrenoceptor agonist olodaterol plus the ultra long-acting muscarinic antagonist tiotropium bromide are known to relax equine airways. In human bronchi combining these drugs elicits a positive interaction, thus we aimed to characterize this information further in equine isolated airways stimulated by electrical field stimulation (EFS) and using the Concentration-Reduction Index (CRI) and Combination Index (CI) equations. The drugs were administered alone and together by reproducing ex vivo the concentration-ratio delivered by the currently available fixed-dose combination (1:1). The single agents elicited a significant (p < .05) concentration-dependent reduction in the EFS-induced contractility, that was synergistically improved (CI 0.18) when administered in combination (0.9 logarithms more potent, 24% more effective than the monocomponents). The drugs mixture allowed a reduction in the concentration of olodaterol from ≃1 to ≃2.3 logarithms. A favorable CRI was detected also for tiotropium bromide, whose concentration can be reduced ≃1 logarithm at medium effect levels, remaining positive up to submaximal relaxant effect in the presence of olodaterol. The combination of tiotropium bromide/olodaterol allows the reduction in the concentration of the monocomponents to achieve airway smooth muscle relaxation, thus potentially decreases the risk of adverse events when these drugs are used to treat severe asthmatic horses.
Collapse
Affiliation(s)
- L Calzetta
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - P Rogliani
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - M Mattei
- Department of Biology, Centro Servizi Interdipartimentale-STA, University of Rome Tor Vergata, Rome, Italy
| | - G Cito
- ASL Roma 2, UOC Tutela Igienico Sanitaria Degli Alimenti di Origine Animale, Rome, Italy
| | - P Alfonsi
- ASL Roma 2, UOC Igiene Degli Allevamenti e Delle Produzioni Zootecniche, Rome, Italy
| | - C Page
- The Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| | - M G Matera
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|