1
|
Clarke DM, Curtis KL, Wendt RA, Stapley BM, Clark ET, Beckett N, Campbell KM, Arroyo JA, Reynolds PR. Decreased Expression of Pulmonary Homeobox NKX2.1 and Surfactant Protein C in Developing Lungs That Over-Express Receptors for Advanced Glycation End-Products (RAGE). J Dev Biol 2023; 11:33. [PMID: 37489334 PMCID: PMC10366714 DOI: 10.3390/jdb11030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors of the immunoglobin superfamily prominently expressed by lung epithelium. Previous experiments demonstrated that over-expression of RAGE by murine alveolar epithelium throughout embryonic development causes neonatal lethality coincident with significant lung hypoplasia. In the current study, we evaluated the expression of NKX2.1 (also referred to as TTF-1), a homeodomain-containing transcription factor critical for branching morphogenesis, in mice that differentially expressed RAGE. We also contextualized NKX2.1 expression with the abundance of FoxA2, a winged double helix DNA binding protein that influences respiratory epithelial cell differentiation and surfactant protein expression. Conditional RAGE over-expression was induced in mouse lung throughout gestation (embryonic day E0-18.5), as well as during the critical saccular period of development (E15.5-18.5), and analyses were conducted at E18.5. Histology revealed markedly less lung parenchyma beginning in the canalicular stage of lung development and continuing throughout the saccular period. We discovered consistently decreased expression of both NKX2.1 and FoxA2 in lungs from transgenic (TG) mice compared to littermate controls. We also observed diminished surfactant protein C in TG mice, suggesting possible hindered differentiation and/or proliferation of alveolar epithelial cells under the genetic control of these two critical transcription factors. These results demonstrate that RAGE must be specifically regulated during lung formation. Perturbation of epithelial cell differentiation culminating in respiratory distress and perinatal lethality may coincide with elevated RAGE expression in the lung parenchyma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul R. Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
2
|
Reynaert NL, Vanfleteren LEGW, Perkins TN. The AGE-RAGE Axis and the Pathophysiology of Multimorbidity in COPD. J Clin Med 2023; 12:jcm12103366. [PMID: 37240472 DOI: 10.3390/jcm12103366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disease of the airways and lungs due to an enhanced inflammatory response, commonly caused by cigarette smoking. Patients with COPD are often multimorbid, as they commonly suffer from multiple chronic (inflammatory) conditions. This intensifies the burden of individual diseases, negatively affects quality of life, and complicates disease management. COPD and comorbidities share genetic and lifestyle-related risk factors and pathobiological mechanisms, including chronic inflammation and oxidative stress. The receptor for advanced glycation end products (RAGE) is an important driver of chronic inflammation. Advanced glycation end products (AGEs) are RAGE ligands that accumulate due to aging, inflammation, oxidative stress, and carbohydrate metabolism. AGEs cause further inflammation and oxidative stress through RAGE, but also through RAGE-independent mechanisms. This review describes the complexity of RAGE signaling and the causes of AGE accumulation, followed by a comprehensive overview of alterations reported on AGEs and RAGE in COPD and in important co-morbidities. Furthermore, it describes the mechanisms by which AGEs and RAGE contribute to the pathophysiology of individual disease conditions and how they execute crosstalk between organ systems. A section on therapeutic strategies that target AGEs and RAGE and could alleviate patients from multimorbid conditions using single therapeutics concludes this review.
Collapse
Affiliation(s)
- Niki L Reynaert
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Lowie E G W Vanfleteren
- COPD Center, Department of Respiratory Medicine and Allergology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Timothy N Perkins
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Maglione AV, do Nascimento BPP, Ribeiro MO, de Souza TJL, da Silva REC, Sato MA, Penatti CAA, Britto LRG, de Souza JS, Maciel RMB, da Conceição RR, Laureano-Melo R, Giannocco G. Triiodothyronine Treatment reverses Depression-Like Behavior in a triple-transgenic animal model of Alzheimer's Disease. Metab Brain Dis 2022; 37:2735-2750. [PMID: 35951206 DOI: 10.1007/s11011-022-01055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer disease's (AD) is a neurodegenerative disorder characterized by cognitive and behavioral impairment. The central nervous system is an important target of thyroid hormones (TH). An inverse association between serum triiodothyronine (T3) levels and the risk of AD symptoms and progression has been reported. We investigated the effects of T3 treatment on the depression-like behavior in male transgenic 3xTg-AD mice. Animals were divided into 2 groups treated with daily intraperitoneal injections of 20 ng/g of body weight (b.w.) L-T3 (T3 group) or saline (vehicle, control group). The experimental protocol lasted 21 days, and behavioral tests were conducted on days 18-20. At the end of the experiment, the TH profile and hippocampal gene expression were evaluated. The T3-treated group significantly increased serum T3 and decreased thyroxine (T4) levels. When compared to control hippocampal samples, the T3 group exhibited attenuated glycogen synthase kinase-3 (GSK3), metalloproteinase 10 (ADAM10), amyloid-beta precursor-protein (APP), serotonin transporter (SERT), 5HT1A receptor, monocarboxylate transporter 8 (MCT8) and bone morphogenetic protein 7 (BMP-7) gene expression, whereas augmented superoxide dismutase 2 (SOD2) and Hairless gene expression. T3-treated animals also displayed reduced immobility time in both the tail suspension and forced swim tests, and in the latter presented a higher latency time compared to the control group. Therefore, our findings suggest that in an AD mouse model, T3 supplementation promotes improvements in depression-like behavior, through the modulation of the serotonergic related genes involved in the transmission mediated by 5HT1A receptors and serotonin reuptake, and attenuated disease progression.
Collapse
Affiliation(s)
- Andréa V Maglione
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Bruna P P do Nascimento
- Laboratory of Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Miriam O Ribeiro
- Developmental Disorders Program, Center of Biological Science and Health, Mackenzie Presbyterian University, São Paulo, Brazil
| | - Talytha J L de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Renata E C da Silva
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitário FMABC, Santo André- Brazil, São Paulo, Santo André, Brazil
| | - Carlos A A Penatti
- Laboratory of Human Physiology, Universidade Nove de Julho, São Paulo, Brazil
| | - Luiz R G Britto
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Janaina S de Souza
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rui M B Maciel
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil
| | - Rodrigo Rodrigues da Conceição
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| | - Roberto Laureano-Melo
- Laboratory of Physiopharmacoly and Behavior, Universidade de Barra Mansa, Rio de Janeiro, Brazil
| | - Gisele Giannocco
- Dept. Medicine, Laboratory of Endocrinology and Translational Medicine, Universidade Federal de São Paulo, UNIFESP/EPM, São Paulo, Brazil.
| |
Collapse
|
4
|
Rusinov VL, Sapozhnikova IM, Spasov AA, Chupakhin ON. Fused azoloazines with antidiabetic activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
5
|
Hirschi-Budge KM, Tsai KYF, Curtis KL, Davis GS, Theurer BK, Kruyer AMM, Homer KW, Chang A, Van Ry PM, Arroyo JA, Reynolds PR. RAGE signaling during tobacco smoke-induced lung inflammation and potential therapeutic utility of SAGEs. BMC Pulm Med 2022; 22:160. [PMID: 35473605 PMCID: PMC9044720 DOI: 10.1186/s12890-022-01935-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Smoke exposure culminates as a progressive lung complication involving airway inflammation and remodeling. While primary smoke poses the greatest risk, nearly half of the US population is also at risk due to exposure to secondhand smoke (SHS). METHODS We used WT, RAGE-/- (KO), and Tet-inducible lung-specific RAGE overexpressing transgenic (TG) mice to study the role of RAGE during short-term responses to SHS. We evaluated SHS effects in mice with and without semi-synthetic glycosaminoglycan ethers (SAGEs), which are anionic, partially lipophilic sulfated polysaccharide derivatives known to inhibit RAGE signaling. TG Mice were weaned and fed doxycycline to induce RAGE at postnatal day (PN) 30. At PN40, mice from each line were exposed to room air (RA) or SHS from three Kentucky 3R4F research cigarettes via a nose-only delivery system (Scireq Scientific, Montreal, Canada) five days a week and i.p. injections of PBS or SAGE (30 mg/kg body weight) occurred three times per week from PN40-70 before mice were sacrificed on PN70. RESULTS RAGE mRNA and protein expression was elevated following SHS exposure of control and TG mice and not detected in RAGE KO mice. Bronchoalveolar lavage fluid (BALF) analysis revealed RAGE-mediated influence on inflammatory cell diapedesis, total protein, and pro-inflammatory mediators following exposure. Lung histological assessment revealed indistinguishable morphology following exposure, yet parenchymal apoptosis was increased. Inflammatory signaling intermediates such as Ras and NF-κB, as well as downstream responses were influenced by the availability of RAGE, as evidenced by RAGE KO and SAGE treatment. CONCLUSIONS These data provide fascinating insight suggesting therapeutic potential for the use of RAGE inhibitors in lungs exposed to SHS smoke.
Collapse
Affiliation(s)
- Kelsey M Hirschi-Budge
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kary Y F Tsai
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Katrina L Curtis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Gregg S Davis
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Benjamin K Theurer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Anica M M Kruyer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Kyle W Homer
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Ashley Chang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Pam M Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Juan A Arroyo
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA
| | - Paul R Reynolds
- Lung and Placenta Laboratory, Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
6
|
Revisiting Methodologies for In Vitro Preparations of Advanced Glycation End Products. Appl Biochem Biotechnol 2022; 194:2831-2855. [PMID: 35257316 DOI: 10.1007/s12010-022-03860-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.
Collapse
|
7
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Allam VSRR, Faiz A, Lam M, Rathnayake SNH, Ditz B, Pouwels SD, Brandsma C, Timens W, Hiemstra PS, Tew GW, Neighbors M, Grimbaldeston M, van den Berge M, Donnelly S, Phipps S, Bourke JE, Sukkar MB. RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy 2021; 76:1123-1135. [PMID: 32799375 DOI: 10.1111/all.14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) is implicated in COPD. Although these receptors share common ligands and signalling pathways, it is not known whether they act in concert to drive pathological processes in COPD. We examined the impact of RAGE and/or TLR4 gene deficiency in a mouse model of COPD and also determined whether expression of these receptors correlates with airway neutrophilia and airway hyperresponsiveness (AHR) in COPD patients. METHODS We measured airway inflammation and AHR in wild-type, RAGE-/- , TLR4-/- and TLR4-/- RAGE-/- mice following acute exposure to cigarette smoke (CS). We also examined the impact of smoking status on AGER (encodes RAGE) and TLR4 bronchial gene expression in patients with and without COPD. Finally, we determined whether expression of these receptors correlates with airway neutrophilia and AHR in COPD patients. RESULTS RAGE-/- mice were protected against CS-induced neutrophilia and AHR. In contrast, TLR4-/- mice were not protected against CS-induced neutrophilia and had more severe CS-induced AHR. TLR4-/- RAGE-/- mice were not protected against CS-induced neutrophilia but were partially protected against CS-induced mediator release and AHR. Current smoking was associated with significantly lower AGER and TLR4 expression irrespective of COPD status, possibly reflecting negative feedback regulation. However, consistent with preclinical findings, AGER expression correlated with higher sputum neutrophil counts and more severe AHR in COPD patients. TLR4 expression did not correlate with neutrophilic inflammation or AHR. CONCLUSIONS Inhibition of RAGE but not TLR4 signalling may protect against airway neutrophilia and AHR in COPD.
Collapse
Affiliation(s)
| | - Alen Faiz
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Maggie Lam
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Senani N. H. Rathnayake
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Benedikt Ditz
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Corry‐Anke Brandsma
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology Leiden University Medical Center Leiden The Netherlands
| | - Gaik W. Tew
- OMNI‐Biomarker Development, Genentech Inc South San Francisco CA USA
| | | | | | - Maarten van den Berge
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sheila Donnelly
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Jane E. Bourke
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Maria B. Sukkar
- Graduate School of Health Faculty of Health The University of Technology Sydney Ultimo NSW Australia
| |
Collapse
|
9
|
Shaikh-Kader A, Houreld NN, Rajendran NK, Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem Funct 2019; 37:432-442. [PMID: 31318458 DOI: 10.1002/cbf.3424] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/05/2018] [Accepted: 06/05/2019] [Indexed: 01/26/2023]
Abstract
Advanced glycation end products (AGEs) are naturally occurring molecules that start to accumulate from embryonic developmental stages and form as part of normal ageing. When reducing sugars interact with and modify proteins or lipids, AGE production occurs. AGE formation accelerates in chronic hyperglycemic conditions, and high AGE levels have been associated with the pathogenesis of various diseases. In addition, enhanced levels of AGEs have been linked to delayed wound healing as seen in patients with diabetes mellitus. Research has provided numerous ways in which a high AGE concentration results in impaired wound healing, including oxidative stress, structural and functional changes to proteins important in wound repair, an enhanced inflammatory response by activation of transcription factors, and possible exaggerated apoptosis of cells necessary to the wound repair process. Apoptosis is a naturally occurring cell death process that is significant for normal tissue functioning and plays an important role in wound repair by preventing a prolonged inflammatory response and excessive scar formation. Abnormal apoptosis affects wound healing, resulting in slow healing wounds. This review will summarize the role of AGEs in wound healing, focusing on the mechanisms by which AGEs lead to apoptosis in various cell types. The review provides the way forward for medical research and molecular studies as it focuses on the mechanisms by which AGEs induce apoptosis in various cell types, including fibroblasts, osteoblasts, neuronal cells, and endothelial cells. Reviewing the mechanisms of AGE-linked apoptosis is important in understanding the impact of high AGE levels in delayed wound healing in diabetic patients due to abnormal apoptosis of cells necessary to the wound healing process.
Collapse
Affiliation(s)
- Asma Shaikh-Kader
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
10
|
Kim MJ, Vargas MR, Harlan BA, Killoy KM, Ball LE, Comte-Walters S, Gooz M, Yamamoto Y, Beckman JS, Barbeito L, Pehar M. Nitration and Glycation Turn Mature NGF into a Toxic Factor for Motor Neurons: A Role for p75 NTR and RAGE Signaling in ALS. Antioxid Redox Signal 2018; 28:1587-1602. [PMID: 28537420 PMCID: PMC5962334 DOI: 10.1089/ars.2016.6966] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Glycating stress can occur together with oxidative stress during neurodegeneration and contribute to the pathogenic mechanism. Nerve growth factor (NGF) accumulates in several neurodegenerative diseases. Besides promoting survival, NGF can paradoxically induce cell death by signaling through the p75 neurotrophin receptor (p75NTR). The ability of NGF to induce cell death is increased by nitration of its tyrosine residues under conditions associated with increased peroxynitrite formation. AIMS Here we investigated whether glycation also changes the ability of NGF to induce cell death and assessed the ability of post-translational modified NGF to signal through the receptor for advanced glycation end products (RAGEs). We also explored the potential role of RAGE-p75NTR interaction in the motor neuron death occurring in amyotrophic lateral sclerosis (ALS) models. RESULTS Glycation promoted NGF oligomerization and ultimately allowed the modified neurotrophin to signal through RAGE and p75NTR to induce motor neuron death at low physiological concentrations. A similar mechanism was observed for nitrated NGF. We provide evidence for the interaction of RAGE with p75NTR at the cell surface. Moreover, we observed that post-translational modified NGF was present in the spinal cord of an ALS mouse model. In addition, NGF signaling through RAGE and p75NTR was involved in astrocyte-mediated motor neuron toxicity, a pathogenic feature of ALS. INNOVATION Oxidative modifications occurring under stress conditions can enhance the ability of mature NGF to induce neuronal death at physiologically relevant concentrations, and RAGE is a new p75NTR coreceptor contributing to this pathway. CONCLUSION Our results indicate that NGF-RAGE/p75NTR signaling may be a therapeutic target in ALS. Antioxid. Redox Signal. 28, 1587-1602.
Collapse
Affiliation(s)
- Mi Jin Kim
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Marcelo R Vargas
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Benjamin A Harlan
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Kelby M Killoy
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Lauren E Ball
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Susana Comte-Walters
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| | - Monika Gooz
- 2 Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , Charleston, South Carolina
| | - Yasuhiko Yamamoto
- 3 Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences , Kanazawa, Japan
| | - Joseph S Beckman
- 4 Department of Biochemistry and Biophysics, Linus Pauling Institute, Environmental Health Sciences Center, Oregon State University , Corvallis, Oregon
| | - Luis Barbeito
- 5 Institut Pasteur de Montevideo , Montevideo, Uruguay
| | - Mariana Pehar
- 1 Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina
| |
Collapse
|
11
|
Pinkas A, Lee KH, Chen P, Aschner M. A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotox Res 2018; 35:19-28. [PMID: 29869225 DOI: 10.1007/s12640-018-9918-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
The receptor for advanced glycation products (RAGE) is a cell surface, multi-ligand receptor belonging to the immunoglobulin superfamily; this receptor is implicated in a variety of maladies, via inflammatory pathways and induction of oxidative stress. Currently, RAGE is being studied using a limited number of mammalian in vivo, and some complementary in vitro, models. Here, we present a Caenorhabditis elegans model for the study of RAGE-related pathology: a transgenic strain, expressing RAGE in all neurons, was generated and subsequently tested behaviorally, developmentally, and morphologically. In addition to RAGE expression being associated with a significantly shorter lifespan, the following behavioral observations were made when RAGE-expressing worms were compared to the wild type: RAGE-expressing worms showed an impaired dopaminergic system, evaluated by measuring the fluorescent signal of GFP tagging; these worms exhibited decreased locomotion-both general and following ethanol exposure-as measured by counting body bends in adult worms; RAGE expression was also associated with impaired recovery of quiescence and pharyngeal pumping secondary to heat shock, as a significantly smaller fraction of RAGE-expressing worms engaged in these behaviors in the 2 h immediately following the heat shock. Finally, significant developmental differences were also found between the two strains: RAGE expression leads to a significantly smaller fraction of hatched eggs 24 h after laying and also to a significantly slower developmental speed overall. As evidence for the role of RAGE in a variety of neuropathologies accumulates, the use of this novel and expedient model should facilitate the elucidation of relevant underlying mechanisms and also the development of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Adi Pinkas
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA.
| | - Kun He Lee
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Pan Chen
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| | - Michael Aschner
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Forchheimer Building, Room 209, Bronx, NY, 10461, USA
| |
Collapse
|
12
|
Plausible Roles for RAGE in Conditions Exacerbated by Direct and Indirect (Secondhand) Smoke Exposure. Int J Mol Sci 2017; 18:ijms18030652. [PMID: 28304347 PMCID: PMC5372664 DOI: 10.3390/ijms18030652] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/07/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Approximately 1 billion people smoke worldwide, and the burden placed on society by primary and secondhand smokers is expected to increase. Smoking is the leading risk factor for myriad health complications stemming from diverse pathogenic programs. First- and second-hand cigarette smoke contains thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic inflammatory responses and destructive remodeling events. In the current review, we outline details related to compromised pulmonary and systemic conditions related to smoke exposure. Specifically, data are discussed relative to impaired lung physiology, cancer mechanisms, maternal-fetal complications, cardiometabolic, and joint disorders in the context of smoke exposure exacerbations. As a general unifying mechanism, the receptor for advanced glycation end-products (RAGE) and its signaling axis is increasingly considered central to smoke-related pathogenesis. RAGE is a multi-ligand cell surface receptor whose expression increases following cigarette smoke exposure. RAGE signaling participates in the underpinning of inflammatory mechanisms mediated by requisite cytokines, chemokines, and remodeling enzymes. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of lung disease and systemic complications that combine during the demise of those exposed.
Collapse
|
13
|
Antonelli A, Di Maggio S, Rejman J, Sanvito F, Rossi A, Catucci A, Gorzanelli A, Bragonzi A, Bianchi ME, Raucci A. The shedding-derived soluble receptor for advanced glycation endproducts sustains inflammation during acute Pseudomonas aeruginosa lung infection. Biochim Biophys Acta Gen Subj 2017; 1861:354-364. [DOI: 10.1016/j.bbagen.2016.11.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/07/2023]
|
14
|
Lee H, Park JR, Kim WJ, Sundar IK, Rahman I, Park SM, Yang SR. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling. FASEB J 2017; 31:2076-2089. [PMID: 28148566 DOI: 10.1096/fj.201601155r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/17/2017] [Indexed: 12/21/2022]
Abstract
The receptor for advanced glycan end products (RAGE) has been identified as a susceptibility gene for chronic obstructive pulmonary disease (COPD) in genome-wide association studies (GWASs). However, less is known about how RAGE is involved in the pathogenesis of COPD. To determine the molecular mechanism by which RAGE influences COPD in experimental COPD models, we investigated the efficacy of the RAGE-specific antagonist FPS-ZM1 administration in in vivo and in vitro COPD models. We injected elastase intratracheally and the RAGE antagonist FPS-ZM1 in mice, and the infiltrated inflammatory cells and cytokines were assessed by ELISA. Cellular expression of RAGE was determined in protein, serum, and bronchoalveolar lavage fluid of mice and lungs and serum of human donors and patients with COPD. Downstream damage-associated molecular pattern (DAMP) pathway activation in vivo and in vitro and in patients with COPD was assessed by immunofluorescence staining, Western blot analysis, and ELISA. The expression of membrane RAGE in initiating the inflammatory response and of soluble RAGE acting as a decoy were associated with up-regulation of the DAMP-related signaling pathway via Nrf2. FPS-ZM1 administration significantly reversed emphysema in the lung of mice. Moreover, FPS-ZM1 treatment significantly reduced lung inflammation in Nrf2+/+ , but not in Nrf2-/- mice. Thus, our data indicate for the first time that RAGE inhibition has an essential protective role in COPD. Our observation of RAGE inhibition provided novel insight into its potential as a therapeutic target in emphysema/COPD.-Lee, H., Park, J.-R., Kim, W. J., Sundar, I. K., Rahman, I., Park, S.-M., Yang. S.-R. Blockade of RAGE ameliorates elastase-induced emphysema development and progression via RAGE-DAMP signaling.
Collapse
Affiliation(s)
- Hanbyeol Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Jeong-Ran Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea; and
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, South Korea;
| |
Collapse
|
15
|
Miller S, Henry AP, Hodge E, Kheirallah AK, Billington CK, Rimington TL, Bhaker SK, Obeidat M, Melén E, Merid SK, Swan C, Gowland C, Nelson CP, Stewart CE, Bolton CE, Kilty I, Malarstig A, Parker SG, Moffatt MF, Wardlaw AJ, Hall IP, Sayers I. The Ser82 RAGE Variant Affects Lung Function and Serum RAGE in Smokers and sRAGE Production In Vitro. PLoS One 2016; 11:e0164041. [PMID: 27755550 PMCID: PMC5068780 DOI: 10.1371/journal.pone.0164041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. METHODS Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. RESULTS Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. CONCLUSIONS This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism.
Collapse
Affiliation(s)
- Suzanne Miller
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Amanda P. Henry
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Emily Hodge
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Tracy L. Rimington
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Sangita K. Bhaker
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ma’en Obeidat
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon K. Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Swan
- Department of Biology, University of York, York, United Kingdom
| | - Catherine Gowland
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Carl P. Nelson
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ceri E. Stewart
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte E. Bolton
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Iain Kilty
- Pfizer Worldwide Research & Development, Cambridge, Massachusetts, United States of America
| | - Anders Malarstig
- Pfizer Worldwide Research & Development, Cambridge, United Kingdom
| | - Stuart G. Parker
- Institute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, United Kingdom
| | - Miriam F. Moffatt
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew J. Wardlaw
- Institute for Lung Health, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Ian P. Hall
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Ian Sayers
- Division of Respiratory Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
16
|
Lewis JB, Milner DC, Lewis AL, Dunaway TM, Egbert KM, Albright SC, Merrell BJ, Monson TD, Broberg DS, Gassman JR, Thomas DB, Arroyo JA, Reynolds PR. Up-Regulation of Claudin-6 in the Distal Lung Impacts Secondhand Smoke-Induced Inflammation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E1018. [PMID: 27763528 PMCID: PMC5086757 DOI: 10.3390/ijerph13101018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 01/06/2023]
Abstract
It has long been understood that increased epithelial permeability contributes to inflammation observed in many respiratory diseases. Recently, evidence has revealed that environmental exposure to noxious material such as cigarette smoke reduces tight junction barrier integrity, thus enhancing inflammatory conditions. Claudin-6 (Cldn6) is a tetraspanin transmembrane protein found within the tight junctional complex and is implicated in maintaining lung epithelial barriers. To test the hypothesis that increased Cldn6 ameliorates inflammation at the respiratory barrier, we utilized the Tet-On inducible transgenic system to conditionally over-express Clnd6 in the distal lung. Cldn6 transgenic (TG) and control mice were continuously provided doxycycline from postnatal day (PN) 30 until euthanasia date at PN90. A subset of Cldn6 TG and control mice were also subjected to daily secondhand tobacco smoke (SHS) via a nose only inhalation system from PN30-90 and compared to room air (RA) controls. Animals were euthanized on PN90 and lungs were harvested for histological and molecular characterization. Bronchoalveolar lavage fluid (BALF) was procured for the assessment of inflammatory cells and molecules. Quantitative RT-PCR and immunoblotting revealed increased Cldn6 expression in TG vs. control animals and SHS decreased Cldn6 expression regardless of genetic up-regulation. Histological evaluations revealed no adverse pulmonary remodeling via Hematoxylin and Eosin (H&E) staining or any qualitative alterations in the abundance of type II pneumocytes or proximal non-ciliated epithelial cells via staining for cell specific propeptide of Surfactant Protein-C (proSP-C) or Club Cell Secretory Protein (CCSP), respectively. Immunoblotting and qRT-PCR confirmed the differential expression of Cldn6 and the pro-inflammatory cytokines TNF-α and IL-1β. As a general theme, inflammation induced by SHS exposure was influenced by the availability of Cldn6. These data reveal captivating information suggesting a role for Cldn6 in lungs exposed to tobacco smoke. Further research is critically necessary in order to fully explain roles for tight junctional components such as Cldn6 and other related molecules in lungs coping with exposure.
Collapse
Affiliation(s)
- Joshua B Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin C Milner
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Adam L Lewis
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Todd M Dunaway
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Kaleb M Egbert
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Scott C Albright
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Brigham J Merrell
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Troy D Monson
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Dallin S Broberg
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Jason R Gassman
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Daniel B Thomas
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
17
|
Di Maggio S, Gatti E, Liu J, Bertolotti M, Fritz G, Bianchi ME, Raucci A. The Mouse-Specific Splice Variant mRAGE_v4 Encodes a Membrane-Bound RAGE That Is Resistant to Shedding and Does Not Contribute to the Production of Soluble RAGE. PLoS One 2016; 11:e0153832. [PMID: 27655137 PMCID: PMC5031469 DOI: 10.1371/journal.pone.0153832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/02/2016] [Indexed: 12/15/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is involved in the onset and progression of several inflammatory diseases. The RAGE primary transcript undergoes numerous alternative splicing (AS) events, some of which are species-specific. Here, we characterize the mouse-specific mRAGE_v4 splice variant, which is conserved in rodents and absent in primates. mRAGE_v4 derives from exon 9 skipping and encodes a receptor (M-RAGE) that lacks 9 amino acids between the transmembrane and the immunoglobulin (Ig) domains. RNA-Seq data confirm that in mouse lung mRAGE_v4 is the most abundant RAGE mRNA isoform after mRAGE, which codes for full-length RAGE (FL-RAGE), while in heart all RAGE variants are almost undetectable. The proteins M-RAGE and FL-RAGE are roughly equally abundant in mouse lung. Contrary to FL-RAGE, M-RAGE is extremely resistant to shedding because it lacks the peptide motif recognized by both ADAM10 and MMP9, and does not contribute significantly to soluble cRAGE formation. Thus, a cassette exon in RAGE corresponds to a specific function of the RAGE protein–the ability to be shed. Given the differences in RAGE AS variants between rodents and humans, caution is due in the interpretation of results obtained in mouse models of RAGE-dependent human pathologies.
Collapse
Affiliation(s)
- Stefania Di Maggio
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Elena Gatti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Jaron Liu
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Matteo Bertolotti
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Günter Fritz
- Institute for Neuropathology, University of Freiburg, Freiburg, Germany
| | - Marco E. Bianchi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
- Università Vita Salute San Raffaele, Milano, Italy
| | - Angela Raucci
- Experimental Cardio-Oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|
18
|
Waseda K, Miyahara N, Taniguchi A, Kurimoto E, Ikeda G, Koga H, Fujii U, Yamamoto Y, Gelfand EW, Yamamoto H, Tanimoto M, Kanehiro A. Emphysema requires the receptor for advanced glycation end-products triggering on structural cells. Am J Respir Cell Mol Biol 2016; 52:482-91. [PMID: 25188021 DOI: 10.1165/rcmb.2014-0027oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary emphysema is characterized by persistent inflammation and progressive alveolar destruction. The receptor for advanced glycation end-products (RAGE) is a multiligand cell surface receptor reported to be involved in the process of acute alveolar epithelial cell injury. However, studies that address the role of RAGE in pulmonary emphysema are inconclusive. We investigated the role of RAGE in the development of elastase-induced pulmonary inflammation and emphysema in mice. RAGE-sufficient (RAGE(+/+)) mice and RAGE-deficient (RAGE(-/-)) mice were treated with intratracheal elastase on Day 0. Airway inflammation, static lung compliance, lung histology, and the levels of neutrophil-related chemokine and proinflammatory cytokines in bronchoalveolar lavage fluid were determined on Days 4 and 21. Neutrophilia in bronchoalveolar lavage fluid, seen in elastase-treated RAGE(+/+) mice, was reduced in elastase-treated RAGE(-/-) mice on Day 4, and was associated with decreased levels of keratinocyte chemoattractant, macrophage inflammatory protein-2, and IL-1β. Static lung compliance values and emphysematous changes in the lung tissue were decreased in RAGE(-/-) mice compared with RAGE(+/+) mice on Day 21 after elastase treatment. Experiments using irradiated, bone marrow-chimeric mice showed that the mice expressing RAGE on radioresistant structural cells, but not hematopoietic cells, developed elastase-induced neutrophilia and emphysematous change in the lung. In contrast, mice expressing RAGE on hematopoietic cells, but not radioresistant structural cells, showed reduced neutrophilia and emphysematous change in the lung. These data identify the importance of RAGE expressed on lung structural cells in the development of elastase-induced pulmonary inflammation and emphysema. Thus, RAGE represents a novel therapeutic target for preventing pulmonary emphysema.
Collapse
Affiliation(s)
- Koichi Waseda
- 1 Department of Hematology, Oncology, Allergy and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Nelson MB, Swensen AC, Winden DR, Bodine JS, Bikman BT, Reynolds PR. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner. Am J Physiol Heart Circ Physiol 2015; 309:H63-9. [DOI: 10.1152/ajpheart.00043.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Cigarette smoke exposure is associated with an increased risk of cardiovascular complications. The role of advanced glycation end products (AGEs) is already well established in numerous comorbidities, including cardiomyopathy. Given the role of AGEs and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an in vitro model, we treated H9C2 cardiomyocytes with the AGE carboxy-methyllysine before mitochondrial respiration assessment. We discovered that mitochondrial respiration was significantly impaired in AGE-treated cells, but not when cotreated with myriocin, an inhibitor of de novo ceramide biosynthesis. Moreover, we exposed wild-type and RAGE knockout mice to secondhand cigarette smoke and found reduced mitochondrial respiration in the left ventricular myocardium from wild-type mice, but RAGE knockout mice were protected from this effect. Finally, conditional overexpression of RAGE in the lungs of transgenic mice elicited a robust increase in left ventricular ceramides in the absence of smoke exposure. Taken together, these findings suggest a RAGE-ceramide axis as an important contributor to AGE-mediated disrupted cardiomyocyte mitochondrial function.
Collapse
Affiliation(s)
- Michael B. Nelson
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Adam C. Swensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah
| | - Duane R. Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Jared S. Bodine
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Benjamin T. Bikman
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah; and
| |
Collapse
|
20
|
The receptor for advanced glycation end products (RAGE) contributes to the progression of emphysema in mice. PLoS One 2015; 10:e0118979. [PMID: 25781626 PMCID: PMC4364508 DOI: 10.1371/journal.pone.0118979] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 01/27/2015] [Indexed: 01/11/2023] Open
Abstract
Several recent clinical studies have implied a role for the receptor for advanced glycation end products (RAGE) and its variants in chronic obstructive pulmonary disease (COPD). In this study we have defined a role for RAGE in the pathogenesis of emphysema in mice. RAGE deficient mice (RAGE-/-) exposed to chronic cigarette smoke were significantly protected from smoke induced emphysema as determined by airspace enlargement and had no significant reduction in lung tissue elastance when compared to their air exposed controls contrary to their wild type littermates. The progression of emphysema has been largely attributed to an increased inflammatory cell-mediated elastolysis. Acute cigarette smoke exposure in RAGE-/- mice revealed an impaired early recruitment of neutrophils, approximately a 6-fold decrease compared to wild type mice. Hence, impaired neutrophil recruitment with continued cigarette smoke exposure reduces elastolysis and consequent emphysema.
Collapse
|
21
|
Gopal P, Gosker HR, Theije CCD, Eurlings IM, Sell DR, Monnier VM, Reynaert NL. Effect of chronic hypoxia on RAGE and its soluble forms in lungs and plasma of mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:992-1000. [PMID: 25703138 DOI: 10.1016/j.bbadis.2015.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 01/30/2015] [Accepted: 02/12/2015] [Indexed: 12/24/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a multi-ligand receptor. Alternative splicing and enzymatic shedding produce soluble forms that protect against damage by ligands including Advanced Glycation End products (AGEs). A link between RAGE and oxygen levels is evident from studies showing RAGE-mediated injury following hyperoxia. The effect of hypoxia on pulmonary RAGE expression and circulating sRAGE levels is however unknown. Therefore mice were exposed to chronic hypoxia for 21 d and expression of RAGE, sheddases in lungs and circulating sRAGE were determined. In addition, accumulation of AGEs in lungs and expression of the AGE detoxifying enzyme GLO1 and receptors were evaluated. In lung tissue gene expression of total RAGE, variants 1 and 3 were elevated in mice exposed to hypoxia, whereas mRAGE and sRAGE protein levels were decreased. In the hypoxic group plasma sRAGE levels were enhanced. Although the levels of pro-ADAM10 were elevated in lungs of hypoxia exposed mice, the relative amount of the active form was decreased and gelatinase activity unaffected. In the lungs, the RAGE ligand HMGB1 was decreased and of the AGEs, only LW-1 was increased by chronic hypoxia. Gene expression of AGE receptors 2 and 3 was significantly upregulated. Chronic hypoxia is associated with downregulation of pulmonary RAGE protein levels, but a relative increase in sRAGE. These alterations might be part of the adaptive and protective response mechanism to chronic hypoxia and are not associated with AGE formation except for the fluorophore LW-1 which emerges as a novel marker of tissue hypoxia.
Collapse
Affiliation(s)
- P Gopal
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands
| | - H R Gosker
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands
| | - C C de Theije
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands
| | - I M Eurlings
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands
| | - D R Sell
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - V M Monnier
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - N L Reynaert
- Department of Respiratory Medicine, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Bodine BG, Bennion BG, Leatham E, Jimenez FR, Wright AJ, Jergensen ZR, Erickson CJ, Jones CM, Johnson JP, Knapp SM, Reynolds PR. Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation. Respir Res 2014; 15:133. [PMID: 25359169 PMCID: PMC4219035 DOI: 10.1186/s12931-014-0133-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/16/2014] [Indexed: 01/25/2023] Open
Abstract
Background Receptors for advanced glycation end-products (RAGE) are multiligand cell-surface receptors expressed abundantly by distal pulmonary epithelium. Our lab has discovered RAGE-mediated effects in the orchestration of lung inflammation induced by tobacco smoke and environmental pollutants; however, the specific contribution of RAGE to the progression of proximal airway inflammation is still inadequately characterized. Methods and results We generated a Tet-inducible transgenic mouse that conditionally overexpressed RAGE using the club cell (Clara) secretory protein (CCSP) promoter expressed by club (Clara) cells localized to the proximal airway. RAGE was induced for 40 days from weaning (20 days of age) until sacrifice date at 60 days. Immunohistochemistry, immunoblotting, and qPCR revealed significant RAGE up-regulation when compared to non-transgenic controls; however, H&E staining revealed no detectible morphological abnormalities and apoptosis was not enhanced during the 40 days of augmentation. Freshly procured bronchoalveolar lavage fluid (BALF) from CCSP-RAGE TG mice had significantly more total leukocytes and PMNs compared to age-matched control littermates. Furthermore, CCSP-RAGE TG mice expressed significantly more tumor necrosis factor alpha (TNF-α), interleukin 7 (IL-7), and interleukin 14 (IL-14) in whole lung homogenates compared to controls. Conclusions These data support the concept that RAGE up-regulation specifically in lung airways may function in the progression of proximal airway inflammation.
Collapse
Affiliation(s)
- B Garrett Bodine
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Brock G Bennion
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Emma Leatham
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Felix R Jimenez
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Alex J Wright
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Zac R Jergensen
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Connor J Erickson
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Cameron M Jones
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Jeff P Johnson
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Steven M Knapp
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 3054 Life Sciences Building, Provo, UT, 84602, USA.
| |
Collapse
|
23
|
Winden DR, Barton DB, Betteridge BC, Bodine JS, Jones CM, Rogers GD, Chavarria M, Wright AJ, Jergensen ZR, Jimenez FR, Reynolds PR. Antenatal exposure of maternal secondhand smoke (SHS) increases fetal lung expression of RAGE and induces RAGE-mediated pulmonary inflammation. Respir Res 2014; 15:129. [PMID: 25338658 PMCID: PMC4207891 DOI: 10.1186/s12931-014-0129-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/13/2014] [Indexed: 12/25/2022] Open
Abstract
Background Receptors for advanced glycation end-products (RAGE) are immunoglobulin-like pattern recognition receptors abundantly localized to lung epithelium. Our research demonstrated that primary tobacco smoke exposure increases RAGE expression and that RAGE partly mediates pro-inflammatory signaling during exposure. However, the degree to which RAGE influences developing lungs when gestating mice are exposed to secondhand smoke (SHS) has not been determined to date. Methods Timed pregnant RAGE null and wild type control mice were exposed to 4 consecutive days of SHS from embryonic day (E) 14.5 through E18.5 using a state of the art nose-only smoke exposure system (Scireq, Montreal, Canada). RAGE expression was assessed using immunofluorescence, immunoblotting, and quantitative RT-PCR. TUNEL immunostaining and blotting for caspase-3 were performed to evaluate effects on cell turnover. Matrix abnormalities were discerned by quantifying collagen IV and MMP-9, a matrix metalloprotease capable of degrading basement membranes. Lastly, TNF-α and IL-1β levels were assessed in order to determine inflammatory status in the developing lung. Results Pulmonary RAGE expression was elevated in both dams exposed to SHS and in fetuses gestating within mothers exposed to SHS. Fetal weight, a measure of organismal health, was decreased in SHS-exposed pups, but unchanged in SHS-exposed RAGE null mice. TUNEL assessments suggested a shift toward pulmonary cell apoptosis and matrix in SHS-exposed pups was diminished as revealed by decreased collagen IV and increased MMP-9 expression. Furthermore, SHS-exposed RAGE null mice expressed less TNF-α and IL-1β when compared to SHS-exposed controls. Conclusions RAGE augmentation in developing pups exposed to maternal SHS weakens matrix deposition and influences lung inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 375A Widtsoe Building, Provo 84602, UT, USA.
| |
Collapse
|
24
|
Wood TT, Winden DR, Marlor DR, Wright AJ, Jones CM, Chavarria M, Rogers GD, Reynolds PR. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice. Am J Physiol Lung Cell Mol Physiol 2014; 307:L758-64. [PMID: 25260756 DOI: 10.1152/ajplung.00185.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time.
Collapse
Affiliation(s)
- Tyler T Wood
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Duane R Winden
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Derek R Marlor
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Alex J Wright
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Cameron M Jones
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Michael Chavarria
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Geraldine D Rogers
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
25
|
Rozycki HJ. Potential contribution of type I alveolar epithelial cells to chronic neonatal lung disease. Front Pediatr 2014; 2:45. [PMID: 24904906 PMCID: PMC4032902 DOI: 10.3389/fped.2014.00045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022] Open
Abstract
The alveolar surface is covered by large flat Type I cells (alveolar epithelial cells 1, AEC1). The normal physiological function of AEC1s involves gas exchange, based on their location in approximation to the capillary endothelium and their thinness, and in ion and water flux, as shown by the presence of solute active transport proteins, water channels, and impermeable tight junctions between cells. With the recent ability to produce relatively pure cultures of AEC1 cells, new functions have been described. These may be relevant to lung injury, repair, and the abnormal development that characterizes bronchopulmonary dysplasia (BPD). To hypothesize a potential role for AEC1 in the development of lung injury and abnormal repair/development in premature lungs, evidence is presented for their presence in the developing lung, how their source may not be the Type II cell (AEC2) as has been assumed for 40 years, and how the cell can be damaged by same type of stressors as those which lead to BPD. Recent work shows that the cells are part of the innate immune response, capable of producing pro-inflammatory mediators, which could contribute to the increase in inflammation seen in early BPD. One of the receptors found exclusively on AEC1 cells in the lung, called RAGE, may also have a role in increased inflammation and alveolar simplification. While the current evidence for AEC1 involvement in BPD is circumstantial and limited at present, the accumulating data supports several hypotheses and questions regarding potential differences in the behavior of AEC1 cells from newborn and premature lung compared with the adult lung.
Collapse
Affiliation(s)
- Henry J Rozycki
- Division of Neonatal Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, VA , USA
| |
Collapse
|
26
|
Rogers LK, Graf AE, Bhatia A, Leonhart KL, Oza-Frank R. Associations between maternal and infant morbidities and sRAGE within the first week of life in extremely preterm infants. PLoS One 2013; 8:e82537. [PMID: 24324804 PMCID: PMC3855742 DOI: 10.1371/journal.pone.0082537] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/24/2013] [Indexed: 01/11/2023] Open
Abstract
Background Soluble RAGE (sRAGE) has been associated with multiple inflammatory responses including maternal chorioamnionitis and preeclampsia. Analysis of umbilical cord blood levels have also indicated that sRAGE levels in the infant are affected by maternal inflammation. S100b is a ligand for RAGE and increases in circulating S100b levels are associated with poor neurological outcome in preterm infants. The objective of this study was to determine whether sRAGE or s100b levels in plasma samples from extremely preterm infants at the end of the first week of life were correlated with infant morbidities and whether sRAGE and s100b levels at this time point were still associated with maternal inflammation. Methods Plasma samples were collected from 130 preterm infants (≤28 weeks) at days of life 5, 6, or 7. sRAGE and s100b levels were measured by ELISA and data were analyzed by Pearson’s correlation or Generalized Estimating Equations. Results sRAGE was negatively correlated with development of sepsis (p=0.024), the FiO2 requirement of the infant at the time of sampling (p=0.030), as well as maternal preeclampsia (p=0.046), and positively correlated with maternal chorioamnionitis (p=0.006). s100b levels were positively associated with maternal chorioamnionitis (p=0.039). No correlations were observed with other infant morbidities. Conclusion These data indicate that sRAGE could potentially be a biomarker of early severe inflammatory responses in the preterm infant. However, more studies are needed to confirm the present findings.
Collapse
Affiliation(s)
- Lynette K. Rogers
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Amanda E. Graf
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| | - Anisha Bhatia
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Karen L. Leonhart
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Reena Oza-Frank
- Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
27
|
Winden DR, Ferguson NT, Bukey BR, Geyer AJ, Wright AJ, Jergensen ZR, Robinson AB, Stogsdill JA, Reynolds PR. Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res 2013; 14:108. [PMID: 24134692 PMCID: PMC3853184 DOI: 10.1186/1465-9921-14-108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/10/2013] [Indexed: 12/13/2022] Open
Abstract
Background Receptors for advanced glycation end-products (RAGE) are cell surface receptors prominently expressed by lung epithelium. Previous research demonstrated that over-expression of RAGE by murine alveolar epithelial cells during embryogenesis caused severe lung hypoplasia and neonatal lethality. However, the effects of RAGE over-expression on adjacent matrix and endothelial cells remained unknown. Methods RAGE transgenic (TG) mice were generated that conditionally over-expressed RAGE in alveolar type II cells when fed doxycycline (dox) from conception to E18.5. To evaluate effects on the basement membrane, immunostaining and immunoblotting were performed for collagen IV and MMP-9, a matrix metalloprotease capable of degrading basement membranes. To assess changes in vasculature, immunostaining, immunoblotting and qRT-PCR were performed for Pecam-1, a platelet endothelial cell adhesion marker also known as CD31. Lastly, to characterize potential regulatory mechanisms of endothelial cell differentiation, immunoblotting and qRT-PCR for FoxM1, a key endothelium-specific transcription factor of the Forkhead Box (Fox) family, were completed. Results Qualitative immunostaining for collagen IV was less in RAGE TG mice compared to controls and immunoblotting revealed decreased collagen IV in the RAGE TG mouse lung. Additionally, elevated MMP-9 detected via immunostaining and immunoblotting implicated MMP-9 as a possible down stream effector in matrix destabilization mediated by RAGE signaling. Lastly, Pecam-1 assessment revealed a decrease in the prevalence of microvascular endothelial cells coincident with FoxM1 abrogation in RAGE TG mice compared to controls. Conclusions RAGE over-expression by alveolar epithelium weakened the basement membrane and associated matrix via increased MMP-9 activity. Furthermore, over-expression of RAGE inhibited FoxM1, suggesting that anomalous transcriptional control contributes to decreased endothelial cell prevalence in the TG mouse lung.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paul R Reynolds
- Department of Physiology and Developmental Biology, Brigham Young University, 375A Widtsoe Building, 84602 Provo, UT, USA.
| |
Collapse
|
28
|
Stogsdill MP, Stogsdill JA, Bodine BG, Fredrickson AC, Sefcik TL, Wood TT, Kasteler SD, Reynolds PR. Conditional overexpression of receptors for advanced glycation end-products in the adult murine lung causes airspace enlargement and induces inflammation. Am J Respir Cell Mol Biol 2013; 49:128-34. [PMID: 23526218 DOI: 10.1165/rcmb.2013-0013oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Receptors for advanced glycation end-products (RAGE) are multiligand surface receptors detected abundantly in pulmonary tissue. Our previous work revealed increased RAGE expression in cells and lungs exposed to tobacco smoke and RAGE-mediated cytokine expression via proinflammatory mechanisms involving NF-κB. RAGE expression is elevated in various pathological states, including chronic obstructive pulmonary disease; however, precise contributions of RAGE to the progression of emphysema and pulmonary inflammation in the adult lung are unknown. In the current study, we generated a RAGE transgenic (RAGE TG) mouse and conditionally induced adult alveolar epithelium to overexpress RAGE. RAGE was induced after the period of alveologenesis, from weaning (20 d of age) until animals were killed at 50, 80, and 110 days (representing 30, 60, and 90 d of RAGE overexpression). Hematoxylin and eosin staining and mean chord length revealed incremental dilation of alveolar spaces as RAGE overexpression persisted. TUNEL staining and electron microscopy confirmed increased apoptosis and blebbing of alveolar epithelium in lungs from RAGE TG mice when compared with control mice. Immunohistochemistry for matrix metalloproteinase 9 revealed an overall increase in matrix metalloproteinase 9, which correlated with decreased elastin expression in RAGE TG mice. Furthermore, RAGE TG mice manifested significant inflammation measured by elevated bronchoalveolar lavage protein, leukocyte infiltration, and secreted cytokines. These data support the concept that innovative transgenic mice that overexpress RAGE may model pulmonary inflammation and alveolar destabilization independent of tobacco smoke and validate RAGE signaling as a target pathway in the prevention or attenuation of smoke-related inflammatory lung diseases.
Collapse
Affiliation(s)
- Megan P Stogsdill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Robinson AB, Stogsdill JA, Lewis JB, Wood TT, Reynolds PR. RAGE and tobacco smoke: insights into modeling chronic obstructive pulmonary disease. Front Physiol 2012; 3:301. [PMID: 22934052 PMCID: PMC3429072 DOI: 10.3389/fphys.2012.00301] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/10/2012] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive condition characterized by chronic airway inflammation and airspace remodeling, leading to airflow limitation that is not completely reversible. Smoking is the leading risk factor for compromised lung function stemming from COPD pathogenesis. First- and second-hand cigarette smoke contain thousands of constituents, including several carcinogens and cytotoxic chemicals that orchestrate chronic lung inflammation and destructive alveolar remodeling. Receptors for advanced glycation end-products (RAGE) are multi-ligand cell surface receptors primarily expressed by diverse lung cells. RAGE expression increases following cigarette smoke exposure and expression is elevated in the lungs of patients with COPD. RAGE is responsible in part for inducing pro-inflammatory signaling pathways that culminate in expression and secretion of several cytokines, chemokines, enzymes, and other mediators. In the current review, new transgenic mouse models that conditionally over-express RAGE in pulmonary epithelium are discussed. When RAGE is over-expressed throughout embryogenesis, apoptosis in the peripheral lung causes severe lung hypoplasia. Interestingly, apoptosis in RAGE transgenic mice occurs via conserved apoptotic pathways also known to function in advanced stages of COPD. RAGE over-expression in the adult lung models features of COPD including pronounced inflammation and loss of parenchymal tissue. Understanding the biological contributions of RAGE during cigarette smoke-induced inflammation may provide critically important insight into the pathology of COPD.
Collapse
Affiliation(s)
| | | | | | | | - Paul R. Reynolds
- Department of Physiology and Developmental Biology, Brigham Young UniversityProvo, UT, USA
| |
Collapse
|