1
|
Williams DJ, Gautam S, Creech CB, Jimenez N, Anderson EJ, Bosinger SE, Grimes T, Arnold SR, McCullers JA, Goll J, Edwards KM, Ramilo O. Transcriptomic Biomarkers Associated With Microbiological Etiology and Disease Severity in Childhood Pneumonia. J Infect Dis 2025; 231:e277-e289. [PMID: 39397536 PMCID: PMC11841634 DOI: 10.1093/infdis/jiae491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Challenges remain in discerning microbiologic etiology and disease severity in childhood pneumonia. Defining host transcriptomic profiles during illness may facilitate improved diagnostic and prognostic approaches. METHODS Using whole blood RNA sequencing from 222 hospitalized children with radiographic pneumonia and 45 age-matched controls, we identified differentially expressed (DE) genes that best identified children according to detected microbial pathogens (viral only vs bacterial only and typical vs atypical bacterial [with or without [±] viral co-detection]) and an ordinal measure of phenotypic severity (moderate, severe, very severe). RESULTS Overall, 135 (61%) children had viral-only detections, 15 (7%) had typical bacterial detections (± viral co-detections), and 26 (12%) had atypical bacterial detections (± viral co-detections). Eleven DE genes distinguished between viral-only and bacterial-only detections. Sixteen DE genes distinguished between atypical and typical bacterial detections (± viral co-detections). Nineteen DE genes distinguished between levels of pneumonia severity, including 4 genes also identified in the viral-only versus bacterial-only model (IGHGP, PI3, CD177, RAP1GAP1) and 4 genes from the typical versus atypical bacterial model (PRSS23, IFI27, OLFM4, ABO). CONCLUSIONS We identified transcriptomic biomarkers associated with microbial detections and phenotypic severity in children hospitalized with pneumonia. These DE genes are promising candidates for validation and translation into diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Derek J Williams
- Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shruti Gautam
- Department of Biomedical Data Science and Bioinformatics, The Emmes Company, LLC, Rockville, Maryland
| | - C Buddy Creech
- Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee
| | - Natalia Jimenez
- Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee
| | - Evan J Anderson
- Departments of Pediatrics and Medicine, Emory University School of Medicine
| | - Steven E Bosinger
- Departments of Pathology and Laboratory Medicine, Emory University, and Emory National Primate Research Center, Atlanta, Georgia
| | - Tyler Grimes
- Department of Biomedical Data Science and Bioinformatics, The Emmes Company, LLC, Rockville, Maryland
| | - Sandra R Arnold
- Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital
| | - Jonathan A McCullers
- Department of Pediatrics, University of Tennessee Health Sciences Center and Le Bonheur Children's Hospital
| | - Johannes Goll
- Department of Biomedical Data Science and Bioinformatics, The Emmes Company, LLC, Rockville, Maryland
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine and the Monroe Carell Jr Children's Hospital at Vanderbilt University Medical Center, Nashville, Tennessee
| | - Octavio Ramilo
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
2
|
Fenn J, Madon K, Conibear E, Derelle R, Nevin S, Kundu R, Hakki S, Tregoning JS, Koycheva A, Derqui N, Tolosa-Wright M, Jonnerby J, Wang L, Baldwin S, Pillay TD, Thwaites RS, Luca C, Varro R, Badhan A, Parker E, Rosadas C, McClure M, Tedder R, Taylor G, Lalvani A. An ultra-early, transient interferon-associated innate immune response associates with protection from SARS-CoV-2 infection despite exposure. EBioMedicine 2025; 111:105475. [PMID: 39667271 PMCID: PMC11697275 DOI: 10.1016/j.ebiom.2024.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND A proportion of individuals exposed to respiratory viruses avoid contracting detectable infection. We tested the hypothesis that early innate immune responses associate with resistance to detectable infection in close contacts of COVID-19 cases. METHODS 48 recently-exposed household contacts of symptomatic COVID-19 cases were recruited in London, UK between May 2020 and March 2021 through a prospective, longitudinal observational study. Blood and nose and throat swabs were collected during the acute period of index case viral shedding and longitudinally thereafter. Magnitude of SARS-CoV-2 exposure was quantified, and serial PCR and serological assays used to determine infection status of contacts. Whole-blood RNA-seq was performed and analysed to identify transcriptomic signatures of early infection and resistance to infection. FINDINGS 24 highly-exposed household contacts became PCR-positive and seropositive whilst 24 remained persistently PCR-negative and seronegative. A 96-gene transcriptomic signature of early SARS-CoV-2 infection was identified using RNA-seq of longitudinal blood samples from PCR-positive contacts. This signature was dominated by interferon-associated genes and expression correlated positively with viral load. Elevated expression of this 96-gene signature was also observed during exposure in 25% (6/24) of persistently PCR-negative, seronegative contacts. PCR-negative contacts with elevated signature expression had higher-magnitude SARS-CoV-2 exposure compared to those with low signature expression. We validated this signature in SARS-CoV-2-infected individuals in two independent cohorts. In naturally-exposed healthcare workers (HCWs) we found that 7/58 (12%) PCR-negative HCWs exhibited elevated signature expression. Comparing gene-signature expression in SARS-CoV-2 Controlled Human Infection Model (CHIM) volunteers pre- and post-inoculation, we observed that 14 signature genes were transiently upregulated as soon as 6 hr post-inoculation in PCR-negative volunteers, while in PCR-positive volunteers gene-signature upregulation did not occur until 3 days later. INTERPRETATION Our interferon-associated signature of early SARS-CoV-2 infection characterises a subgroup of exposed, uninfected contacts in three independent cohorts who may have successfully aborted infection prior to induction of adaptive immunity. The earlier transient upregulation of signature genes in PCR-negative compared to PCR-positive CHIM volunteers suggests that ultra-early interferon-associated innate immune responses correlate with, and may contribute to, protection against SARS-CoV-2 infection. FUNDING This work was supported by the NIHR Health Protection Research Unit in Respiratory Infections, United Kingdom, NIHR Imperial College London, United Kingdom (Grant number: NIHR200927; AL) in partnership with the UK Health Security Agency and the NIHR Medical Research Council (MRC), United Kingdom (Grant number: MR/X004058/1). Support for sequencing was provided by the Imperial BRC Genomics Facility which is funded by the NIHR, United Kingdom. The development of the hybrid DABA assay used for quantification of SARS-CoV-2 anti-Spike RBD antibodies was supported by the MRC (MC_PC_19078).
Collapse
Affiliation(s)
- Joe Fenn
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK.
| | - Kieran Madon
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Emily Conibear
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Romain Derelle
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Sean Nevin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Rhia Kundu
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Seran Hakki
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - John S Tregoning
- Department of Infectious Disease, Imperial College London, London, UK
| | - Aleksandra Koycheva
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Nieves Derqui
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Mica Tolosa-Wright
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Jakob Jonnerby
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Lulu Wang
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Samuel Baldwin
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Timesh D Pillay
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Constanta Luca
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Varro
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| | - Anjna Badhan
- Department of Infectious Disease, Imperial College London, London, UK
| | - Eleanor Parker
- Department of Infectious Disease, Imperial College London, London, UK
| | - Carolina Rosadas
- Department of Infectious Disease, Imperial College London, London, UK
| | - Myra McClure
- Department of Infectious Disease, Imperial College London, London, UK
| | - Richard Tedder
- Department of Infectious Disease, Imperial College London, London, UK
| | - Graham Taylor
- Department of Infectious Disease, Imperial College London, London, UK
| | - Ajit Lalvani
- NIHR Health Protection Research Unit in Respiratory Infections, Imperial College London, London, UK; National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Song J, Li J, Pei X, Chen J, Wang L. Identification of cuproptosis-realated key genes and pathways in Parkinson's disease via bioinformatics analysis. PLoS One 2024; 19:e0299898. [PMID: 38626069 PMCID: PMC11020840 DOI: 10.1371/journal.pone.0299898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/17/2024] [Indexed: 04/18/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is the second most common worldwide age-related neurodegenerative disorder without effective treatments. Cuproptosis is a newly proposed conception of cell death extensively studied in oncological diseases. Currently, whether cuproptosis contributes to PD remains largely unclear. METHODS The dataset GSE22491 was studied as the training dataset, and GSE100054 was the validation dataset. According to the expression levels of cuproptosis-related genes (CRGs) and differentially expressed genes (DEGs) between PD patients and normal samples, we obtained the differentially expressed CRGs. The protein-protein interaction (PPI) network was achieved through the Search Tool for the Retrieval of Interacting Genes. Meanwhile, the disease-associated module genes were screened from the weighted gene co-expression network analysis (WGCNA). Afterward, the intersection genes of WGCNA and PPI were obtained and enriched using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the key genes were identified from the datasets. The receiver operating characteristic curves were plotted and a PPI network was constructed, and the PD-related miRNAs and key genes-related miRNAs were intersected and enriched. Finally, the 2 hub genes were verified via qRT-PCR in the cell model of the PD and the control group. RESULTS 525 DEGs in the dataset GSE22491 were identified, including 128 upregulated genes and 397 downregulated genes. Based on the PPI network, 41 genes were obtained. Additionally, the dataset was integrated into 34 modules by WGCNA. 36 intersection genes found from WGCNA and PPI were significantly abundant in 7 pathways. The expression levels of the genes were validated, and 2 key genes were obtained, namely peptidase inhibitor 3 (PI3) and neuroserpin family I member 1 (SERPINI1). PD-related miRNAs and key genes-related miRNAs were intersected into 29 miRNAs including hsa-miR-30c-2-3p. At last, the qRT-PCR results of 2 hub genes showed that the expressions of mRNA were up-regulated in PD. CONCLUSION Taken together, this study demonstrates the coordination of cuproptosis in PD. The key genes and miRNAs offer novel perspectives in the pathogenesis and molecular targeting treatment for PD.
Collapse
Affiliation(s)
- Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaochen Pei
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Li Z, Chen X, Dan J, Hu T, Hu Y, Liu S, Chai Y, Shi Y, Wu J, Ni H, Zhu J, Wu Y, Li N, Yu Y, Wang Z, Zhao J, Zhong N, Ren X, Shen Z, Cao X. Innate immune imprints in SARS-CoV-2 Omicron variant infection convalescents. Signal Transduct Target Ther 2022; 7:377. [PMID: 36379915 PMCID: PMC9666472 DOI: 10.1038/s41392-022-01237-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
SARS-CoV-2 Omicron variant infection generally gives rise to asymptomatic to moderate COVID-19 in vaccinated people. The immune cells can be reprogrammed or "imprinted" by vaccination and infections to generate protective immunity against subsequent challenges. Considering the immune imprint in Omicron infection is unclear, here we delineate the innate immune landscape of human Omicron infection via single-cell RNA sequencing, surface proteome profiling, and plasma cytokine quantification. We found that monocyte responses predominated in immune imprints of Omicron convalescents, with IL-1β-associated and interferon (IFN)-responsive signatures with mild and moderate symptoms, respectively. Low-density neutrophils increased and exhibited IL-1β-associated and IFN-responsive signatures similarly. Mild convalescents had increased blood IL-1β, CCL4, IL-9 levels and PI3+ neutrophils, indicating a bias to IL-1β responsiveness, while moderate convalescents had increased blood CXCL10 and IFN-responsive monocytes, suggesting durative IFN responses. Therefore, IL-1β- or IFN-responsiveness of myeloid cells may indicate the disease severity of Omicron infection and mediate post-COVID conditions.
Collapse
Affiliation(s)
- Zhiqing Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Xiaosu Chen
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Junyan Dan
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Tianju Hu
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Ye Hu
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Shuxun Liu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yangyang Chai
- grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| | - Yansong Shi
- grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Jian Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Hailai Ni
- grid.411525.60000 0004 0369 1599The Health Care Department, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Jiaqi Zhu
- grid.411525.60000 0004 0369 1599Department of Cardiology, Shanghai Changhai Hospital, Shanghai, 200433 China
| | - Yanfeng Wu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Nan Li
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | - Yizhi Yu
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China
| | | | - Jincun Zhao
- Guangzhou Laboratory, Guangzhou, 510300 China
| | | | | | - Zhongyang Shen
- grid.216938.70000 0000 9878 7032Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300192 China
| | - Xuetao Cao
- grid.73113.370000 0004 0369 1660National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433 China ,grid.216938.70000 0000 9878 7032Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071 China ,grid.506261.60000 0001 0706 7839Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005 China
| |
Collapse
|
6
|
Zhang S, Wu Z, Xie J, Yang Y, Wang L, Qiu H. DNA methylation exploration for ARDS: a multi-omics and multi-microarray interrelated analysis. J Transl Med 2019; 17:345. [PMID: 31623626 PMCID: PMC6796364 DOI: 10.1186/s12967-019-2090-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background Despite advances in clinical management, there are currently no novel therapeutic targets for acute respiratory distress syndrome (ARDS). DNA methylation, as a reversible process involved in the development and progression of many diseases, would be used as potential therapeutic targets to improve the treatment strategies of ARDS. However, the meaningful DNA methylation sites associated with ARDS still remain largely unknown. We sought to determine the difference in DNA methylation between ARDS patients and healthy participants, and simultaneously, the feasible DNA methylation markers for potential therapeutic targets were also explored. Methods Microarray data of human blood samples for ARDS and healthy participants up to June 2019 was searched in GEO database. The difference analyses between ARDS and healthy population were performed through limma R package, and furthermore, interrelated analyses of DNA methylation and transcript were accomplished by VennDiagram R package. Perl and sva R package were used to merge microarray data and decrease heterogeneities among different studies. The biological function of screened methylation sites and their regulating genes were annotated according to UniProt database and Pubmed database. GO term and KEGG pathway enrichment analyses were conducted using DAVID 6.8 and KOBAS 3.0. The meaningful DNA methylation markers to distinguish ARDS from healthy controls were explored through ROC (receiver operating characteristic curves) analyses. Results Five datasets in GEO databases (one DNA methylation dataset, three mRNA datasets, and one mRNA dataset of healthy people) were enrolled in present analyses finally, and the series were GSE32707, GSE66890, GSE10474, GSE61672, and GSE67530. These databases included 99 patients with ARDS (within 48 h of onset) and 136 healthy participants. Difference analyses indicated 44,439 DNA methylation alterations and 29 difference mRNAs between ARDS and healthy controls. 40 methylation variations regulated transcription of 16 genes was explored via interrelated analysis. According to the functional annotations, 30 DNA methylation sites were related to the imbalance of inflammation or immunity, endothelial function, epithelial function and/or coagulation function. cg03341377, cg24310395, cg07830557 and cg08418670, with AUC up to 0.99, might be the meaningful characteristics with the highest performance to distinguish ARDS from healthy controls. Conclusions 44,439 DNA methylation alterations and 29 difference mRNAs exist between ARDS and healthy controls. 30 DNA methylation sites may regulate transcription of 10 genes, which take part in pathogenesis of ARDS. These findings could be intervention targets, with validation experiments to be warranted to assess these further.
Collapse
Affiliation(s)
- Shi Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zongsheng Wu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jianfeng Xie
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lei Wang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
The Basic Science and Molecular Mechanisms of Lung Injury and Acute Respiratory Distress Syndrome. Int Anesthesiol Clin 2019; 56:1-25. [PMID: 29227309 DOI: 10.1097/aia.0000000000000177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Feng Q, Liu N, Song S, Ma Y. Relationship between β-defensin-1 gene polymorphism and susceptibility and prognosis of acute respiratory distress syndrome. Medicine (Baltimore) 2019; 98:e14131. [PMID: 30702566 PMCID: PMC6380738 DOI: 10.1097/md.0000000000014131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The 1st exon 5' noncoding region rs1799946 (-52A/G), rs1800972 (-44C/G), rs11362 (-20A/G) 3 single-nucleotide polymorphisms (SNPs) on human β-defensin-1 (HBD-1) gene affect its transcription and posttranscriptional mRNA stability then affect the activity of HBD-1. This study was to investigate the effects of HBD-1 gene rs1799946, rs1800972, and rs11362 locus SNPs on genetic susceptibility and prognosis of acute respiratory distress syndrome (ARDS). METHODS A total of 300 patients with ARDS (ARDS group) and 240 patients who were admitted to the intensive care unit and had a high risk of ARDS but did not progress to ARDS (control group) were included in this study. The genotypes of HBD-1 gene rs1799946, rs1800972, and rs11362 locus and serum HBD-1 were detected. Patients were followed for 60 days with development of ARDS as a primary outcome, ARDS-related mortality and organ dysfunction were secondary outcomes. RESULTS HBD-1 gene rs1799946 and rs11362 gene mutations were not risk factors for ARDS (P > .05). Mutation allele G of rs1800972 locus in HBD-1 gene was a risk factor for ARDS. There was no significant difference in serum HBD-1 levels between patients with different genotypes of rs1799946 and rs11362 locus in the HBD-1 gene (P > .05). HBD-1 gene rs1800972 locus wild type, heterozygous, and mutant homozygous serum levels of HBD-1 gradually decreased, the difference was statistically significant (P < .001). The 60-day survival rate of subjects with wild type, heterozygous, and mutant homozygote at the rs1800972 locus of HBD-1 gene decreased sequentially (81.7%, 48.9%, and 39.7%), and the difference was statistically significant (P < .05). CONCLUSION The SNP of rs1800972 (-44C/G) in HBD-1 gene is associated with the risk of ARDS. The rs1800972 locus G allele carriers are more likely to develop ARDS and have a poor prognosis.
Collapse
Affiliation(s)
- Qijia Feng
- Department of Intensive Care Unit, Hangzhou Lin’an District Pepole's Hospital, Lin’an
| | - Nan Liu
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuping Song
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufei Ma
- Department of Intensive Care Unit, Hangzhou Lin’an District Pepole's Hospital, Lin’an
| |
Collapse
|
9
|
Chen D, Sahin A, Kam WR, Liu Y, Darabad RR, Sullivan DA. Influence of lipopolysaccharide on proinflammatory gene expression in human corneal, conjunctival and meibomian gland epithelial cells. Ocul Surf 2018; 16:382-389. [PMID: 29763693 DOI: 10.1016/j.jtos.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 05/11/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE Lipopolysaccharide (LPS), a bacterial endotoxin, is known to stimulate leuokotriene B4 (LTB4) secretion by human corneal (HCECs), conjunctival (HConjECs) and meibomian gland (HMGECs) epithelial cells. We hypothesize that this LTB4 effect represents an overall induction of proinflammatory gene expression in these cells. Our objective was to test this hypothesis. METHODS Immortalized HCECs, HConjECs and HMGECs were cultured in the presence or absence of LPS (15 μg/ml) and ligand binding protein (LBP; 150 ng/ml). Cells were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and GeneSifter software. RESULTS Our findings show that LPS induces a striking increase in proinflammatory gene expression in HCECs and HConjECs. These cellular reactions are associated with a significant up-regulation of genes associated with inflammatory and immune responses (e.g. IL-1β, IL-8, and tumor necrosis factor), including those related to chemokine and Toll-like receptor signaling pathways, cytokine-cytokine receptor interactions, and chemotaxis. In contrast, with the exception of Toll-like signaling and associated innate immunity pathways, almost no proinflammatory ontologies were upregulated by LPS in HMGECs. CONCLUSIONS Our results support our hypothesis that LPS stimulates proinflammatory gene expression in HCECs and HConjECs. However, our findings also show that LPS does not elicit such proinflammatory responses in HMGECs.
Collapse
Affiliation(s)
- Di Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Afsun Sahin
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Wendy R Kam
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yang Liu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Raheleh Rahimi Darabad
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Clinical Anesthesia, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David A Sullivan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Small DM, Doherty DF, Dougan CM, Weldon S, Taggart CC. The role of whey acidic protein four-disulfide-core proteins in respiratory health and disease. Biol Chem 2017; 398:425-440. [PMID: 27930359 DOI: 10.1515/hsz-2016-0262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 11/15/2022]
Abstract
Members of the whey acidic protein (WAP) or WAP four-disulfide-core (WFDC) family of proteins are a relatively under-explored family of low molecular weight proteins. The two most prominent WFDC proteins, secretory leukocyte protease inhibitor (SLPI) and elafin (or the precursor, trappin-2), have been shown to possess multiple functions including anti-protease, anti-bacterial, anti-viral and anti-inflammatory properties. It is therefore of no surprise that both SLPI and elafin/trappin-2 have been developed as potential therapeutics. Given the abundance of SLPI and elafin/trappin-2 in the human lung, most work in the area of WFDC research has focused on the role of WFDC proteins in protecting the lung from proteolytic attack. In this review, we will outline the current evidence regarding the expanding role of WFDC protein function with a focus on WFDC activity in lung disease as well as emerging data regarding the function of some of the more recently described WFDC proteins.
Collapse
|
11
|
Bronchoalveolar Lavage Fluid Protein Expression in Acute Respiratory Distress Syndrome Provides Insights into Pathways Activated in Subjects with Different Outcomes. Sci Rep 2017; 7:7464. [PMID: 28785034 PMCID: PMC5547130 DOI: 10.1038/s41598-017-07791-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high mortality. We sought to identify biological pathways in ARDS that differentiate survivors from non-survivors. We studied bronchoalveolar lavage fluid (BALF) from 36 patients with ARDS (20 survivors, 16 non-survivors). Each sample, obtained within seven days of ARDS onset, was depleted of high abundance proteins and labeled for iTRAQ LC-MS/MS separately. Protein identification and relative quantification was performed employing a target-decoy strategy. A variance weighted t-test was used to identify differential expression. Ingenuity Pathway Analysis was used to determine the canonical pathways that differentiated survivors from non-survivors. We identified 1115 high confidence proteins in the BALF out of which 142 were differentially expressed between survivors and non-survivors. These proteins mapped to multiple pathways distinguishing survivors from non-survivors, including several implicated in lung injury and repair such as coagulation/thrombosis, acute phase response signaling and complement activation. We also identified proteins assigned to fibrosis and ones involved in detoxification of lipid peroxide-mediated oxidative stress to be different in survivors and non-survivors. These results support our previous findings demonstrating early differences in the BALF protein expression in ARDS survivors vs. non-survivors, including proteins that counter oxidative stress and canonical pathways associated with fibrosis.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The review will update readers on research examining the influence of genetic variation and epigenetics on the immune system and whether genetic variation influences the outcome of critically ill children. RECENT FINDINGS Although there have been few recent studies examining the role of genetic variation in the severity of disease or outcome in critically ill children, studies in critically ill adults have been informative. For example, genetic variations in the genes coding for various components of the immune response, such as the Toll-like receptor 1, interleukin-1RA, proprotein convertase subtilisin/kexin type 9, adoponectin, nuclear factor erythroid 2-related factor 2, elafin, sphingosine 1-phosphate receptor 3, and sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 have been associated with various outcomes in critically ill adult populations. Many of the variants demonstrate functional consequences in the protein levels or activities. In critically ill children, there is an association with increased ICU length of stay in children with septic shock with one of the Toll-like receptor 1 variants. SUMMARY The degree of influence of host genetic variation in the outcome in critically ill children remains a much understudied area of research. However, it remains important because it may not only help identify children at risk for worse outcomes but it may provide insight into mechanisms of critical illnesses and novel therapies.
Collapse
|
13
|
Wei Y, Wang Z, Su L, Chen F, Tejera P, Bajwa EK, Wurfel MM, Lin X, Christiani DC. Platelet count mediates the contribution of a genetic variant in LRRC16A to ARDS risk. Chest 2015; 147:607-617. [PMID: 25254322 DOI: 10.1378/chest.14-1246] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Platelets are believed to be critical in pulmonary-origin ARDS as mediators of endothelial damage through their interactions with fibrinogen and multiple signal transduction pathways. A prior meta-analysis identified five loci for platelet count (PLT): BAD, LRRC16A, CD36, JMJD1C, and SLMO2. This study aims to validate the quantitative trait loci (QTLs) of PLT within BAD, LRRC16A, CD36, JMJD1C, and SLMO2 among critically ill patients and to investigate the associations of these QTLs with ARDS risk that may be mediated through PLT. METHODS ARDS cases and at-risk control subjects were recruited from the intensive care unit of the Massachusetts General Hospital. Exome-wide genotyping data of 629 ARDS cases and 1,026 at-risk control subjects and genome-wide gene expression profiles of 18 at-risk control subjects were generated for analysis. RESULTS Single-nucleotide polymorphism (SNP) rs7766874 within LRRC16A was a significant locus for PLT among at-risk control subjects (β = -13.00; 95% CI, -23.22 to -2.77; P = .013). This association was validated using LRRC16A gene expression data from at-risk control subjects (β = 77.03 per 1 SD increase of log2-transformed expression; 95% CI, 27.26-126.80; P = .005). Further, rs7766874 was associated with ARDS risk conditioned on PLT (OR = 0.68; 95% CI, 0.51-0.90; P = .007), interacting with PLT (OR = 1.15 per effect allele per 100 × 103/μL of PLT; 95% CI, 1.03-1.30; P = .015), and mediated through PLT (indirect OR = 1.045; 95% CI, 1.007-1.085; P = .021). CONCLUSIONS Our findings support the role of LRRC16A in platelet formation and suggest the importance of LRRC16A in ARDS pathophysiology by interacting with, and being mediated through, platelets.
Collapse
Affiliation(s)
- Yongyue Wei
- Department of Environmental Health, Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoxi Wang
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Li Su
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Feng Chen
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Paula Tejera
- Department of Environmental Health, Harvard School of Public Health, Boston, MA
| | - Ednan K Bajwa
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Mark M Wurfel
- Division of Pulmonary and Critical Care Medicine, University of Washington, Harborview Medical Center, Seattle, WA
| | - Xihong Lin
- Department of Biostatistics, Harvard School of Public Health, Boston, MA
| | - David C Christiani
- Department of Environmental Health, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
14
|
Meyer NJ. Beyond single-nucleotide polymorphisms: genetics, genomics, and other 'omic approaches to acute respiratory distress syndrome. Clin Chest Med 2014; 35:673-84. [PMID: 25453417 DOI: 10.1016/j.ccm.2014.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This article summarizes the contributions of high-throughput genomic, proteomic, metabolomic, and gene expression investigations to the understanding of inherited or acquired risk for acute respiratory distress syndrome (ARDS). Although not yet widely applied to a complex trait like ARDS, these techniques are now routinely used to study a variety of disease states. Omic applications hold great promise for identifying novel factors that may contribute to ARDS pathophysiology or may be appropriate for further development as biomarkers or surrogates in clinical studies. Opportunities and challenges of different techniques are discussed, and examples of successful applications in non-ARDS fields are used to illustrate the potential use of each technique.
Collapse
Affiliation(s)
- Nuala J Meyer
- Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania, Perelman School of Medicine, 3600 Spruce Street, 5039 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|