1
|
Suojalehto H, Ndika J, Lindström I, Airaksinen L, Karvala K, Kauppi P, Lauerma A, Toppila-Salmi S, Karisola P, Alenius H. Transcriptomic Profiling of Adult-Onset Asthma Related to Damp and Moldy Buildings and Idiopathic Environmental Intolerance. Int J Mol Sci 2021; 22:ijms221910679. [PMID: 34639020 PMCID: PMC8508786 DOI: 10.3390/ijms221910679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
A subset of adult-onset asthma patients attribute their symptoms to damp and moldy buildings. Symptoms of idiopathic environmental intolerance (IEI) may resemble asthma and these two entities overlap. We aimed to evaluate if a distinct clinical subtype of asthma related to damp and moldy buildings can be identified, to unravel its corresponding pathomechanistic gene signatures, and to investigate potential molecular similarities with IEI. Fifty female adult-onset asthma patients were categorized based on exposure to building dampness and molds during disease initiation. IEI patients (n = 17) and healthy subjects (n = 21) were also included yielding 88 study subjects. IEI was scored with the Quick Environmental Exposure and Sensitivity Inventory (QEESI) questionnaire. Inflammation was evaluated by blood cell type profiling and cytokine measurements. Disease mechanisms were investigated via gene set variation analysis of RNA from nasal biopsies and peripheral blood mononuclear cells. Nasal biopsy gene expression and plasma cytokine profiles suggested airway and systemic inflammation in asthma without exposure to dampness (AND). Similar evidence of inflammation was absent in patients with dampness-and-mold-related asthma (AAD). Gene expression signatures revealed a greater degree of similarity between IEI and dampness-related asthma than between IEI patients and asthma not associated to dampness and mold. Blood cell transcriptome of IEI subjects showed strong suppression of immune cell activation, migration, and movement. QEESI scores correlated to blood cell gene expression of all study subjects. Transcriptomic analysis revealed clear pathomechanisms for AND but not AAD patients. Furthermore, we found a distinct molecular pathological profile in nasal and blood immune cells of IEI subjects, including several differentially expressed genes that were also identified in AAD samples, suggesting IEI-type mechanisms.
Collapse
Affiliation(s)
- Hille Suojalehto
- Occupational Medicine, Finnish Institute of Occupational Health, 00032 Helsinki, Finland; (H.S.); (I.L.); (L.A.); (K.K.)
| | - Joseph Ndika
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (J.N.); (P.K.)
| | - Irmeli Lindström
- Occupational Medicine, Finnish Institute of Occupational Health, 00032 Helsinki, Finland; (H.S.); (I.L.); (L.A.); (K.K.)
| | - Liisa Airaksinen
- Occupational Medicine, Finnish Institute of Occupational Health, 00032 Helsinki, Finland; (H.S.); (I.L.); (L.A.); (K.K.)
| | - Kirsi Karvala
- Occupational Medicine, Finnish Institute of Occupational Health, 00032 Helsinki, Finland; (H.S.); (I.L.); (L.A.); (K.K.)
- Varma, 00098 Helsinki, Finland
| | - Paula Kauppi
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland; (P.K.); (A.L.); (S.T.-S.)
| | - Antti Lauerma
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland; (P.K.); (A.L.); (S.T.-S.)
| | - Sanna Toppila-Salmi
- Skin and Allergy Hospital, Helsinki University Hospital, 00250 Helsinki, Finland; (P.K.); (A.L.); (S.T.-S.)
| | - Piia Karisola
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (J.N.); (P.K.)
| | - Harri Alenius
- Human Microbiome (HUMI) Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (J.N.); (P.K.)
- Institute of Environmental Medicine (IMM), Karolinska Institutet, 171 77 Stockholm, Sweden
- Correspondence: ; Tel.: +358-50-4489526
| |
Collapse
|
2
|
A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med 2019; 25:1153-1163. [PMID: 31209336 DOI: 10.1038/s41591-019-0468-5] [Citation(s) in RCA: 549] [Impact Index Per Article: 91.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/25/2019] [Indexed: 11/09/2022]
Abstract
Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.
Collapse
|
3
|
Hoffman EP, Riddle V, Siegler MA, Dickerson D, Backonja M, Kramer WG, Nagaraju K, Gordish-Dressman H, Damsker JM, McCall JM. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids 2018; 134:43-52. [PMID: 29524454 PMCID: PMC6136660 DOI: 10.1016/j.steroids.2018.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Glucocorticoid drugs are highly effective anti-inflammatory agents, but chronic use is associated with extensive pharmacodynamic safety concerns that have a considerable negative impact on patient quality of life. PURPOSE Vamorolone (VBP15) is a first-in-class steroidal multi-functional drug that shows potent inhibition of pro-inflammatory NFkB pathways via high-affinity binding to the glucocorticoid receptor, high affinity antagonism for the mineralocorticoid receptor, and membrane stabilization properties. Pre-clinical data in multiple mouse models of inflammation showed retention of anti-inflammatory efficacy, but loss of most or all side effects. EXPERIMENTAL APPROACH We report first-in-human Phase 1 clinical trials (86 healthy adult males), with single ascending doses (0.1-20.0 mg/kg), and multiple ascending doses (1.0-20 mg/kg/day; 14 days treatment). KEY RESULTS Vamorolone was well-tolerated at all dose levels. Vamorolone showed pharmacokinetic and metabolism profiles similar to prednisone. Biomarker studies showed loss of side effects of traditional glucocorticoid drugs (bone fragility, metabolic disturbance, immune suppression). Suppression of the adrenal axis was 10-fold less than prednisone. The crystallographic structure of vamorolone was solved, and compared to prednisone and dexamethasone. There was overlap in structure, but differences in conformation at the C-ring where glucocorticoids interact with Asn564 of the glucocorticoid receptor. The predicted loss of Asn564 binding to vamorolone may underlie the loss of gene transcriptional activity. CONCLUSIONS AND INTERPRETATIONS Vamorolone is a dissociative steroid that retains high affinity binding and nuclear translocation of both glucocorticoid (agonist) and mineralocorticoid (antagonist) receptors, but does not show pharmacodynamic safety concerns of existing glucocorticoid drugs at up to 20 mg/kg/day.
Collapse
Affiliation(s)
- Eric P Hoffman
- ReveraGen BioPharma, Rockville, MD, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Binghamton University - SUNY, Binghamton, NY, USA.
| | | | - Maxime A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 USA
| | | | | | | | - Kanneboyina Nagaraju
- ReveraGen BioPharma, Rockville, MD, USA; Department of Pharmaceutical Sciences, School of Pharmacy, Binghamton University - SUNY, Binghamton, NY, USA
| | | | | | | |
Collapse
|
4
|
Pierre K, Rao RT, Hartmanshenn C, Androulakis IP. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle. Endocrinology 2018; 159:1808-1826. [PMID: 29444258 PMCID: PMC6044315 DOI: 10.1210/en.2017-03226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Synchronization of biological functions to environmental signals enables organisms to anticipate and appropriately respond to daily external fluctuations and is critical to the maintenance of homeostasis. Misalignment of circadian rhythms with environmental cues is associated with adverse health outcomes. Cortisol, the downstream effector of hypothalamic-pituitary-adrenal (HPA) activity, facilitates synchronization of peripheral biological processes to the environment. Cortisol levels exhibit substantial seasonal rhythmicity, with peak levels occurring during the short-photoperiod winter months and reduced levels occurring in the long-photoperiod summer season. Seasonal changes in cortisol secretion could therefore alter its entraining capabilities, resulting in a season-dependent modification in the alignment of biological activities with the environment. We develop a mathematical model to investigate the influence of photoperiod-induced seasonal differences in the circadian rhythmicity of the HPA axis on the synchronization of the peripheral circadian clock and cell cycle in a heterogeneous cell population. Model simulations predict that the high-amplitude cortisol rhythms in winter result in the greatest entrainment of peripheral oscillators. Furthermore, simulations predict a circadian gating of the cell cycle with respect to the expression of peripheral clock genes. Seasonal differences in cortisol rhythmicity are also predicted to influence mitotic synchrony, with a high-amplitude winter rhythm resulting in the greatest synchrony and a shift in timing of the cell cycle phases, relative to summer. Our results highlight the primary interactions among the HPA axis, the peripheral circadian clock, and the cell cycle and thereby provide an improved understanding of the implications of circadian misalignment on the synchronization of peripheral regulatory processes.
Collapse
Affiliation(s)
- Kamau Pierre
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
5
|
Wolf S, Perez GF, Mukharesh L, Isaza N, Preciado D, Freishtat RJ, Pillai D, Rose MC, Nino G. Conditional reprogramming of pediatric airway epithelial cells: A new human model to investigate early-life respiratory disorders. Pediatr Allergy Immunol 2017; 28:810-817. [PMID: 28981980 PMCID: PMC5868353 DOI: 10.1111/pai.12810] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Airway epithelial cells (AEC) are quite difficult to access in newborns and infants. It is critically important to develop robust life-extended models to conduct translational studies in this age group. We propose the use of a recently described cell culture technology (conditionally reprogrammed cells-CRC) to generate continuous primary cell cultures from nasal and bronchial AEC of young children. METHODS We collected nasal and/or bronchial AEC from a total of 23 subjects of different ages including newborns/infants/toddlers (0-2 years; N = 9), school-age children (4-11 years; N = 6), and a group of adolescent/adult donors (N = 8). For CRC generation, we used conditioned medium from mitotically inactivated 3T3 fibroblasts and Rho-associated kinase (ROCK) inhibitor (Y-27632). Antiviral immune responses were studied using 25 key antiviral genes and protein production of type III epithelial interferon (IFN λ1) after double-stranded (ds) RNA exposure. RESULTS CRC derived from primary AEC of neonates/infants and young children exhibited: (i) augmented proliferative capacity and life extension, (ii) preserved airway epithelial phenotype after multiple passages, (iii) robust immune responses characterized by the expression of innate antiviral genes and parallel nasal/bronchial production of IFN λ1 after exposure to dsRNA, and (iv) induction of airway epithelial inflammatory and remodeling responses to dsRNA (eg, CXCL8 and MMP9). CONCLUSION Conditional reprogramming of AEC from young children is a feasible and powerful translational approach to investigate early-life airway epithelial immune responses in humans.
Collapse
Affiliation(s)
- S Wolf
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G F Perez
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - L Mukharesh
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - N Isaza
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Neonatology, Children's National Medical Center, Washington, DC, USA
| | - D Preciado
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pediatric Otorhinolaryngology, Children's National Medical Center, Washington, DC, USA
| | - R J Freishtat
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Emergency Medicine, Children's National Medical Center, Washington, DC, USA
| | - D Pillai
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - M C Rose
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| | - G Nino
- Center for Genetic Research Medicine, Children's National Medical Center, Washington, DC, USA.,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.,Division of Pulmonary and Sleep Medicine, Children's National Medical Center, Washington, DC, USA
| |
Collapse
|
6
|
Hackett TL, Ferrante SC, Hoptay CE, Engelhardt JF, Ingram JL, Zhang Y, Alcala SE, Shaheen F, Matz E, Pillai DK, Freishtat RJ. A Heterotopic Xenograft Model of Human Airways for Investigating Fibrosis in Asthma. Am J Respir Cell Mol Biol 2017; 56:291-299. [PMID: 27788019 DOI: 10.1165/rcmb.2016-0065ma] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Limited in vivo models exist to investigate the lung airway epithelial role in repair, regeneration, and pathology of chronic lung diseases. Herein, we introduce a novel animal model in asthma-a xenograft system integrating a differentiating human asthmatic airway epithelium with an actively remodeling rodent mesenchyme in an immunocompromised murine host. Human asthmatic and nonasthmatic airway epithelial cells were seeded into decellularized rat tracheas. Tracheas were ligated to a sterile cassette and implanted subcutaneously in the flanks of nude mice. Grafts were harvested at 2, 4, or 6 weeks for tissue histology, fibrillar collagen, and transforming growth factor-β activation analysis. We compared immunostaining in these xenografts to human lungs. Grafted epithelial cells generated a differentiated epithelium containing basal, ciliated, and mucus-expressing cells. By 4 weeks postengraftment, asthmatic epithelia showed decreased numbers of ciliated cells and decreased E-cadherin expression compared with nonasthmatic grafts, similar to human lungs. Grafts seeded with asthmatic epithelial cells had three times more fibrillar collagen and induction of transforming growth factor-β isoforms at 6 weeks postengraftment compared with nonasthmatic grafts. Asthmatic epithelium alone is sufficient to drive aberrant mesenchymal remodeling with fibrillar collagen deposition in asthmatic xenografts. Moreover, this xenograft system represents an advance over current asthma models in that it permits direct assessment of the epithelial-mesenchymal trophic unit.
Collapse
Affiliation(s)
- Tillie-Louise Hackett
- 1 Department of Anesthesiology, Pharmacology, and Therapeutics, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Claire E Hoptay
- 3 Children's Research Institute: Center for Genetic Medicine Research
| | - John F Engelhardt
- 4 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa; and
| | - Jennifer L Ingram
- 5 Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Health System, Durham, North Carolina
| | - Yulong Zhang
- 4 Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa; and
| | - Sarah E Alcala
- 3 Children's Research Institute: Center for Genetic Medicine Research
| | - Furquan Shaheen
- 1 Department of Anesthesiology, Pharmacology, and Therapeutics, Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ethan Matz
- 2 Department of Integrative Systems Biology and
| | - Dinesh K Pillai
- 2 Department of Integrative Systems Biology and.,7 Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, D.C.,6 Division of Pulmonary and Sleep Medicine, and
| | - Robert J Freishtat
- 2 Department of Integrative Systems Biology and.,7 Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, D.C.,8 Division of Emergency Medicine, Children's National Health System, Washington, D.C
| |
Collapse
|
7
|
Konen J, Summerbell E, Dwivedi B, Galior K, Hou Y, Rusnak L, Chen A, Saltz J, Zhou W, Boise LH, Vertino P, Cooper L, Salaita K, Kowalski J, Marcus AI. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat Commun 2017; 8:15078. [PMID: 28497793 PMCID: PMC5437311 DOI: 10.1038/ncomms15078] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. The mechanisms linking phenotypic heterogeneity to collective cancer invasion are unclear. Here the authors develop an image-guided genomic technique to select and amplify leader and follower cells from in vitro invading cell packs and find a cooperative symbiotic relationship between these two cell populations.
Collapse
Affiliation(s)
- J Konen
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - E Summerbell
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - B Dwivedi
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - K Galior
- Department of Chemistry, Emory University, 506 Atwood Drive, Atlanta, Georgia 30322, USA
| | - Y Hou
- Department of Biomedical Informatics, Emory University, 36 Eagle Row, Atlanta, Georgia 30322, USA
| | - L Rusnak
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - A Chen
- Graduate Program in Cancer Biology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - J Saltz
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, New York 11794, USA
| | - W Zhou
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - L H Boise
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - P Vertino
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Radiation Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - L Cooper
- Department of Biomedical Informatics, Emory University, 36 Eagle Row, Atlanta, Georgia 30322, USA
| | - K Salaita
- Department of Chemistry, Emory University, 506 Atwood Drive, Atlanta, Georgia 30322, USA
| | - J Kowalski
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Biostatistics and Bioinformatics, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| | - A I Marcus
- Winship Cancer Institute, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA.,Department of Hematology and Medical Oncology, Emory University, 1365C Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Gutierrez MJ, Gomez JL, Perez GF, Pancham K, Val S, Pillai DK, Giri M, Ferrante S, Freishtat R, Rose MC, Preciado D, Nino G. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood. PLoS One 2016; 11:e0162244. [PMID: 27643599 PMCID: PMC5028059 DOI: 10.1371/journal.pone.0162244] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/21/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Innate immune responses are fine-tuned by small noncoding RNA molecules termed microRNAs (miRs) that modify gene expression in response to the environment. During acute infections, miRs can be secreted in extracellular vesicles (EV) to facilitate cell-to-cell genetic communication. The purpose of this study was to characterize the baseline population of miRs secreted in EVs in the airways of young children (airway secretory microRNAome) and examine the changes during rhinovirus (RV) infection, the most common cause of asthma exacerbations and the most important early risk factor for the development of asthma beyond childhood. METHODS Nasal airway secretions were obtained from children (≤3 yrs. old) during PCR-confirmed RV infections (n = 10) and age-matched controls (n = 10). Nasal EVs were isolated with polymer-based precipitation and global miR profiles generated using NanoString microarrays. We validated our in vivo airway secretory miR data in an in vitro airway epithelium model using apical secretions from primary human bronchial epithelial cells (HBEC) differentiated at air-liquid interface (ALI). Bioinformatics tools were used to determine the unified (nasal and bronchial) signature airway secretory miRNAome and changes during RV infection in children. RESULTS Multiscale analysis identified four signature miRs comprising the baseline airway secretory miRNAome: hsa-miR-630, hsa-miR-302d-3p, hsa- miR-320e, hsa-miR-612. We identified hsa-miR-155 as the main change in the baseline miRNAome during RV infection in young children. We investigated the potential biological relevance of the airway secretion of hsa-mir-155 using in silico models derived from gene datasets of experimental in vivo human RV infection. These analyses confirmed that hsa-miR-155 targetome is an overrepresented pathway in the upper airways of individuals infected with RV. CONCLUSIONS Comparative analysis of the airway secretory microRNAome in children indicates that RV infection is associated with airway secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.
Collapse
Affiliation(s)
- Maria J. Gutierrez
- Division of Pediatric Allergy Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jose L. Gomez
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Geovanny F. Perez
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Krishna Pancham
- Division of Pediatric Pulmonology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Stephanie Val
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Dinesh K. Pillai
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Mamta Giri
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Sarah Ferrante
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Robert Freishtat
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- Division of Emergency Medicine, Children’s National Medical Center, Washington, DC, United States of America
| | - Mary C. Rose
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
| | - Diego Preciado
- Division of Pediatric Otolaryngology-Head and Neck Surgery, Children’s National Medical Center, Washington, DC, United States of America
| | - Gustavo Nino
- Division of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Division of Pulmonary and Sleep Medicine, Children’s National Medical Center, Washington, DC, United States of America
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
- Department of Integrative Systems Biology and Center for Genetic Medicine Research, George Washington University, Washington, DC, United States of America
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
9
|
Freishtat RJ, Nino G, Tsegaye Y, Alcala SE, Benton AS, Watson AM, Reeves EKM, Haider SK, Damsker JM. Pharmacologically-induced mitotic synchrony in airway epithelial cells as a mechanism of action of anti-inflammatory drugs. Respir Res 2015; 16:132. [PMID: 26511361 PMCID: PMC4625853 DOI: 10.1186/s12931-015-0293-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitotic synchrony is the synchronous progression of a population of cells through the cell cycle and is characteristic of non-diseased airway epithelial cells. However, we previously showed that asthmatic airway epithelial cells are characterized by mitotic asynchrony and are pro-inflammatory as a result. Glucocorticoids can induce mitotic synchrony that in turn suppresses the pro-inflammatory state of diseased cells, suggesting a novel anti-inflammatory mechanism of action. Herein, we benchmarked traditional glucocorticoids against the ability of a new clinical-stage dissociative steroidal drug, VBP15, for mitotic resynchronization and associated anti-inflammatory activity in asthmatic airway epithelial cells. METHODS Primary airway epithelial cells differentiated at air-liquid interface were exposed to VBP15, dexamethasone or vehicle following in vitro mechanical injury. Basolateral cytokine secretions (TGF-β1, IL-6, IL-10, IL-13, and IL-1β) were analyzed at different time points using cytometric bead assays and mitosis was examined by flow cytometry. RESULTS VBP15 improved mitotic synchrony of proliferating asthmatic cells in air-liquid interface cultures compared to vehicle-exposed cultures. VBP15 also significantly reduced the basolateral secretion of pro-inflammatory (i.e. IL-1β) and pro-fibrogenic cytokines (i.e. TGF-β1) in air-liquid interface-differentiated asthmatic epithelial cultures following mechanical injury. CONCLUSION VBP15 improves mitotic asynchrony and injury-induced pro-inflammatory and fibrogenic responses in asthmatic airway epithelial cultures with efficacy comparable to traditional glucocorticoids. As it is predicted to show superior side effect profiles compared to traditional glucocorticoids, VBP15 holds potential for treatment of asthma and other respiratory conditions.
Collapse
Affiliation(s)
- R J Freishtat
- Division of Emergency Medicine, Children's National Health System, Washington, DC, USA. .,Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - G Nino
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, USA.
| | - Y Tsegaye
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - S E Alcala
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - A S Benton
- Children's National Health System, Washington, DC, USA.
| | - A M Watson
- George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - E K M Reeves
- ReveraGen Biopharma, Inc., Silver Spring, MD, USA.
| | - S K Haider
- Division of Pulmonary and Sleep Medicine, Children's National Health System, Washington, DC, USA.
| | - J M Damsker
- Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA. .,ReveraGen Biopharma, Inc., Silver Spring, MD, USA.
| |
Collapse
|
10
|
Abstract
Asthma is the most common inflammatory disease of the lungs. The prevalence of asthma is increasing in many parts of the world that have adopted aspects of the Western lifestyle, and the disease poses a substantial global health and economic burden. Asthma involves both the large-conducting and the small-conducting airways, and is characterized by a combination of inflammation and structural remodelling that might begin in utero. Disease progression occurs in the context of a developmental background in which the postnatal acquisition of asthma is strongly linked with allergic sensitization. Most asthma cases follow a variable course, involving viral-induced wheezing and allergen sensitization, that is associated with various underlying mechanisms (or endotypes) that can differ between individuals. Each set of endotypes, in turn, produces specific asthma characteristics that evolve across the lifecourse of the patient. Strong genetic and environmental drivers of asthma interconnect through novel epigenetic mechanisms that operate prenatally and throughout childhood. Asthma can spontaneously remit or begin de novo in adulthood, and the factors that lead to the emergence and regression of asthma, irrespective of age, are poorly understood. Nonetheless, there is mounting evidence that supports a primary role for structural changes in the airways with asthma acquisition, on which altered innate immune mechanisms and microbiota interactions are superimposed. On the basis of the identification of new causative pathways, the subphenotyping of asthma across the lifecourse of patients is paving the way for more-personalized and precise pathway-specific approaches for the prevention and treatment of asthma, creating the real possibility of total prevention and cure for this chronic inflammatory disease.
Collapse
Affiliation(s)
- Stephen T. Holgate
- Clinical and Experimental Sciences, Mail Point 810, Level F, Sir Henry Wellcome Building
- Southampton General Hospital, Southampton, SO16 6YD UK
| | - Sally Wenzel
- Subsection Chief of Allergy, Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Asthma Institute at UPMC/UPSOM, Pittsburgh, Pennsylvania USA
| | - Dirkje S. Postma
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Scott T. Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, University Hospital Giessen and Marburg GmbH, Campus Marburg, Marburg, Germany
| | - Peter D. Sly
- Queensland Children's Medical Research Institute and Centre for Child Health Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
11
|
Dadgar S, Wang Z, Johnston H, Kesari A, Nagaraju K, Chen YW, Hill DA, Partridge TA, Giri M, Freishtat RJ, Nazarian J, Xuan J, Wang Y, Hoffman EP. Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. ACTA ACUST UNITED AC 2015; 207:139-58. [PMID: 25313409 PMCID: PMC4195829 DOI: 10.1083/jcb.201402079] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Duchenne muscular dystrophy, asynchronous regeneration in microenvironments within muscle tissue results in development of fibrosis in lieu of global muscle recovery. We sought to determine the mechanisms underlying failure of muscle regeneration that is observed in dystrophic muscle through hypothesis generation using muscle profiling data (human dystrophy and murine regeneration). We found that transforming growth factor β–centered networks strongly associated with pathological fibrosis and failed regeneration were also induced during normal regeneration but at distinct time points. We hypothesized that asynchronously regenerating microenvironments are an underlying driver of fibrosis and failed regeneration. We validated this hypothesis using an experimental model of focal asynchronous bouts of muscle regeneration in wild-type (WT) mice. A chronic inflammatory state and reduced mitochondrial oxidative capacity are observed in bouts separated by 4 d, whereas a chronic profibrotic state was seen in bouts separated by 10 d. Treatment of asynchronously remodeling WT muscle with either prednisone or VBP15 mitigated the molecular phenotype. Our asynchronous regeneration model for pathological fibrosis and muscle wasting in the muscular dystrophies is likely generalizable to tissue failure in chronic inflammatory states in other regenerative tissues.
Collapse
Affiliation(s)
- Sherry Dadgar
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Zuyi Wang
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Helen Johnston
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Akanchha Kesari
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Kanneboyina Nagaraju
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - D Ashley Hill
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Terence A Partridge
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Mamta Giri
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Robert J Freishtat
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| | - Jianhua Xuan
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061
| | - Yue Wang
- The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 24061
| | - Eric P Hoffman
- Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010 Center for Genetic Medicine Research, Children's National Medical Center, and Department of Integrative Systems Biology, George Washington University, Washington, DC 20010
| |
Collapse
|