1
|
Mohamad Jailaini MF, Hashim Y, Abdul Hamid MF. Revamping hemothorax management: The promise of low-dose intrapleural fibrinolytic therapy as an alternative. Respirol Case Rep 2024; 12:e70012. [PMID: 39188573 PMCID: PMC11347044 DOI: 10.1002/rcr2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024] Open
Abstract
Surgical evacuation has long been the standard treatment for hemothorax. However, some patients are not suitable candidates for surgery. Intrapleural fibrinolytic therapy (IPFT) has recently emerged as an effective alternative for managing retained hemothorax. This case report describes two patients with retained hemothorax who were unfit for surgery and were successfully treated with IPFT at our centre. Both patients were deemed unsuitable for surgery due to comorbidities and their overall functional status. They received three cycles of IPFT, each consisting of 2.5 mg of alteplase. This treatment effectively evacuated the retained hemothorax, achieving complete radiological resolution without immediate or delayed complications up to 3 months post-discharge.
Collapse
Affiliation(s)
| | - Yusra Hashim
- Respiratory Unit, Faculty of MedicineUniversiti Kebangsaan Malaysia (UKM)Kuala LumpurMalaysia
| | | |
Collapse
|
2
|
Tamiya H, Jo T, Yokoyama A, Sakamoto Y, Mitani A, Tanaka G, Matsui H, Ishimaru M, Yasunaga H, Nagase T. Reduction in the need for surgery and mortality after early administration of fibrinolytics following empyema drainage. Eur J Cardiothorac Surg 2024; 66:ezae263. [PMID: 38979769 DOI: 10.1093/ejcts/ezae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVES Although intrapleural administration of fibrinolytics is an important treatment option for the management of empyema, the addition of fibrinolytics failed to reduce the need for surgery and mortality in previous randomized controlled trials. This study aimed to investigate the effects of administrating fibrinolytics in the early phase (within 3 days of chest tube insertion) of empyema compared with late administration or no administration. METHODS We used the Japanese Diagnosis Procedure Combination Inpatient Database to identify patients aged ≥16 years who were hospitalized and underwent chest tube drainage for empyema. A 1:2 propensity score matching and stabilized inverse probability of treatment weighting were conducted. RESULTS Among the 16 265 eligible patients, 3082 and 13 183 patients were categorized into the early and control group, respectively. The proportion of patients who underwent surgery was significantly lower in the early fibrinolytics group than in the control group; the odds ratio (95% confidence interval) was 0.69 (0.54-0.88) in the propensity score matching (P = 0.003) and 0.64 (0.50-0.80) in the stabilized inverse probability of treatment weighting analysis (P < 0.001). All-cause 30-day in-hospital mortality, length of hospital stay, duration of chest tube drainage, and total hospitalization costs were also more favourable in the early fibrinolytics group. CONCLUSIONS The early administration of fibrinolytics may reduce the need for surgery and death in adult patients with empyema.
Collapse
Affiliation(s)
- Hiroyuki Tamiya
- The Department of Internal Medicine, Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Taisuke Jo
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
- The Department of Health Services Research, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Yokoyama
- The Department of Internal Medicine, Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukiyo Sakamoto
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihisa Mitani
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Goh Tanaka
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroki Matsui
- The Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Miho Ishimaru
- Department of Health Service Research, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideo Yasunaga
- The Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, Tokyo, Japan
| | - Takahide Nagase
- The Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Ng BH, Nik Abeed NN, Ban AYL, Abdul Hamid MF. Combined intrapleural alteplase and DNase therapy in complicated pleural infection arising from postsurgery oesophageal leak. BMJ Case Rep 2023; 16:e249927. [PMID: 37591627 PMCID: PMC10441048 DOI: 10.1136/bcr-2022-249927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Managing a complicated pleural infection related to postsurgery can pose a clinical challenge, especially when initial interventions such as intercostal chest drain and antibiotics prove ineffective. We describe a man in his mid-60s who developed a recurrence of exudative pleural effusion caused by an oesophageal leak following laparoscopic total gastrectomy with Roux-y oesophagojejunostomy for gastric adenocarcinoma. Surgical repairs and oesophageal stenting were performed to address the oesophageal leak. Despite attempts at intercostal chest tube drainage, ultrasonography-guided targeted drainage of the locule and antibiotics, he did not show any improvement. He was unfit for surgical decortication. Due to the risk of bleeding, we chose a modified dose of intrapleural alteplase 5 mg and DNase 5 mg at 12-hour intervals for a total of three doses. This led to the complete resolution of the effusion. This case highlights that intrapleural tPA/DNase can be an adjunctive therapy in postsurgery-related complicated pleural effusion.
Collapse
Affiliation(s)
- Boon Hau Ng
- Department of Internal Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Nik Nuratiqah Nik Abeed
- Department of Internal Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Andrea Yu-Lin Ban
- Department of Internal Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| | - Mohamed Faisal Abdul Hamid
- Department of Internal Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Hospital Canselor Tuanku Muhriz, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Fitzgerald DB, Polverino E, Waterer GW. Expert Review on Nonsurgical Management of Parapneumonic Effusion: Advances, Controversies, and New Directions. Semin Respir Crit Care Med 2023; 44:468-476. [PMID: 37429296 DOI: 10.1055/s-0043-1769095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Parapneumonic effusion and empyema are rising in incidence worldwide, particularly in association with comorbidities in an aging population. Also driving this change is the widespread uptake of pneumococcal vaccines, leading to the emergence of nonvaccine-type pneumococci and other bacteria. Early treatment with systemic antibiotics is essential but should be guided by local microbial guidelines and antimicrobial resistance patterns due to significant geographical variation. Thoracic ultrasound has emerged as a leading imaging technique in parapneumonic effusion, enabling physicians to characterize effusions, assess the underlying parenchyma, and safely guide pleural procedures. Drainage decisions remain based on longstanding criteria including the size of the effusion and fluid gram stain and biochemistry results. Small-bore chest drains appear to be as effective as large bore and are adequate for the delivery of intrapleural enzyme therapy (IET), which is now supported by a large body of evidence. The IET dosing regimen used in the UK Multicenter Sepsis Trial -2 has the most evidence available but data surrounding alternative dosing, concurrent and once-daily instillations, and novel fibrinolytic agents are promising. Prognostic scores used in pneumonia (e.g., CURB-65) tend to underestimate mortality in parapneumonic effusion/empyema. Scores specifically based on pleural infection have been developed but require validation in prospective cohorts.
Collapse
Affiliation(s)
- Deirdre B Fitzgerald
- Department of Respiratory Medicine, Tallaght University Hospital, Dublin, Ireland
- Medical School, University of Western Australia, Australia
| | - Eva Polverino
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER de enfermedades respiratorias
| | - Grant W Waterer
- Medical School, University of Western Australia, Australia
- Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
5
|
Xu JJ, Lucero MY, Herndon NL, Lee MC, Chan J. Comparison of a Minimally Invasive Transthoracic Approach and a Surgical Method For Intrapleural Injection of Tumor Cells in Mice. Comp Med 2023; 73:120-126. [PMID: 36922006 PMCID: PMC10162381 DOI: 10.30802/aalas-cm-22-000044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 12/09/2022] [Indexed: 03/17/2023]
Abstract
Intrapleural injections can be used in mice to deliver therapeutic and diagnostic agents and to model human disease processes (for example, pleural fluid accumulation, malignant pleural disease, and lung cancers). In the context of establishing cancer models, minimally invasive methods of intrapleural injection are desirable because inflammation at the injection site can have a major impact on tumor growth and progression. Common approaches for intrapleural injection include surgical exposure of the thoracic wall or the diaphragm prior to injection; however, these invasive procedures require tissue dissection that triggers an undesirable inflammatory response and increases the risk of pneumothorax. While nonsurgical procedures can minimize this concern, 'blind' injections may lead to off-target inoculation. In this study, we hypothesized that a minimally invasive transthoracic approach (MI-TT) would produce a tumor distribution and burden similar to that of a surgical transabdominal approach (SX-TA). Prior to performing the procedures on live mice, surgeons were trained using cadavers and terminal procedures. Then a total of 14 nude mice (female, 4 to 6 wk old) were injected with 50 μL (5 million) A549-Luc2 human cancer cells either using the MI-TT (n = 8) or SX-TA (n = 6) approach under carprofen analgesia and isoflurane anesthesia. Our results indicate that with training, a minimally invasive transthoracic approach for intrapleural injection provides more consistent tumor placement and a greater tumor burden than does the surgical method. However, additional studies are necessary to confirm anatomic placement and characterize tumor profiles.
Collapse
Affiliation(s)
- Jiajie Jessica Xu
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois;,
| | - Melissa Y Lucero
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Nicole L Herndon
- Division of Animal Resources, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
6
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Lee YCG, Zemek RM, Bosco A, Lake RA, Lesterhuis WJ. Geldanamycin treatment does not result in anti-cancer activity in a preclinical model of orthotopic mesothelioma. PLoS One 2023; 18:e0274364. [PMID: 37146029 PMCID: PMC10162533 DOI: 10.1371/journal.pone.0274364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/26/2023] [Indexed: 05/07/2023] Open
Abstract
Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.
Collapse
Affiliation(s)
- M Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Catherine A Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, Western Australia, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sally M Lansley
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Y C Gary Lee
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - Rachael M Zemek
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Anthony Bosco
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Richard A Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
| | - W Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
- National Centre for Asbestos Related Diseases, Nedlands, Western Australia, Australia
- Institute for Respiratory Health, Nedlands, Western Australia, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
7
|
Stenberg K, Gensby L, Cremer SE, Nielsen MM, Bjørnvad CR. Analytical performance of a canine ELISA monocyte chemoattractant protein-1 assay for use in cats and evaluation of circulating levels in normal weight and obese cats. Acta Vet Scand 2022; 64:22. [PMID: 36064726 PMCID: PMC9446815 DOI: 10.1186/s13028-022-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In human and murine obesity, adipose tissue dwelling macrophages and adipocytes produce monocyte chemoattractant protein-1 (MCP-1) leading to systemic low-grade inflammation. The aim of the study was to validate a canine MCP-1 ELISA assay for use in cats and to investigate whether a difference in MCP-1 concentrations could be detected between: a) cats having normal or elevated circulating serum amyloid A (SAA) levels and b) normal weight and obese cats. Serum obtained from 36 client-owned cats of various breed, age and sex with normal (n = 20) to elevated SAA (n = 16) was used for the validation of the canine MCP-1 ELISA assay. As no golden standard exists for measurement of inflammation, circulating MCP-1 concentrations were compared to SAA measurements, as an indicator of systemic inflammation. Analytical precision, dilution recovery and detection limit were calculated. A possible correlation between MCP-1 concentrations and obesity related measures (body fat percentage (BF%), insulin sensitivity and cytokine expression) were investigated in another population of 73 healthy, lean to obese, neutered domestic short-haired cats. RESULTS Intra- (2.7-4.1%) and inter-assay (2.2-3.6%) coefficient of variation and dilution recovery were acceptable, and the detection limit was 27.1 pg/mL. MCP-1 did not correlate with SAA, and there was no difference between the inflammatory (SAA > 20 mg/L) and non-inflammatory group, due to a marked overlap in MCP-1 concentrations. Circulating MCP-1 concentrations were unaffected by BF% (r2 = 2.7 × 10-6, P = 0.21) and other obesity-related markers. CONCLUSIONS The present canine ELISA assay seems to be able to measure circulating feline MCP-1. However, further studies are needed to determine its possible use for detecting inflammation in relation to disease processes or obesity-related low-grade inflammation in cats.
Collapse
Affiliation(s)
- Kathrine Stenberg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Line Gensby
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: AniCura Vangede Animal Hospital, Plantevej 2, 2870 Dyssegård, Denmark
| | - Signe Emilie Cremer
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
- Present Address: Coloplast, Holtedam 1-3, 3050 Humlebæk, Denmark
| | - Michelle Møller Nielsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| | - Charlotte Reinhard Bjørnvad
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 16, 1870 Frederiksberg, Denmark
| |
Collapse
|
8
|
Luo L, Deng S, Tang W, Hu X, Yin F, Ge H, Tang J, Liao Z, Feng J, Li X, Mo B. Monocytes subtypes from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Clin Lab Anal 2022; 36:e24579. [PMID: 35819097 PMCID: PMC9396188 DOI: 10.1002/jcla.24579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/08/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
Background Pleural effusion is a common clinical condition caused by several respiratory diseases, including tuberculosis and malignancy. However, rapid and accurate diagnoses of tuberculous pleural effusion (TPE) and malignant pleural effusion (MPE) remain challenging. Although monocytes have been confirmed as an important immune cell in tuberculosis and malignancy, little is known about the role of monocytes subpopulations in the diagnosis of pleural effusion. Methods Pleural effusion samples and peripheral blood samples were collected from 40 TPE patients, 40 MPE patients, and 24 transudate pleural effusion patients, respectively. Chemokines (CCL2, CCL7, and CX3CL1) and cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were measured by ELISA. The monocytes phenotypes were analyzed by flow cytometry. The chemokines receptors (CCR2 and CX3CR1) and cytokines above in different monocytes subsets were analyzed by real‐time PCR. Receiver operating characteristic curve analysis was performed for displaying differentiating power of intermediate and nonclassical subsets between tuberculous and malignant pleural effusions. Results CCL7 and CX3CL1 levels in TPE were significantly elevated in TPE compared with MPE and transudate pleural effusion. Cytokines, such as IL‐1β, IL‐17, IL‐27, and IFN‐γ, in TPE were much higher than in other pleural effusions. Moreover, CD14+CD16++ nonclassical subset frequency in TPE was remarkably higher than that in MPE, while CD14++CD16+ intermediate subset proportion in MPE was found elevated. Furthermore, CX3CL1‐CX3CR1 axis‐mediated infiltration of nonclassical monocytes in TPE was related to CX3CL1 and IFN‐γ expression in TPE. Higher expression of cytokines (IL‐1β, IL‐17, IL‐27, and IFN‐γ) were found in nonclassical monocytes compared with other subsets. Additionally, the proportions of intermediate and nonclassical monocytes in pleural effusion have the power in discriminating tuberculosis from malignant pleural effusion. Conclusions CD14 and CD16 markers on monocytes could be potentially used as novel diagnostic markers for diagnosing TPE and MPE.
Collapse
Affiliation(s)
- Lisha Luo
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tang
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Feifei Yin
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ge
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Jiale Tang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Juntao Feng
- Department of Respiratory Medicine, Key Cite of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Biwen Mo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, China
| |
Collapse
|
9
|
Cheong XK, Ban AYL, Ng BH, Nik Abeed NN, Nik Ismail NA, Nik Fuad NF, Syed Zakaria SZ, Ghan SL, Abdul Hamid MF. Modified regimen intrapleural alteplase with pulmozyme in pleural infection management: a tertiary teaching hospital experience. BMC Pulm Med 2022; 22:199. [PMID: 35581627 PMCID: PMC9115979 DOI: 10.1186/s12890-022-01995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
Background Current management of poorly draining complex effusions favours less invasive image-guided placement of smaller tubes and adjunctive intrapleural fibrinolysis therapy (IPFT). In MIST-2 trial, intrapleural 10 mg alteplase (t-PA) with 5 mg of pulmozyme (DNase) twice daily for 72 h were used. We aimed to assess the effectiveness and safety of a modified regimen 16 mg t-PA with 5 mg of DNase administered over 24 h in the management of complex pleural infection.
Methods This was a single centre, prospective study involving patients with poorly drained pleural infection. Primary outcome was the change of pleural opacity on chest radiograph at day 7 compared to baseline. Secondary outcomes include volume of fluid drained, inflammatory markers improvement, surgical referral, length of hospitalisation, and adverse events. Results Thirty patients were recruited. Majority, 27 (90%) patients were successfully treated. Improvement of pleural opacity on chest radiograph was observed from 36.9% [Interquartile range (IQR 21.8–54.9%)] to 18.1% (IQR 8.8–32.7%) of hemithorax (P < 0.05). T-PA/DNase increased fluid drainage from median of 45 mls (IQR 0–100) 24 h prior to intrapleural treatment to 1442 mls (IQR 905–2360) after 72 h; (P < 0.05) and reduction of C-reactive protein (P < 0.05). Pain requiring escalation of analgesia affected 20% patients and 9.9% experienced major adverse events. None required surgical intervention. Conclusion This study suggests that a modified regimen 16 mg t-PA with 5 mg DNase can be safe and effective for patients with poorly drained complex pleural infection. Trial registration The study was registered retrospectively on 07/06/2021 with ClinicalTrials number NCT04915586 (https://clinicaltrials.gov/ct2/show/NCT04915586). Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01995-z.
Collapse
Affiliation(s)
- Xiong Khee Cheong
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Andrea Yu-Lin Ban
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Boon Hau Ng
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Nik Nuratiqah Nik Abeed
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia
| | - Nik Azuan Nik Ismail
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nik Farhan Nik Fuad
- Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Sheah Lin Ghan
- Department of Pharmacy, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohamed Faisal Abdul Hamid
- Respiratory Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Popowicz N, Ip H, Lau EPM, Piccolo F, Dootson K, Yeoh C, Phu WY, Brown R, West A, Ahmed L, Lee YCG. Alteplase Dose Assessment for Pleural infection Therapy (ADAPT) Study-2: Use of 2.5 mg alteplase as a starting intrapleural dose. Respirology 2022; 27:510-516. [PMID: 35441458 DOI: 10.1111/resp.14261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Intrapleural tissue plasminogen activator/deoxyribonuclease (tPA/DNase) therapy is increasingly used in pleural infection. Bleeding risks and costs associated with tPA remain the clinical concerns. Our dose de-escalation series aims to establish the lowest effective dosing regimen for tPA/DNase. This study assesses the intrapleural use of 2.5 mg tPA/5 mg DNase for pleural infection. METHODS Consecutive patients with pleural infection treated with a starting regime of 2.5 mg tPA/5 mg DNase were included from two centres in Australia and UK. Escalation of tPA dose was permitted if clinical response was inadequate. RESULTS Sixty-nine patients (mean age 61.0 years) received intrapleural 2.5 mg tPA/5 mg DNase. Most (88.4%) were treated successfully and discharged from hospital without surgery by 90 days. Patients received a median of 5 [interquartile range [IQR] = 3-6] doses of tPA/DNase. Total amount of tPA used per patient was 12.5 mg [median, IQR = 7.5-15.0]. Seventeen patients required dose escalation of tPA; most (n = 12) for attempted drainage of distant non-communicating locule(s). Treatment success was corroborated by clearance of pleural opacities on radiographs (from median 27.0% [IQR = 17.1-44.5] to 11.0% [IQR = 6.4-23.3] of hemithorax, p < 0.0001), increased pleural fluid drainage (1.98 L [median, IQR = 1.38-2.68] over 72 h following commencement of tPA/DNase) and reduction of serum C-reactive protein level (by 45.0% [IQR = 39.3-77.0] from baseline at day 5, p < 0.0001). Two patients required surgery. Six patients with significant comorbidities (e.g., advanced cancer) had ongoing infection when palliated and died. Two patients experienced self-limiting pleural bleeding and received blood transfusion. CONCLUSION A starting intrapleural regime of 2.5 mg tPA/5 mg DNase, with up-titration if needed, can be effective and deserves further exploration.
Collapse
Affiliation(s)
- Natalia Popowicz
- School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Western Australia, Australia.,Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,Pharmacy Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Hugh Ip
- Respiratory Medicine, Royal Free Hospital, London, UK
| | - Estee P M Lau
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Francesco Piccolo
- Respiratory Medicine, St John of God Midland, Perth, Western Australia, Australia
| | - Kirstie Dootson
- School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Western Australia, Australia
| | - Cindy Yeoh
- School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Western Australia, Australia
| | - Wint Ywe Phu
- School of Allied Health, Division of Pharmacy, University of Western Australia, Perth, Western Australia, Australia
| | - Rebecca Brown
- Pharmacy Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Alex West
- Respiratory Medicine, Guy's and St Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK
| | - Liju Ahmed
- Respiratory Medicine, King Faisal Specialist Hospital and Research Centre Madinah, Riyadh, Saudi Arabia
| | - Y C Gary Lee
- Pleural Medicine Unit, Institute for Respiratory Health, Perth, Western Australia, Australia.,Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.,Centre for Respiratory Health, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Jacobs B, Sheikh G, Youness HA, Keddissi JI, Abdo T. Diagnosis and Management of Malignant Pleural Effusion: A Decade in Review. Diagnostics (Basel) 2022; 12:1016. [PMID: 35454064 PMCID: PMC9030780 DOI: 10.3390/diagnostics12041016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Malignant pleural effusion (MPE) is a common complication of thoracic and extrathoracic malignancies and is associated with high mortality. Treatment is mainly palliative, with symptomatic management achieved via effusion drainage and pleurodesis. Pleurodesis may be hastened by administering a sclerosing agent through a thoracostomy tube, thoracoscopy, or an indwelling pleural catheter (IPC). Over the last decade, several randomized controlled studies shaped the current management of MPE in favor of an outpatient-based approach with a notable increase in IPC usage. Patient preferences remain essential in choosing optimal therapy, especially when the lung is expandable. In this article, we reviewed the last 10 to 15 years of MPE literature with a particular focus on the diagnosis and evolving management.
Collapse
Affiliation(s)
| | | | | | | | - Tony Abdo
- Section of Pulmonary, Critical Care and Sleep Medicine, The University of Oklahoma Health Sciences Center and The Oklahoma City VA Health Care System, Oklahoma City, OK 73104, USA; (B.J.); (G.S.); (H.A.Y.); (J.I.K.)
| |
Collapse
|
12
|
Karpathiou G, Péoc’h M, Sundaralingam A, Rahman N, Froudarakis ME. Inflammation of the Pleural Cavity: A Review on Pathogenesis, Diagnosis and Implications in Tumor Pathophysiology. Cancers (Basel) 2022; 14:1415. [PMID: 35326567 PMCID: PMC8946533 DOI: 10.3390/cancers14061415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Pleural effusions are a common respiratory condition with many etiologies. Nonmalignant etiologies explain most pleural effusions and despite being nonmalignant, they can be associated with poor survival; thus, it is important to understand their pathophysiology. Furthermore, diagnosing a benign pleural pathology always harbors the uncertainty of a false-negative diagnosis for physicians and pathologists, especially for the group of non-specific pleuritis. This review aims to present the role of the inflammation in the development of benign pleural effusions, with a special interest in their pathophysiology and their association with malignancy.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Michel Péoc’h
- Pathology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| | - Anand Sundaralingam
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Najib Rahman
- Oxford Centre for Respiratory Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LE, UK; (A.S.); (N.R.)
| | - Marios E. Froudarakis
- Pneumonology and Thoracic Oncology Department, University Hospital of Saint-Etienne, 42055 Saint-Etienne, France;
| |
Collapse
|
13
|
Orozco Morales ML, Rinaldi CA, de Jong E, Lansley SM, Gummer JP, Olasz B, Nambiar S, Hope DE, Casey TH, Lee YCG, Leslie C, Nealon G, Shackleford DM, Powell AK, Grimaldi M, Balaguer P, Zemek RM, Bosco A, Piggott MJ, Vrielink A, Lake RA, Lesterhuis WJ. PPARα and PPARγ activation is associated with pleural mesothelioma invasion but therapeutic inhibition is ineffective. iScience 2022; 25:103571. [PMID: 34984327 PMCID: PMC8692993 DOI: 10.1016/j.isci.2021.103571] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.
Collapse
Affiliation(s)
- M. Lizeth Orozco Morales
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Catherine A. Rinaldi
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Centre for Microscopy Characterisation and Analysis, Nedlands, WA 6009, Australia
| | - Emma de Jong
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | | | - Joel P.A. Gummer
- School of Science, Department of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- UWA Medical School, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bence Olasz
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Shabarinath Nambiar
- School of Veterinary and Life Science, Murdoch University, Murdoch, WA 6150, Australia
| | - Danika E. Hope
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Thomas H. Casey
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - Y. C. Gary Lee
- Institute for Respiratory Health, Nedlands, WA 6009, Australia
| | - Connull Leslie
- Department of Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Gareth Nealon
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Andrew K. Powell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier 34090, France
| | - Rachael M. Zemek
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| | - Matthew J. Piggott
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Richard A. Lake
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
| | - W. Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
- National Centre for Asbestos Related Diseases, Nedlands, WA 6009, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA 6872, Australia
| |
Collapse
|
14
|
Intrapleural Fibrinolytic Therapy versus Early Medical Thoracoscopy for Treatment of Pleural Infection. Randomized Controlled Clinical Trial. Ann Am Thorac Soc 2021; 17:958-964. [PMID: 32421353 DOI: 10.1513/annalsats.202001-076oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: Pleural infection is frequently encountered in clinical practice and is associated with high morbidity and mortality. Limited evidence exists regarding the optimal treatment. Although both early medical thoracoscopy (MT) and tube thoracostomy with intrapleural instillation of tissue plasminogen activator and human recombinant deoxyribonuclease are acceptable treatments for patients with complicated pleural infection, there is a lack of comparative data for these modes of management.Objectives: The aim of this study was to compare the safety and efficacy of early MT versus intrapleural fibrinolytic therapy (IPFT) in selected patients with multiloculated pleural infection and empyema.Methods: This was a prospective multicenter, randomized controlled trial involving patients who underwent MT or IPFT for pleural infection. The primary outcome was the length of hospital stay after either intervention. Secondary outcomes included the total length of hospital stay, treatment failure, 30-day mortality, and adverse events.Results: Thirty-two patients with pleural infection were included in the study. The median length of stay after an intervention was 4 days in the IPFT arm and 2 days in the MT arm (P = 0.026). The total length of hospital stay was 6 days in the IPFT arm and 3.5 days in MT arm (P = 0.12). There was no difference in treatment failure, mortality, or adverse events between the treatment groups, and no serious complications related to either intervention were recorded.Conclusions: When used early in the course of a complicated parapneumonic effusion or empyema, MT is safe and might shorten hospital stays for selected patients as compared with IPFT therapy. A multicenter trial with a larger sample size is needed to confirm these findings.Clinical trial registered with ClinicalTrials.gov (NCT02973139).
Collapse
|
15
|
Biliary hydrothorax after percutaneous transhepatic biliary drainage: A rare complication. Asian J Surg 2021; 44:1125-1126. [PMID: 34148752 DOI: 10.1016/j.asjsur.2021.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
|
16
|
Foo CT, Herre J. Intrapleural fibrinolysis in acute non-traumatic retained haemothorax. Respirol Case Rep 2021; 9:e00760. [PMID: 33976889 PMCID: PMC8103075 DOI: 10.1002/rcr2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/05/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Haemothorax is an accumulation of blood in the pleural space. Retained haemothorax refers to blood that cannot be drained from the pleural cavity and is associated with an increased risk of empyema and fibrothorax often necessitating surgical evacuation. We describe our experience of using intrapleural fibrinolytic therapy in three patients with different bleeding risk and acute non-traumatic retained haemothorax. The first was a 41-year-old female with disseminated Candida guilliermondii sepsis and an iatrogenic haemothorax, second was a 48-year-old female with transfusion-dependent acute myeloid leukaemia and spontaneous haemothorax, and the third was a 72-year-old female with spontaneous haemothorax from newly diagnosed lung cancer. All patients received one to two doses of intrapleural alteplase without any bleeding complications and resolution of retained haemothorax. This case series demonstrates the successful application and safety of this approach as an alternative to surgery in a well-resourced environment with close monitoring and ready access to blood transfusion.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Jurgen Herre
- Department of Respiratory MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
17
|
Sundaralingam A, Banka R, Rahman NM. Management of Pleural Infection. Pulm Ther 2021; 7:59-74. [PMID: 33296057 PMCID: PMC7724776 DOI: 10.1007/s41030-020-00140-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Pleural infection is a millennia-spanning condition that has proved challenging to treat over many years. Fourteen percent of cases of pneumonia are reported to present with a pleural effusion on chest X-ray (CXR), which rises to 44% on ultrasound but many will resolve with prompt antibiotic therapy. To guide treatment, parapneumonic effusions have been separated into distinct categories according to their biochemical, microbiological and radiological characteristics. There is wide variation in causative organisms according to geographical location and healthcare setting. Positive cultures are only obtained in 56% of cases; therefore, empirical antibiotics should provide Gram-positive, Gram-negative and anaerobic cover whilst providing adequate pleural penetrance. With the advent of next-generation sequencing techniques, yields are expected to improve. Complicated parapneumonic effusions and empyema necessitate prompt tube thoracostomy. It is reported that 16-27% treated in this way will fail on this therapy and require some form of escalation. The now seminal Multi-centre Intrapleural Sepsis Trials (MIST) demonstrated the use of combination fibrinolysin and DNase as more effective in the treatment of empyema compared to either agent alone or placebo, and success rates of 90% are reported with this technique. The focus is now on dose adjustments according to the patient's specific 'fibrinolytic potential', in order to deliver personalised therapy. Surgery has remained a cornerstone in the management of pleural infection and is certainly required in late-stage manifestations of the disease. However, its role in early-stage disease and optimal patient selection is being re-explored. A number of adjunct and exploratory therapies are also discussed in this review, including the use of local anaesthetic thoracoscopy, indwelling pleural catheters, intrapleural antibiotics, pleural irrigation and steroid therapy.
Collapse
Affiliation(s)
- Anand Sundaralingam
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Radhika Banka
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| |
Collapse
|
18
|
Chaddha U, Agrawal A, Feller-Kopman D, Kaul V, Shojaee S, Maldonado F, Ferguson MK, Blyth KG, Grosu HB, Corcoran JP, Sachdeva A, West A, Bedawi EO, Majid A, Mehta RM, Folch E, Liberman M, Wahidi MM, Gangadharan SP, Roberts ME, DeCamp MM, Rahman NM. Use of fibrinolytics and deoxyribonuclease in adult patients with pleural empyema: a consensus statement. THE LANCET RESPIRATORY MEDICINE 2021; 9:1050-1064. [PMID: 33545086 DOI: 10.1016/s2213-2600(20)30533-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Although our understanding of the pathogenesis of empyema has grown tremendously over the past few decades, questions still remain on how to optimally manage this condition. It has been almost a decade since the publication of the MIST2 trial, but there is still an extensive debate on the appropriate use of intrapleural fibrinolytic and deoxyribonuclease therapy in patients with empyema. Given the scarcity of overall guidance on this subject, we convened an international group of 22 experts from 20 institutions across five countries with experience and expertise in managing adult patients with empyema. We did a literature and internet search for reports addressing 11 clinically relevant questions pertaining to the use of intrapleural fibrinolytic and deoxyribonuclease therapy in adult patients with bacterial empyema. This Position Paper, consisting of seven graded and four ungraded recommendations, was formulated by a systematic and rigorous process involving the evaluation of published evidence, augmented with provider experience when necessary. Panel members participated in the development of the final recommendations using the modified Delphi technique. Our Position Paper aims to address the existing gap in knowledge and to provide consensus-based recommendations to offer guidance in clinical decision making when considering the use of intrapleural therapy in adult patients with bacterial empyema.
Collapse
Affiliation(s)
- Udit Chaddha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Abhinav Agrawal
- Division of Pulmonary, Critical Care and Sleep Medicine, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, New Hyde Park, NY, USA
| | - David Feller-Kopman
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Viren Kaul
- Department of Pulmonary and Critical Care Medicine, Crouse Health-SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samira Shojaee
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fabien Maldonado
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark K Ferguson
- Section of Thoracic Surgery, University of Chicago Medical Center, Chicago, IL, USA
| | - Kevin G Blyth
- Institute of Cancer Sciences and Glasgow Pleural Disease Unit, University of Glasgow, Glasgow, UK
| | - Horiana B Grosu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John P Corcoran
- Interventional Pulmonology Service, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Ashutosh Sachdeva
- Division of Pulmonary and Critical Care Medicine, University of Maryland, Baltimore, MD, USA
| | - Alex West
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK; Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| | - Adnan Majid
- Department of Surgery, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital Harvard Medical School, Boston, MA, USA
| | - Ravindra M Mehta
- Department of Pulmonary and Critical Care, Apollo Hospitals, Bangalore, India
| | - Erik Folch
- Complex Chest Disease Center, Beth Israel Deaconess Medical Center, Massachusetts General Hospital Harvard Medical School, Boston, MA, USA
| | - Moishe Liberman
- Division of Thoracic Surgery, University of Montreal, Montreal, QC, Canada
| | - Momen M Wahidi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, NC, USA
| | - Sidhu P Gangadharan
- Department of Surgery, Division of Thoracic Surgery and Interventional Pulmonology, Beth Israel Deaconess Medical Center, Massachusetts General Hospital Harvard Medical School, Boston, MA, USA
| | - Mark E Roberts
- Sherwood Forest Hospitals NHS Foundation Trust, Sutton-in-Ashfield, UK
| | - Malcolm M DeCamp
- Division of Cardiothoracic Surgery, University of Wisconsin, Madison, WI, USA
| | - Najib M Rahman
- Oxford Respiratory Trials Unit, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Gregory P, Rahman NM, Lee YCG. Osler Centenary Papers: Management of pleural infection: Osler's final illness and recent advances. Postgrad Med J 2020; 95:656-659. [PMID: 31754057 DOI: 10.1136/postgradmedj-2018-135893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/24/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
Sir William Osler's great work and achievements are extensively documented. Less well known is his prolonged battle with postinfluenza pneumonia, lung abscess and pleural infection that eventually led to his demise. At the age of 70, he was a victim of the global Spanish influenza epidemic, and subsequently developed pneumonia. In the era before antibiotics, he received supportive care and opium for symptom control. The infection extended to the pleura and he required repeated thoracentesis which failed to halt his deterioration. He proceeded to open surgical drainage involving rib resection. Unfortunately, he died shortly after the operation from massive pleuropulmonary haemorrhage. In this article, we review the events leading up to Osler's death and contrast his care 100 years ago with contemporary state-of-the-art management in pleural infection.
Collapse
Affiliation(s)
- Prudence Gregory
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, University of Oxford, Oxford, UK
| | - Y C Gary Lee
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia .,School of Medicine & Centre for Respiratory Health, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
20
|
Mierzejewski M, Korczynski P, Krenke R, Janssen JP. Chemical pleurodesis - a review of mechanisms involved in pleural space obliteration. Respir Res 2019; 20:247. [PMID: 31699094 PMCID: PMC6836467 DOI: 10.1186/s12931-019-1204-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chemical pleurodesis is a therapeutic procedure applied to create the symphysis between the parietal and visceral pleura by intrapleural administration of various chemical agents (e.g. talk, tetracycline, iodopovidone, etc.). The two major clinical conditions treated with chemical pleurodesis are recurrent pleural effusion (PE) and recurrent spontaneous pneumothorax. Although the history of chemical pleurodesis began over a century ago, detailed data on the mechanisms of action of sclerosing agents are highly incomplete. The following article aims to present the state of knowledge on this subject.It is believed that mesothelial cells are the main structural axis of pleurodesis. In response to sclerosing agents they secrete a variety of mediators including chemokines such as interleukin 8 (IL-8) and monocyte chemoattractant protein (MCP-1), as well as growth factors - vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF) and transforming growth factor- β (TGF-β). Numerous data suggest that intact mesothelial cells and the above cytokines play a crucial role in the initiation and maintenance of different pathways of pleural inflammation and pleural space obliteration.It seems that the process of pleurodesis is largely nonspecific to the sclerosant and involves the same ultimate pathways including activation of pleural cells, coagulation cascade, fibrin chain formation, fibroblast proliferation and production of collagen and extracellular matrix components. Of these processes, the coagulation cascade with decreased fibrinolytic activity and increased fibrinogenesis probably plays a pivotal role, at least during the early response to sclerosant administration.A better understanding of various pathways involved in pleurodesis may be a prerequisite for more effective and safe use of various sclerosants and for the development of new, perhaps more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Michal Mierzejewski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Korczynski
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland.
| | - Julius P Janssen
- Department of Pulmonary Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
21
|
Kanellakis NI, Wrightson JM, Hallifax R, Bedawi EO, Mercer R, Hassan M, Asciak R, Hedley E, Dobson M, Dong T, Psallidas I, Rahman NM. Biological effect of tissue plasminogen activator (t-PA) and DNase intrapleural delivery in pleural infection patients. BMJ Open Respir Res 2019; 6:e000440. [PMID: 31673364 PMCID: PMC6797395 DOI: 10.1136/bmjresp-2019-000440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/07/2019] [Accepted: 09/12/2019] [Indexed: 11/03/2022] Open
Abstract
Background Pleural infection (PI) is a major global disease with an increasing incidence, and pleural fluid (PF) drainage is essential for the successful treatment. The MIST2 study demonstrated that intrapleural administration of tissue plasminogen activator (t-PA) and DNase, or t-PA alone increased the volume of drained PF. Mouse model studies have suggested that the volume increase is due to the interaction of the pleura with the t-PA via the monocyte chemoattractant protein 1 (MCP-1) pathway. We designed a study to determine the time frame of drained PF volume induction on intrapleural delivery of t-PA±DNase in humans, and to test the hypothesis that the induction is mediated by the MCP-1 pathway. Methods Data and samples from the MIST2 study were used (210 PI patients randomised to receive for 3 days either: t-PA and DNase, t-PA and placebo, DNase and placebo or double placebo). PF MCP-1 levels were measured by ELISA. One-way and two-way analysis of variance (ANOVA) with Tukey's post hoc tests were used to estimate statistical significance. Pearson's correlation coefficient was used to assess linear correlation. Results Intrapleural administration of t-PA±DNase stimulated a statistically significant rise in the volume of drained PF during the treatment period (days 1-3). No significant difference was detected between any groups during the post-treatment period (days 5-7). Intrapleural administration of t-PA increased MCP-1 PF levels during treatment; however, no statistically significant difference was detected between patients who received t-PA and those who did not. PF MCP-1 expression was not correlated to the drug given nor the volume of drained PF. Conclusions We conclude that the PF volume drainage increment seen with the administration of t-PA does not appear to act solely via activation of the MCP-1 pathway.
Collapse
Affiliation(s)
- Nikolaos I Kanellakis
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Wrightson
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rob Hallifax
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rachel Mercer
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Rachelle Asciak
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK
| | - Emma Hedley
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Melissa Dobson
- Oxford Respiratory Trials Unit, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Tao Dong
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ioannis Psallidas
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, Oxfordshire, UK.,Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, Oxfordshire, UK.,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
22
|
|
23
|
Schembri F, Ferguson JS. Is There a TIME and Place for Thrombolytics in Malignant Pleural Effusions? Am J Respir Crit Care Med 2019; 197:422-423. [PMID: 29072846 DOI: 10.1164/rccm.201710-2044ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Frank Schembri
- 1 The Pulmonary Center Boston University School of Medicine Boston, Massachusetts and
| | - J Scott Ferguson
- 2 Division of Pulmonary and Critical Care University of Wisconsin School of Medicine and Public Health Madison, Wisconsin
| |
Collapse
|
24
|
Bedawi EO, Hassan M, McCracken D, Rahman NM. Pleural infection: a closer look at the etiopathogenesis, microbiology and role of antibiotics. Expert Rev Respir Med 2019; 13:337-347. [PMID: 30707629 DOI: 10.1080/17476348.2019.1578212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Pleural infection is a condition that continues to pose a significant challenge to respiratory physicians. We hypothesize that the main barriers to progress include limited understanding of the etiopathogenesis, microbiology,and role of antibiotics in the pleural space. Areas covered: PubMed was searched for articles related to adult pleural infection using the terms 'pleural infection', 'empyema' and 'parapneumonic'. The search focused on relevant literature within the last 10 years, with any older citations used only to display context or lack of progress. Tuberculous pleural infection was excluded. We chose to give specific attention to the etiopathogenesis of pleural infection, including recent advances in diagnostics and biomarkers. We discuss our understanding of the pleural microbiome and rationalize the current use of antibiotics in treating this condition. Expert commentary: Understanding of key events in the development of this condition remains limited. The microbiology is unique compared to the lung, and highly variable. Higher culture yields from pleural biopsy may add new insights into the etiopathogenesis. There is little evidence into achievable effective antibiotic concentration within the pleura. Research into issues including the relevance of biofilm formation and significance of pleural thickening is necessary for treatment progress.
Collapse
Affiliation(s)
- Eihab O Bedawi
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK
| | - Maged Hassan
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK.,c Chest Diseases Department, Faculty of Medicine , Alexandria University , Alexandria , Egypt
| | - David McCracken
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK
| | - Najib M Rahman
- a Oxford Pleural Unit , Oxford University Hospitals , Oxford , UK.,b Oxford Respiratory Trials Unit , University of Oxford , Oxford , UK.,d Oxford NIHR Biomedical Research Centre , Oxford , UK
| |
Collapse
|
25
|
Bedawi EO, Hassan M, Rahman NM. Recent developments in the management of pleural infection: A comprehensive review. CLINICAL RESPIRATORY JOURNAL 2018; 12:2309-2320. [PMID: 30005142 DOI: 10.1111/crj.12941] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Pleural infection is a condition commonly encountered by the respiratory physician. This review aims to provide the reader with an update on the most recent data regarding the epidemiology, microbiology, and the management of pleural infection. DATA SOURCE Medline was searched for articles related to pleural infection using the terms "pleural infection," "empyema," and "parapneumonic." The search was limited to the years 1997-2017. Only human studies and reports in English were included. RESULTS A rise in the incidence of pleural infection is seen worldwide. Despite the improvement in healthcare practices, the mortality from pleural infection remains high. The role of oral microflora in the etiology of pleural infection is firmly established. A concise review of the recent insights on the pathogenesis of pleural infections is presented. A particular focus is made on the role of tPA, DNAse and similar substances and their interaction with inflammatory cells and how this affects the pathogenesis and treatment of pleural infection. CONCLUSION Pleural infection is a common disease with significant morbidity and mortality, as well as a considerable economic burden. The role of medical management is expanding thanks to the widespread use of newer treatments.
Collapse
Affiliation(s)
- Eihab O Bedawi
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom
| | - Maged Hassan
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom.,Chest Diseases Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Najib M Rahman
- Oxford Centre for Respiratory Medicine, Oxford University Hospitals, Oxford, United Kingdom.,Oxford Respiratory Trials Unit, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Fear VS, Tilsed C, Chee J, Forbes CA, Casey T, Solin JN, Lansley SM, Lesterhuis WJ, Dick IM, Nowak AK, Robinson BW, Lake RA, Fisher SA. Combination immune checkpoint blockade as an effective therapy for mesothelioma. Oncoimmunology 2018; 7:e1494111. [PMID: 30288361 DOI: 10.1080/2162402x.2018.1494111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 12/29/2022] Open
Abstract
Mesothelioma is an aggressive asbestos induced cancer with extremely poor prognosis and limited treatment options. Immune checkpoint blockade (ICPB) has demonstrated effective therapy in melanoma and is now being applied to other cancers, including mesothelioma. However, the efficacy of ICPB and which immune checkpoint combinations constitute the best therapeutic option for mesothelioma have yet to be fully elucidated. Here, we used our well characterised mesothelioma tumour model to investigate the efficacy of different ICBP treatments to generate effective therapy for mesothelioma. We show that tumour resident regulatory T cell co-express high levels of CTLA-4, OX40 and GITR relative to T effector subsets and that these receptors are co-expressed on a large proportion of cells. Targeting any of CTLA-4, OX40 or GITR individually generated effective responses against mesothelioma. Furthermore, the combination of αCTLA-4 and αOX40 was synergistic, with an increase in complete tumour regressions from 20% to 80%. Other combinations did not synergise to enhance treatment outcomes. Finally, an early pattern in T cell response was predictive of response, with activation status and ICP receptor expression profile of T effector cells harvested from tumour and dLN correlating with response to immunotherapy. Taken together, these data demonstrate that combination ICPB can work synergistically to induce strong, durable immunity against mesothelioma in an animal model.
Collapse
Affiliation(s)
- Vanessa S Fear
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Caitlin Tilsed
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Catherine A Forbes
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Thomas Casey
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Jessica N Solin
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia
| | - Sally M Lansley
- Centre for Respiratory Health, School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - William Joost Lesterhuis
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Ian M Dick
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Medicine, The University of Western Australia, Perth, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases (NCARD). Lv5 QQ Block (M503). QEII Medical Centre, The University of Western Australia, Perth, Australia.,School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
27
|
Komissarov AA, Rahman N, Lee YCG, Florova G, Shetty S, Idell R, Ikebe M, Das K, Tucker TA, Idell S. Fibrin turnover and pleural organization: bench to bedside. Am J Physiol Lung Cell Mol Physiol 2018; 314:L757-L768. [PMID: 29345198 DOI: 10.1152/ajplung.00501.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have shed new light on the role of the fibrinolytic system in the pathogenesis of pleural organization, including the mechanisms by which the system regulates mesenchymal transition of mesothelial cells and how that process affects outcomes of pleural injury. The key contribution of plasminogen activator inhibitor-1 to the outcomes of pleural injury is now better understood as is its role in the regulation of intrapleural fibrinolytic therapy. In addition, the mechanisms by which fibrinolysins are processed after intrapleural administration have now been elucidated, informing new candidate diagnostics and therapeutics for pleural loculation and failed drainage. The emergence of new potential interventional targets offers the potential for the development of new and more effective therapeutic candidates.
Collapse
Affiliation(s)
- Andrey A Komissarov
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Najib Rahman
- Oxford Pleural Unit and Oxford Respiratory Trials Unit, University of Oxford, Churchill Hospital; and National Institute of Health Research Biomedical Research Centre , Oxford , United Kingdom
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital; Pleural Medicine Unit, Institute for Respiratory Health , Perth ; School of Medicine and Pharmacology, University of Western Australia , Perth , Australia
| | - Galina Florova
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Sreerama Shetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Richard Idell
- Department of Behavioral Health, Child and Adolescent Psychiatry, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Kumuda Das
- Department of Translational and Vascular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler , Tyler, Texas
| |
Collapse
|
28
|
Labeyrie PE, Goulay R, Martinez de Lizarrondo S, Hébert M, Gauberti M, Maubert E, Delaunay B, Gory B, Signorelli F, Turjman F, Touzé E, Courthéoux P, Vivien D, Orset C. Vascular Tissue-Type Plasminogen Activator Promotes Intracranial Aneurysm Formation. Stroke 2017; 48:2574-2582. [DOI: 10.1161/strokeaha.117.017305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Paul-Emile Labeyrie
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Romain Goulay
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Sara Martinez de Lizarrondo
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Marie Hébert
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Maxime Gauberti
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Eric Maubert
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Barbara Delaunay
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Benjamin Gory
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Francesco Signorelli
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Francis Turjman
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Emmanuel Touzé
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Patrick Courthéoux
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Denis Vivien
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| | - Cyrille Orset
- From the Department of Physiopathology and Imaging of Neurological Disorders, INSERM U1237, UNICAEN, GIP Cyceron, France (P.-E.L., R.G., S.M.d.L., M.H., M.G., E.M., B.D., E.T., P.C., D.V., C.O.); Department of Interventional Neuroradiology (P.-E.L., B.G., F.T.) and Department of Neurosurgery (F.S.), Hôpital Wertheimer, University Lyon 1, Bron, France; and Department of Neurology (E.T.), Department of Neuroradiology (P.C.), and Department of Clinical Research (D.V.), CHU Caen, University Caen
| |
Collapse
|
29
|
Corcoran JP, Hallifax RJ, Psallidas I, Rahman NM. Pleural Diseases: Saline Irrigation in Pleural Infection, Epidemiology of Pneumothorax, and Bevacizumab in Mesothelioma. Am J Respir Crit Care Med 2017; 196:382-385. [PMID: 28598211 DOI: 10.1164/rccm.201608-1676rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- John P Corcoran
- 1 University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, United Kingdom.,2 Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom; and
| | - Robert J Hallifax
- 1 University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, United Kingdom.,2 Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom; and
| | - Ioannis Psallidas
- 1 University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, United Kingdom.,2 Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom; and
| | - Najib M Rahman
- 1 University of Oxford Respiratory Trials Unit, Churchill Hospital, Oxford, United Kingdom.,2 Oxford Centre for Respiratory Medicine, Oxford University Hospitals National Health Service (NHS) Foundation Trust, Oxford, United Kingdom; and.,3 National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Dose De-escalation of Intrapleural Tissue Plasminogen Activator Therapy for Pleural Infection. The Alteplase Dose Assessment for Pleural Infection Therapy Project. Ann Am Thorac Soc 2017; 14:929-936. [DOI: 10.1513/annalsats.201609-673oc] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Lee YCG, Idell S, Stathopoulos GT. Translational Research in Pleural Infection and Beyond. Chest 2016; 150:1361-1370. [DOI: 10.1016/j.chest.2016.07.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/10/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022] Open
|
32
|
Lansley SM, Cheah HM, Lee YCG. Role of MCP-1 in pleural effusion development in a carrageenan-induced murine model of pleurisy. Respirology 2016; 22:758-763. [PMID: 27878909 DOI: 10.1111/resp.12951] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 09/03/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Exudative pleural effusions affect over 1500 patients per million population each year. The pathobiology of pleural exudate formation remains unclear. Our recent study revealed monocyte chemotactic protein-1 (MCP-1) as a key driver of fibrinolytic-induced exudate effusion while another study found a role for MCP-1 in malignant effusion formation. In the present study, we further evaluated the role of MCP-1 in the development of pleural effusion in a mouse model of acute pleural inflammation. METHODS λ-Carrageenan (CAR) was injected into the pleural cavity of CD1 mice and pleural effusion volume measured up to 16 h post-injection. Pleural effusion and serum protein and MCP-1 concentrations were measured and differential cell counts performed in fluids. Mice were also treated with either intraperitoneal (i) anti-MCP-1 antibody or isotype control or (ii) an MCP-1 receptor (CCR2) antagonist or vehicle control 12 h prior to and at the time of CAR injection. RESULTS Intrapleural CAR induced significant pleural fluid accumulation (300.0 ± 49.9 μL) in mice after 4 h. Pleural fluid MCP-1 concentrations were significantly higher than corresponding serum MCP-1 (144 603 ± 23 204 pg/mL vs 3703 ± 801 pg/mL, P < 0.0001). A significant decrease in pleural fluid formation was seen both with anti-MCP-1 antibody (median (interquartile range, IQR): 36 (0-168) μL vs controls 290 (70-436) μL; P = 0.02) or CCR2 antagonist (153 (30-222) μL vs controls 240 (151-331) μL, P = 0.0049). CONCLUSIONS Blockade of MCP-1 activity significantly reduced inflammatory pleural effusion formation in a CAR model. Together with recent successes in MCP-1 blockade in other effusion formation models, our data strongly support clinical evaluation of MCP-1 antagonists as a novel approach to pleural fluid management.
Collapse
Affiliation(s)
- Sally M Lansley
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Hui Min Cheah
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Y C Gary Lee
- Centre for Respiratory Health, School of Medicine & Pharmacology, University of Western Australia, Perth, Western Australia, Australia.,Respiratory Department, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Manual Intrapleural Saline Flushing Plus Urokinase: A Potentially Useful Therapy for Complicated Parapneumonic Effusions and Empyemas. Lung 2016; 195:135-138. [PMID: 27866276 DOI: 10.1007/s00408-016-9964-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE We sought to evaluate the safety profile and effectiveness of manual pleural saline flushing, in addition to urokinase, for managing complicated parapneumonic effusions and empyemas. METHODS Retrospective comparative review of 23 consecutive patients with complicated parapneumonic effusions or empyemas who received saline flushing plus urokinase through small-bore chest catheters, and 39 who were only treated with fibrinolytics. Both groups had similar baseline characteristics and treatments were mostly protocol-driven. RESULTS As compared with patients only receiving urokinase, those additionally treated with saline flushing needed less fibrinolytic doses (a single dose being sufficient in 15 vs 44%, p = 0.019), chest tube duration (5 vs 2 days, p < 0.01), and length of hospital stay (8 vs 6 days, p = 0.011). There were no adverse events attributed to saline therapy. CONCLUSIONS Manual pleural saline flushing via chest tube, in addition to urokinase, is a safe and potentially beneficial therapy in patients with pleural infection.
Collapse
|
34
|
Safety and Efficacy of Fibrinolytic Therapy in Restoring Function of an Obstructed Tunneled Pleural Catheter. Ann Am Thorac Soc 2016. [PMID: 26214713 DOI: 10.1513/annalsats.201503-182oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Tunneled pleural catheters have been established to be safe and effective in the management of recurrent symptomatic pleural effusions. Obstruction of the tunneled pleural catheter is rare; however, when obstructed the catheter fails to achieve its primary goal of symptom palliation. The management of pleural catheter obstruction has not been studied. OBJECTIVES We aimed to determine if the use of intracatheter fibrinolytic therapy is safe and effective in restoring catheter function. METHODS One hundred seventy-two patients with tunneled pleural catheters placed from 2009 to 2014 were reviewed to identify patients who received fibrinolysis for catheter obstruction, defined by a sudden reduction to less than 10 ml in pleural fluid drainage with fluid visualized in the thorax on ultrasound/radiography. The technique involved intracatheter instillation of 2 to 5 mg of alteplase, which was allowed to remain in the catheter for 60 to 120 minutes, after which drainage was performed. MEASUREMENTS AND MAIN RESULTS Obstruction occurred in 37 pleural catheters at a median of 2 months from insertion. One hundred percent (37/37) of obstructed catheters resumed drainage after fibrinolytic instillation, from a median of 4 ml before to 300 ml after fibrinolysis (P < 0.001). Twenty-four (65%) were performed in an outpatient setting, and no complications were encountered during or after fibrinolytic therapy. There were 18 episodes of reobstruction, all of which were successfully treated with intracatheter fibrinolytic therapy without complication. CONCLUSIONS Fibrinolytic instillation through a tunneled pleural catheter is safe and effective in restoring function of an obstructed catheter, as evidenced by the lack of complications and success in achieving catheter patency. The procedure can also be performed safely in an outpatient setting. Patients who experience catheter obstruction may be prone to reobstruction; however, fibrinolysis was safe and effective in reestablishing patency of the reobstructed catheter.
Collapse
|
35
|
New insights on pleural fluid formation: potential translational targets. CURRENT PULMONOLOGY REPORTS 2016. [DOI: 10.1007/s13665-016-0135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Thomas R, Cheah HM, Creaney J, Turlach BA, Lee YCG. Longitudinal Measurement of Pleural Fluid Biochemistry and Cytokines in Malignant Pleural Effusions. Chest 2016; 149:1494-500. [PMID: 26836920 DOI: 10.1016/j.chest.2016.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/08/2015] [Accepted: 01/04/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Malignant pleural effusion (MPE) is common. Existing literature on pleural fluid compositions is restricted to cross-sectional sampling with little information on longitudinal changes of fluid biochemistry and cytokines with disease progression. Indwelling pleural catheters provide the unique opportunity for repeated sampling and longitudinal evaluation of MPE, which may provide insight into tumor pathobiology. METHODS We collected 638 MPE samples from 103 patients managed with indwelling pleural catheters over 95 days (median, range 0-735 days) and analyzed them for protein, pH, lactate dehydrogenase, and glucose levels. Peripheral blood was quantified for hematocrit, platelets, leukocytes, protein, and albumin. Cytokine levels (monocyte chemotactic protein [MCP]-1; vascular endothelial growth factor; interleukin-6, -8, and -10; tumor necrosis factor-α; and interferon-gamma) were determined in 298 samples from 35 patients with mesothelioma. Longitudinal changes of all parameters were analyzed using a linear mixed model. RESULTS Significant decreases were observed over time in pleural fluid protein by 8 g/L per 100 days (SE, 1.32; P < .0001) and pH (0.04/100 days; SE, 0.02; P = .0203), accompanied by a nonsignificant rise in lactate dehydrogenase. The ratio of pleural fluid to serum protein decreased by 0.06/100 days (SE, 0.02; P = .04). MPEs from mesothelioma (n = 63) had lower pleural fluid glucose (P = .0104) at baseline and a faster rate of decline in glucose (P = .0423) when compared with non-mesothelioma effusions (n = 38). A progressive rise in mesothelioma pleural fluid concentration of [log] MCP-1 ([log] 0.37 pg/mL per 100 days; SE, 0.13; P = .0046), but not of other cytokines, was observed. CONCLUSIONS MPE fluids become less exudative and more acidic over the disease course. The rise in MCP-1 levels suggests a pathobiological role in MPE.
Collapse
Affiliation(s)
- Rajesh Thomas
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia
| | - Hui Min Cheah
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia
| | - Jenette Creaney
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Australia
| | - Berwin A Turlach
- Centre for Applied Statistics and School of Mathematics and Statistics, University of Western Australia, Perth, Australia
| | - Y C Gary Lee
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, University of Western Australia, Perth, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Australia; Pleural Medicine Unit, Institute of Respiratory Health, University of Western Australia, Perth, Australia.
| |
Collapse
|
37
|
Piccolo F, Popowicz N, Wong D, Lee YCG. Intrapleural tissue plasminogen activator and deoxyribonuclease therapy for pleural infection. J Thorac Dis 2015; 7:999-1008. [PMID: 26150913 DOI: 10.3978/j.issn.2072-1439.2015.01.30] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/12/2015] [Indexed: 01/18/2023]
Abstract
Pleural infection remains a global health burden associated with significant morbidity. Drainage of the infected pleural fluid is important but can often be hindered by septations and loculations. Intrapleural fibrinolytic therapy alone, to break pleural adhesions, has shown no convincing advantages over placebo in improving clinical outcome. Deoxyribonucleoprotein from degradation of leukocytes contributes significantly to high viscosity of infected pleural fluid. Recombinant deoxyribonuclease (DNase) is effective in reducing pleural fluid viscosity in pre-clinical studies. The combination of tissue plasminogen activator (tPA) and DNase was effective in animal model experiments of empyema. The benefits were established in a randomized clinical trial: those (n=48) treated with tPA/DNase had significantly improved radiological outcomes and reduced need of surgery and duration of hospital stay. A longitudinal observational series of 107 patients further confirmed the effectiveness and safety of tPA/DNase therapy, including its use as 'rescue therapy' when patients failed to respond to antibiotics and chest tube drainage. Overall, a short course of intrapleural tPA (10 mg) and DNase (5 mg) therapy provides a cure in over 90% of patients without requiring surgery. The treatment stimulates pleural fluid formation, enhances radiographic clearance and resolution of systemic inflammation. Serious complications are uncommon; pleural bleeding requiring transfusion occurred in ~2% of cases. Pain can occur, especially with the first dose. Treatment is contraindicated in those with significant bleeding diathesis or a bronchopleural fistula. Future research is required to optimize dosing regimens and in refining patient selection.
Collapse
Affiliation(s)
- Francesco Piccolo
- 1 Department of Medicine, Swan District Hospital, Perth, Australia ; 2 Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia ; 3 Respiratory Medicine, Auckland City Hospital, Auckland, New Zealand ; 4 Centre for Asthma, Allergy & Respiratory Research, School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - Natalia Popowicz
- 1 Department of Medicine, Swan District Hospital, Perth, Australia ; 2 Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia ; 3 Respiratory Medicine, Auckland City Hospital, Auckland, New Zealand ; 4 Centre for Asthma, Allergy & Respiratory Research, School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - Donny Wong
- 1 Department of Medicine, Swan District Hospital, Perth, Australia ; 2 Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia ; 3 Respiratory Medicine, Auckland City Hospital, Auckland, New Zealand ; 4 Centre for Asthma, Allergy & Respiratory Research, School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| | - Yun Chor Gary Lee
- 1 Department of Medicine, Swan District Hospital, Perth, Australia ; 2 Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia ; 3 Respiratory Medicine, Auckland City Hospital, Auckland, New Zealand ; 4 Centre for Asthma, Allergy & Respiratory Research, School of Medicine & Pharmacology, University of Western Australia, Perth, Australia
| |
Collapse
|