1
|
Moos P, Cheminant J, Adhikari U, Venosa A. Transcriptomic-based roadmap to the healthy and ozone-exposed lung. CURRENT OPINION IN TOXICOLOGY 2024; 37:100445. [PMID: 38187954 PMCID: PMC10769160 DOI: 10.1016/j.cotox.2023.100445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The lung is constantly exposed to a myriad of exogenous stressors. Ground-level ozone represents a ubiquitous and extremely reactive anthropogenic toxicant, impacting the health of millions across the globe. While abundant, epidemiological, in vivo, and in vitro data focuses the ozone toxicity in individual cell types (e.g. epithelial type II, alveolar macrophages) or signaling pathways involved in the injury (e.g., akt, glutathione). When appropriately used, bulk and single cell RNA sequencing techniques have the potential to provide complete, and in certain cases unbiased, information of the molecular events taking place in the steady state and injured lung, and even capture the phenotypic diversity of neighboring cells. To this end, this review compiles information pertaining to the latest understanding of lung cell identity and activation in the steady state and ozone exposed lung. In addition, it discusses the value and benefits of multi-omics approaches and other tools developed to predict cell-cell communication and dissect spatial heterogeneity.
Collapse
Affiliation(s)
- Philip Moos
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Jenna Cheminant
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Ujjwal Adhikari
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
2
|
Graf J, Trautmann-Rodriguez M, Sabnis S, Kloxin AM, Fromen CA. On the path to predicting immune responses in the lung: Modeling the pulmonary innate immune system at the air-liquid interface (ALI). Eur J Pharm Sci 2023; 191:106596. [PMID: 37770004 PMCID: PMC10658361 DOI: 10.1016/j.ejps.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Chronic respiratory diseases and infections are among the largest contributors to death globally, many of which still have no cure, including chronic obstructive pulmonary disorder, idiopathic pulmonary fibrosis, and respiratory syncytial virus among others. Pulmonary therapeutics afford untapped potential for treating lung infection and disease through direct delivery to the site of action. However, the ability to innovate new therapeutic paradigms for respiratory diseases will rely on modeling the human lung microenvironment and including key cellular interactions that drive disease. One key feature of the lung microenvironment is the air-liquid interface (ALI). ALI interface modeling techniques, using cell-culture inserts, organoids, microfluidics, and precision lung slices (PCLS), are rapidly developing; however, one major component of these models is lacking-innate immune cell populations. Macrophages, neutrophils, and dendritic cells, among others, represent key lung cell populations, acting as the first responders during lung infection or injury. Innate immune cells respond to and modulate stromal cells and bridge the gap between the innate and adaptive immune system, controlling the bodies response to foreign pathogens and debris. In this article, we review the current state of ALI culture systems with a focus on innate immune cells and suggest ways to build on current models to add complexity and relevant immune cell populations.
Collapse
Affiliation(s)
- Jodi Graf
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | | | - Simone Sabnis
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Catherine A Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
3
|
Sundar IK, Duraisamy SK, Choudhary I, Saini Y, Silveyra P. Acute and Repeated Ozone Exposures Differentially Affect Circadian Clock Gene Expression in Mice. Adv Biol (Weinh) 2023; 7:e2300045. [PMID: 37204107 PMCID: PMC10657336 DOI: 10.1002/adbi.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Circadian rhythms have an established role in regulating physiological processes, such as inflammation, immunity, and metabolism. Ozone, a common environmental pollutant with strong oxidative potential, is implicated in lung inflammation/injury in asthmatics. However, whether O3 exposure affects the expression of circadian clock genes in the lungs is not known. In this study, changes in the expression of core clock genes are analyzed in the lungs of adult female and male mice exposed to filtered air (FA) or O3 using qRT-PCR. The findings are confirmed using an existing RNA-sequencing dataset from repeated FA- and O3 -exposed mouse lungs and validated by qRT-PCR. Acute O3 exposure significantly alters the expression of clock genes in the lungs of females (Per1, Cry1, and Rora) and males (Per1). RNA-seq data revealing sex-based differences in clock gene expression in the airway of males (decreased Nr1d1/Rev-erbα) and females (increased Skp1), parenchyma of females and males (decreased Nr1d1 and Fbxl3 and increased Bhlhe40 and Skp1), and alveolar macrophages of males (decreased Arntl/Bmal1, Per1, Per2, Prkab1, and Prkab2) and females (increased Cry2, Per1, Per2, Csnk1d, Csnk1e, Prkab2, and Fbxl3). These findings suggest that lung inflammation caused by O3 exposure affects clock genes which may regulate key signaling pathways.
Collapse
Affiliation(s)
- Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Santhosh Kumar Duraisamy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, Indiana University, School of Public Health, Bloomington, IN, USA
| |
Collapse
|
4
|
Wen H, Lu D, Chen H, Zhu Y, Xie Q, Zhang Z, Wu Z. Tetrahydropalmatine induces the polarization of M1 macrophages to M2 to relieve limb ischemia-reperfusion-induced lung injury via inhibiting the TLR4/NF-κB/NLRP3 signaling pathway. Drug Dev Res 2022; 83:1362-1372. [PMID: 35976115 DOI: 10.1002/ddr.21965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Abstract
Tetrahydropalmatine (THP) is the main component of the Chinese medicine Corydalis yanhusuo, which has been reported to alleviate limb ischemia-reperfusion-induced acute lung injury (LIR-ALI). This study aimed to investigate the mechanism underlying the effect of THP on relieving LIR-ALI. LIR-ALI model was established in rats with the presence or absence of THP pretreatment. Then, BEAS-2B cells and THP-1 macrophages were cocultured with rat serum from the Sham group and the Model group in the presence or absence of THP pretreatment. Subsequently, lung/body weight and lung wet/dry ratio of rats were calculated. Histological changes of lung tissues were observed by hematoxylin-eosin staining. Expression of CD86 and CD163 in lung tissues of rats was assessed by quantitative reverse transcription polymerase chain reaction, immunohistochemistry staining, and flow cytometry analysis. Levels of inflammatory cytokines were measured by enzyme linked immunosorbent assay. The expression of proteins related to toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB)/NLRP3 signaling was detected by western blot analysis. Results revealed that THP significantly relieved LIR-ALI in rats. Moreover, THP also reduced CD86 expression but elevated CD163 expression in lung tissues of rats with LIR-ALI. Furthermore, THP inhibited inflammation in serum and bronchoalveolar lavage fluid of rats with LIR-ALI and inactivated the TLR4/NF-κB/NLRP3 signaling in vivo. Additionally, coculture of serum from rats in the Model group also reduced viability, promoted inflammation, inactivated TLR4/NF-κB/NLRP3 expression in BEAS-2B cells and inhibited macrophage polarization, while these effects were all reversed by THP treatment. Collectively, THP could induce the polarization of M1 macrophage to M2 to suppress inflammation via inhibiting TLR4/NF-κB/NLRP3 signaling, thereby attenuating LIR-ALI.
Collapse
Affiliation(s)
- Heng Wen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongshi Lu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hanjian Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yeke Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhouyang Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Jiang W, Wang JM, Luo JH, Chen Y, Pi J, Ma XD, Liu CX, Zhou Y, Qu XP, Liu C, Liu HJ, Qin XQ, Xiang Y. Airway epithelial integrin β4-deficiency exacerbates lipopolysaccharide-induced acute lung injury. J Cell Physiol 2021; 236:7711-7724. [PMID: 34018612 DOI: 10.1002/jcp.30422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Airway epithelial cells, the first barrier of the respiratory tract, play an indispensable role in innate immunity. Integrin β4 (ITGB4) is a structural adhesion molecule that is involved in the pathological progression of acute inflammatory diseases and is downregulated in asthmatic patients. Research has shown that endothelial ITGB4 has proinflammatory properties in acute lung injury (ALI). However, the role of epithelial ITGB4 in a murine ALI model is still unknown. This study investigated the role of ITGB4 in lipopolysaccharide (LPS)-induced ALI. We found that ITGB4 in the airway epithelium had remarkably increased after the introduction of LPS in vivo and in vitro. Then, we constructed airway epithelial cell-specific ITGB4 knockout (ITGB4-/- ) mice to study its role in ALI. At a time point of 12 h after the tracheal injection of LPS, ITGB4-/- mice showed increased macrophages (mainly M1-type macrophages) and neutrophil infiltration into the lungs; inflammation-related proteins including interleukin (IL)-6, tumor necrosis factor, and IL-17A were significantly elevated compared to their levels in ITGB4+/+ mice. Furthermore, we investigated the role of ITGB4 in the anti-inflammatory response. Intriguingly, in the ITGB4-/- + LPS group, we found significantly reduced expression of anti-inflammatory factors, including IL-10 messenger RNA (mRNA) and ARG-1 mRNA. We also observed that monocyte chemotactic protein (MCP-1) increased significantly both in vivo and in vitro. Airway epithelium activates macrophages, most likely driven by MCP-1, which we confirmed in the coculture of epithelia and macrophages. These phenomena indicate that ITGB4 in airway epithelial cells plays an important role in the process of inflammation and activation of macrophages in ALI. Overall, these data demonstrated a novel link between airway epithelial ITGB4 and the inflammatory response in LPS-induced ALI.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jin-Mei Wang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jin-Hua Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yu Chen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiao Pi
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Di Ma
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Cai-Xia Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Yang Zhou
- Functional Experimental Center, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xiang-Ping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui-Jun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Qun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Müller L, Usemann J, Alves MP, Latzin P. Diesel exposure increases susceptibility of primary human nasal epithelial cells to rhinovirus infection. Physiol Rep 2021; 9:e14994. [PMID: 34542243 PMCID: PMC8451029 DOI: 10.14814/phy2.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/30/2022] Open
Abstract
Nasal epithelial cells (NECs) are among the first cells to be exposed to air pollutants and respiratory viruses. Although it is known that air pollution exposure and rhinovirus infections increase the risk for asthma development independently, it is unclear how these risk factors interact on a cellular level. Therefore, we aimed to investigate how exposure to diesel particulate matter (DPM) modifies the response of primary NECs to rhinovirus (RV) infection in vitro. Exposure of re-differentiated, primary NECs (49 healthy children [0-7 years], 12 adults) to DPM modified the mRNA expression of viral cell-surface receptors, pattern recognition receptors, and pro-inflammatory response (also protein levels). After exposure to DPM, we additionally infected the NECs with RV-1b and RV-16. Viral loads (assessed by titration assays) were significantly higher in DPM-exposed compared with non-exposed NECs. Exposure to DPM prior to RV infection resulted in a significant upregulation of pro-inflammatory cytokines (mRNA and protein level) and β-defensins mRNA, and significant downregulation of pattern recognition receptors mRNA and CXCL10 (mRNA and protein levels). There was no difference between all outcomes of NECs from children and adults. We can conclude that exposure to DPM prior to RV infection increases viral loads by downregulation of viral defense receptors and upregulation of pro-inflammatory cytokines. Our findings indicate a strong interaction between air pollution and the antiviral response to RV infection in NECs. We provide mechanistic evidence that exposure to air pollution increases susceptibility to RV infection.
Collapse
Affiliation(s)
- Loretta Müller
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
| | - Jakob Usemann
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
- Division of Respiratory MedicineUniversity Children's Hospital ZurichZurichSwitzerland
| | - Marco P. Alves
- Institute of Virology and ImmunologyBernSwitzerland
- Department of Infectious Diseases and PathobiologyVetsuisse FacultyUniversity of BernBernSwitzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and AllergologyDepartment of Paediatrics, InselspitalBern University HospitalUniversity of BernBernSwitzerland
- Department for BioMedical Research (DBMR)University of BernBernSwitzerland
- University Children's Hospital Basel (UKBB)BaselSwitzerland
| |
Collapse
|
7
|
Francis M, Guo G, Kong B, Abramova EV, Cervelli JA, Gow AJ, Laskin JD, Laskin DL. Regulation of Lung Macrophage Activation and Oxidative Stress Following Ozone Exposure by Farnesoid X Receptor. Toxicol Sci 2021; 177:441-453. [PMID: 32984886 PMCID: PMC7548292 DOI: 10.1093/toxsci/kfaa111] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammatory macrophages are known to contribute to ozone toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating bile acid and lipid homeostasis; it also exerts anti-inflammatory activity by suppressing macrophage NF-κB. Herein, we analyzed the role of FXR in regulating macrophage activation in the lung following ozone exposure. Treatment of wild-type (WT) mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory (F4/80+CD11c+CD11b+Ly6CHi) and anti-inflammatory (F4/80+CD11c+CD11b+Ly6CLo) macrophages in the lung. The accumulation of proinflammatory macrophages was increased in FXR-/- mice compared with WT mice; however, anti-inflammatory macrophage activation was blunted as reflected by reduced arginase and mannose receptor expression, a response correlated with decreased Nur77. This was associated with prolonged oxidative stress, as measured by 4-hydroxynonenal-modified proteins in the lung. Loss of FXR was accompanied by protracted increases in lung NF-κB activity and its target, inducible nitric oxide synthase in response to ozone. Levels of Tnf-α, Il-1β, Ccr2, Ccl2, Cx3cr1, and Cx3cl1 were also increased in lungs of FXR-/- relative to WT mice; conversely, genes regulating lipid homeostasis including Lxrα, Apoe, Vldlr, Abcg1, and Abca1 were downregulated, irrespective of ozone exposure. In FXR-/- mice, ozone caused an increase in total lung phospholipids, with no effect on SP-B or SP-D. Dyslipidemia was correlated with blunting of ozone-induced increases in positive end-expiratory pressure-dependent quasi-static pressure volume curves indicating a stiffer lung in FXR-/- mice. These findings identify FXR as a regulator of macrophage activation following ozone exposure suggesting that FXR ligands may be useful in mitigating inflammation and oxidative stress induced by pulmonary irritants.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Grace Guo
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Bo Kong
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Elena V Abramova
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| |
Collapse
|
8
|
Perryman A, Speen AM, Kim HYH, Hoffman JR, Clapp PW, Rivera Martin W, Snouwaert JN, Koller BH, Porter NA, Jaspers I. Oxysterols Modify NLRP2 in Epithelial Cells, Identifying a Mediator of Ozone-induced Inflammation. Am J Respir Cell Mol Biol 2021; 65:500-512. [PMID: 34126877 DOI: 10.1165/rcmb.2021-0032oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol-A (SecoA), which are electrophiles capable of forming covalent linkages preferentially with lysine residues and consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. Using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins to be modified bronchial epithelial cells. Among them was NLR Family Pyrin Domain Containing 2 (NLRP2) forming a SecoA-protein adduct at lysine (K1019) in the terminal leucine-rich-repeat, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized and CRISPR-Cas9 knockout and shRNA knockdown of NLRP2 was used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced pro-inflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2 knockout cells, suggesting a negative regulatory role. Reconstitution of NLRP2 KO cells with K1019R mutant NLRP2 partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared to wild type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of pro-inflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.
Collapse
Affiliation(s)
- Alexia Perryman
- University of North Carolina, Curriculum in Toxicology & Environmental Medicine, Chapel Hill, North Carolina, United States
| | - Adam M Speen
- US Environmental Protection Agency Office of Research and Development, 314974, Durham, North Carolina, United States
| | - Hye-Young H Kim
- Vanderbilt University, 5718, Nashville, Tennessee, United States
| | - Jessica R Hoffman
- University of North Carolina at Chapel Hill, Curriculum for the Environment and Ecology, Chapel Hill, North Carolina, United States
| | - Phillip W Clapp
- University of North Carolina at Chapel Hill School of Medicine, 6797, Pediatrics, Chapel Hill, North Carolina, United States
| | | | - John N Snouwaert
- University of North Carolina at Chapel Hill School of Medicine, 6797, Genetics, Chapel Hill, North Carolina, United States
| | | | - Ned A Porter
- Vanderbilt University, 5718, Nashville, Tennessee, United States
| | - Ilona Jaspers
- University of North Carolina, Pediatrics, Chapel Hill, North Carolina, United States;
| |
Collapse
|
9
|
Guttenberg MA, Vose AT, Tighe RM. Role of Innate Immune System in Environmental Lung Diseases. Curr Allergy Asthma Rep 2021; 21:34. [PMID: 33970346 PMCID: PMC8311569 DOI: 10.1007/s11882-021-01011-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.
Collapse
Affiliation(s)
| | | | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC,Corresponding Author: Robert M Tighe, MD, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Box 2969, Durham, North Carolina 27710, Telephone: 919-684-4894, Fax: 919-684-5266,
| |
Collapse
|
10
|
He RW, Braakhuis HM, Vandebriel RJ, Staal YC, Gremmer ER, Fokkens PH, Kemp C, Vermeulen J, Westerink RH, Cassee FR. Optimization of an air-liquid interface in vitro cell co-culture model to estimate the hazard of aerosol exposures. JOURNAL OF AEROSOL SCIENCE 2021; 153:105703. [PMID: 33658726 PMCID: PMC7874005 DOI: 10.1016/j.jaerosci.2020.105703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Inhalation exposure to environmental and occupational aerosol contaminants is associated with many respiratory health problems. To realistically mimic long-term inhalation exposure for toxicity testing, lung epithelial cells need to maintained and exposed under air-liquid interface (ALI) conditions for a prolonged period of time. In addition, to study cellular responses to aerosol particles, lung epithelial cells have to be co-cultured with macrophages. To that aim, we evaluated human bronchial epithelial Calu-3, 16HBE14o- (16HBE), H292, and BEAS-2B cell lines with respect to epithelial morphology, barrier function and cell viability under prolonged ALI culture conditions. Only the Calu-3 cells can retain the monolayer structure and maintain a strong tight junction under long-term ALI culture at least up to 2 weeks. As such, Calu-3 cells were applied as the structural barrier to create co-culture models with human monocyte-derived macrophages (MDMs) and THP-1 derived macrophages (TDMs). Adhesion of macrophages onto the epithelial monolayer was allowed for 4 h with a density of 5 × 104 macrophages/cm2. In comparison to the Calu-3 mono-culture model, Calu-3 + TDM and Calu-3 + MDM co-culture models showed an increased sensitivity in inflammatory responses to lipopolysaccharide (LPS) aerosol at Day 1 of co-culture, with the Calu-3 + MDM model giving a stronger response than Calu-3 + TDM. Therefore, the epithelial monolayer integrity and increased sensitivity make the Calu-3 + MDM co-culture model a preferred option for ALI exposure to inhaled aerosols for toxicity testing.
Collapse
Affiliation(s)
- Rui-Wen He
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Hedwig M. Braakhuis
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Rob J. Vandebriel
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Yvonne C.M. Staal
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Eric R. Gremmer
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Paul H.B. Fokkens
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Claudia Kemp
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Jolanda Vermeulen
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
| | - Remco H.S. Westerink
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
| | - Flemming R. Cassee
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80178, 3508, TD, Utrecht, the Netherlands
- Corresponding author. National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720, BA, Bilthoven, the Netherlands.
| |
Collapse
|
11
|
Skronska-Wasek W, Durlanik S, Garnett JP, Pflanz S. Polarized cytokine release from airway epithelium differentially influences macrophage phenotype. Mol Immunol 2021; 132:142-149. [PMID: 33588245 DOI: 10.1016/j.molimm.2021.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 11/30/2022]
Abstract
Epithelial cells and macrophages represent two major cell populations in the lung. They reside in physical proximity and are influenced by inhaled substances, microbial- and host-derived factors, as well as by crosstalk between each other. Here, we report the first systematic study to compare the effects of apical and basolateral secretomes from primary human small airway epithelial cells (SAEC) on human macrophages. We exposed monocyte-derived macrophages (MDMs) to the secretome supernatants (SN) from the apical and basolateral chamber of SAEC culture in an air-liquid interface (ALI) setting and analyzed expression of macrophage surface markers. We found that the apical SN increased the expression of CD11c and CD16, whereas basolateral SN increased the expression of CD163 and CD300e, consistent with apical and basolateral epithelial secretions inducing an M1-biased and M2-biased macrophage polarization, respectively. Conversely, in the presence of Nontypeable Haemophilus influenzae (NTHi), apical SN from NTHi-exposed SAEC induced CD36, CD163 and CD300e and supressed CD11c expression suggesting a switch towards an M2-biased macrophage polarization. Analysis of SN from polarized epithelium revealed a number of factors with differential expression in the apical and basolateral secretome. Functional neutralization of IL6, IL8 or IL1α in the apical secretome led to a decrease in expression of 'M2-like' surface markers, supporting the concept of epithelial-derived secreted factors influencing macrophage phenotype. In conclusion, we show, for the first time to our knowledge, that SN from polarized epithelium, depending on the side of secretion, apical or basolateral, can elicit a differential influence on the macrophages polarization phenotype.
Collapse
Affiliation(s)
- W Skronska-Wasek
- Cancer Immunology and Immunomodulation, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany; Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co KG Biberach, Germany.
| | - S Durlanik
- Cancer Immunology and Immunomodulation, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany
| | - J P Garnett
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH and Co KG Biberach, Germany; Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - S Pflanz
- Cancer Immunology and Immunomodulation, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach, Germany
| |
Collapse
|
12
|
Hou J, Ji J, Chen X, Cao H, Tan Y, Cui Y, Xiang Z, Han X. Alveolar epithelial cell-derived Sonic hedgehog promotes pulmonary fibrosis through OPN-dependent alternative macrophage activation. FEBS J 2020; 288:3530-3546. [PMID: 33314622 DOI: 10.1111/febs.15669] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
The alternative activation of macrophages in the lungs has been considered as a major factor promoting pulmonary fibrogenesis; however, the mechanisms underlying this phenomenon are still elusive. In this study, we investigated the interaction between macrophages and fibrosis-associated alveolar epithelial cells using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system. We demonstrated that fibrosis-promoting macrophages are spatially proximate to alveolar type II (ATII) cells, permissive for paracrine-induced macrophage polarization. Importantly, we revealed that fibrosis-associated ATII cells secrete Sonic hedgehog (Shh), a hedgehog pathway ligand, and that ATII cell-derived Shh promotes the development of pulmonary fibrosis by osteopontin (OPN)-mediated macrophage alternative activation. Mechanistically, Shh promotes the secretion of OPN in macrophages via Shh/Gli signaling cascade. The secreted OPN acts on the surrounding macrophages in an autocrine or paracrine manner and induces macrophage alternative activation through activating the JAK2/STAT3 signaling pathway. Tissue samples from idiopathic pulmonary fibrosis patients confirmed the increased expression of Shh and OPN in ATII cells and macrophages, respectively. Together, our study illustrated an alveolar epithelium-dependent mechanism for macrophage M2 polarization and pulmonary fibrogenesis and suggested that targeting Shh may offer a selective and efficient therapeutic strategy for the development and progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Jie Ji
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yi Tan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Yu Cui
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, China
| |
Collapse
|
13
|
Duffney PF, Kim HYH, Porter NA, Jaspers I. Ozone-derived oxysterols impair lung macrophage phagocytosis via adduction of some phagocytosis receptors. J Biol Chem 2020; 295:12727-12738. [PMID: 32690608 DOI: 10.1074/jbc.ra120.013699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Inhalation of the ambient air pollutant ozone causes lung inflammation and can suppress host defense mechanisms, including impairing macrophage phagocytosis. Ozone reacts with cholesterol in the lung to form oxysterols, like secosterol A and secosterol B (SecoA and SecoB), which can form covalent adducts on cellular proteins. How oxysterol-protein adduction modifies the function of lung macrophages is unknown. Herein, we used a proteomic screen to identify lung macrophage proteins that form adducts with ozone-derived oxysterols. Functional ontology analysis of the adductome indicated that protein binding was a major function of adducted proteins. Further analysis of specific proteins forming adducts with SecoA identified the phagocytic receptors CD206 and CD64. Adduction of these receptors with ozone-derived oxysterols impaired ligand binding and corresponded with reduced macrophage phagocytosis. This work suggests a novel mechanism for the suppression of macrophage phagocytosis following ozone exposure through the generation of oxysterols and the formation of oxysterol-protein adducts on phagocytic receptors.
Collapse
Affiliation(s)
- Parker F Duffney
- Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hye-Young H Kim
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Ilona Jaspers
- Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Patial S, Saini Y. Lung macrophages: current understanding of their roles in Ozone-induced lung diseases. Crit Rev Toxicol 2020; 50:310-323. [PMID: 32458707 DOI: 10.1080/10408444.2020.1762537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Through the National Ambient Air Quality Standards (NAAQS), the Clean Air Act of the United States outlines acceptable levels of six different air pollutants considered harmful to humans and the environment. Included in this list is ozone (O3), a highly reactive oxidant gas, respiratory health hazard, and common environmental air pollutant at ground level. The respiratory health effects due to O3 exposure are often associated with molecular and cellular perturbations in the respiratory tract. Periodic review of NAAQS requires comprehensive scientific evaluation of the public health effects of these pollutants, which is formulated through integrated science assessment (ISA) of the most policy-relevant scientific literature. This review focuses on the protective and pathogenic effects of macrophages in the O3-exposed respiratory tract, with emphasis on mouse model-based toxicological studies. Critical findings from 39 studies containing the words O3, macrophage, mice, and lung within the full text were assessed. While some of these studies highlight the presence of disease-relevant pathogenic macrophages in the airspaces, others emphasize a protective role for macrophages in O3-induced lung diseases. Moreover, a comprehensive list of currently known macrophage-specific roles in O3-induced lung diseases is included in this review and the significant knowledge gaps that still exist in the field are outlined. In conclusion, there is a vital need in this field for additional policy-relevant scientific information, including mechanistic studies to further define the role of macrophages in response to O3.
Collapse
Affiliation(s)
- Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
15
|
van Riet S, van Schadewijk A, de Vos S, Vandeghinste N, Rottier RJ, Stolk J, Hiemstra PS, Khedoe P. Modulation of Airway Epithelial Innate Immunity and Wound Repair by M(GM-CSF) and M(M-CSF) Macrophages. J Innate Immun 2020; 12:410-421. [PMID: 32289801 DOI: 10.1159/000506833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Airway epithelial cells and macrophages participate in inflammatory responses to external noxious stimuli, which can cause epithelial injury. Upon injury, epithelial cells and macrophages act in concert to ensure rapid restoration of epithelial integrity. The nature of the interactions between these cell types during epithelial repair is incompletely understood. We used an in vitro human coculture model of primary bronchial epithelial cells cultured at the air-liquid interface (ALI-PBEC) and polarized primary monocyte-derived macrophages. Using this coculture, we studied the contribution of macrophages to epithelial innate immunity, wound healing capacity, and epithelial exposure to whole cigarette smoke (WCS). Coculture of ALI-PBEC with lipopolysaccharide (LPS)-activated M(GM-CSF) macrophages increased the expression of DEFB4A, CXCL8, and IL6 at 24 h in the ALI-PBEC, whereas LPS-activated M(M-CSF) macrophages only increased epithelial IL6 expression. Furthermore, wound repair was accelerated by coculture with both activated M(GM-CSF) and M(M-CSF) macrophages, also following WCS exposure. Coculture of ALI-PBEC and M(GM-CSF) macrophages resulted in increased CAMP expression in M(GM-CSF) macrophages, which was absent in M(M-CSF) macrophages. CAMP encodes LL-37, an antimicrobial peptide with immune-modulating and repair-enhancing activities. In conclusion, dynamic crosstalk between ALI-PBEC and macrophages enhances epithelial innate immunity and wound repair, even upon concomitant cigarette smoke exposure.
Collapse
Affiliation(s)
- Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands,
| | | | | | | | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Jan Stolk
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Padmini Khedoe
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Wang Y, Adamcakova-Dodd A, Steines BR, Jing X, Salem AK, Thorne PS. Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NANOIMPACT 2020; 18:100215. [PMID: 32885098 PMCID: PMC7462419 DOI: 10.1016/j.impact.2020.100215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Airborne engineered nanomaterials (ENMs) can readily enter the human body through inhalation potentially leading to adverse health effects such as cardiovascular and pulmonary diseases. Our group has previously utilized and validated an integrated low flow system capable of generating and depositing airborne ENMs directly onto cells at an air-liquid interface (ALI). To further improve this ALI method for an even closer representation of the in vivo system, a co-culture model containing epithelial, endothelial and macrophage cell lines (A549, EA.hy 926, and THP-1 differentiated macrophages) was established and validated for testing ENMs toxicity. In the co-culture model, cells were exposed to citrate-capped gold (Au), 15% silver on silica (Ag-SiO2) and copper oxide (CuO) ENMs under the same protocol (4 h ALI exposure with a target concentration of 3.5 mg/m3) and compared to responses with A549 cells only or THP-1 differentiated cells only. The toxicological profile was assessed by measuring cell viability, reactive oxygen species (ROS) production, lactate dehydrogenase (LDH) release, and interleukin (IL)-8 concentration. Results showed that 15% Ag-SiO2 induced more oxidative stress-related toxicity in the co-culture than in A549 cells alone. Both 15% Ag-SiO2 and CuO exposure produced significantly higher levels of IL-8 in the co-culture compared with A549 cells alone. Citrate-capped Au was largely inert. Further exposures of CuO on macrophages alone provided evidence of cell-cell interaction in the co-culture model. In addition, the co-culture model exhibited a similar response to primary human bronchial epithelial cells in terms of ROS and IL-8 responses after CuO exposure, suggesting a more advanced refinement of the conventional model for in vitro inhalation study.
Collapse
Affiliation(s)
- Yifang Wang
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
| | | | - Benjamin R. Steines
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Interdisciplinary Program, University of Iowa, Iowa City, IA, USA
- Occupational and Environmental Health, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
17
|
Tovar A, Smith GJ, Thomas JM, Crouse WL, Harkema JR, Kelada SNP. Transcriptional Profiling of the Murine Airway Response to Acute Ozone Exposure. Toxicol Sci 2020; 173:114-130. [PMID: 31626304 PMCID: PMC6944221 DOI: 10.1093/toxsci/kfz219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ambient ozone (O3) exposure has serious consequences on respiratory health, including airway inflammation and injury. Decades of research have yielded thorough descriptions of these outcomes; however, less is known about the molecular processes that drive them. The aim of this study was to further describe the cellular and molecular responses to O3 exposure in murine airways, with a particular focus on transcriptional responses in 2 critical pulmonary tissue compartments: conducting airways (CA) and airway macrophages (AM). After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3, we assessed hallmark responses including airway inflammation (cell counts and cytokine secretion) and injury (epithelial permeability), followed by gene expression profiling of CA and AM by RNA-seq. As expected, we observed concentration-dependent increases in airway inflammation and injury. Conducting airways and AM both exhibited changes in gene expression to both 1 and 2 ppm O3 that were largely compartment-specific. In CA, genes associated with epithelial barrier function, detoxification processes, and cellular proliferation were altered, while O3 affected genes involved in innate immune signaling, cytokine production, and extracellular matrix remodeling in AM. Further, CA and AM also exhibited notable differences in concentration-response expression patterns for large numbers of genes. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in 2 important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for focused follow-up studies.
Collapse
Affiliation(s)
- Adelaide Tovar
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
| | - Gregory J Smith
- Department of Genetics
- Curriculum in Toxicology & Environmental Medicine
| | | | - Wesley L Crouse
- Department of Genetics
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jack R Harkema
- Department of Pathology & Diagnostic Investigation and Institute for Integrated Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Samir N P Kelada
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
- Curriculum in Toxicology & Environmental Medicine
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
18
|
Serena G, Huynh D, Lima RS, Vise LM, Freire R, Ingano L, Leonard MM, Senger S, Fasano A. Intestinal Epithelium Modulates Macrophage Response to Gliadin in Celiac Disease. Front Nutr 2019; 6:167. [PMID: 31750310 PMCID: PMC6848268 DOI: 10.3389/fnut.2019.00167] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Celiac disease is an immune-mediated enteropathy triggered by ingestion of gluten. Although its pathogenesis has been extensively studied and the contribution from both innate and adaptive immune responses has been reported, little is still known about the contribution of macrophages to the onset or maintenance of the disease. Macrophages are extremely plastic immune cells that can be directed toward a pro- or anti-inflammatory phenotype by the surrounding microenvironment. Of note, gliadin, the most prominent causative agent of the disease, has been reported to trigger the production of pro-inflammatory cytokines in this cell population. In the present study, we aimed at investigating how the intestinal milieu and more specifically the epithelium can shape the macrophage response to gliadin. Using patient-derived organoids we showed that the intestinal epithelium derived from celiac disease donors releases anti-inflammatory factors that curb the macrophage response to gliadin. Furthermore, we uncovered that the celiac macrophages were better responders than macrophages derived from non-celiac controls. Finally, we demonstrated that IFNγ released by the epithelium is in part responsible of the observed anti-inflammatory effect. Our data shed light on the cross–talk between the immune system and the epithelium and its critical role in the intestinal homeostasis. Furthermore, we provide more evidence how alterations in the innate immune machinery in celiac patients may contribute to the onset of the disease.
Collapse
Affiliation(s)
- Gloria Serena
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Daniel Huynh
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Rosiane S Lima
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Luciana M Vise
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Rachel Freire
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Laura Ingano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Stefania Senger
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Alessio Fasano
- Division of Pediatric Gastroenterology and Nutrition, Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,European Biomedical Research Institute of Salerno, Salerno, Italy
| |
Collapse
|
19
|
Mumby S, Chung KF, Adcock IM. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front Immunol 2019; 10:1610. [PMID: 31354743 PMCID: PMC6635463 DOI: 10.3389/fimmu.2019.01610] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022] Open
Abstract
Epidemiological and challenge studies in healthy subjects and in individuals with asthma highlight the health impact of environmental ozone even at levels considered safe. Acute ozone exposure in man results in sputum neutrophilia in 30% of subjects particularly young children, females, and those with ongoing cardiopulmonary disease. This may be associated with systemic inflammation although not in all cases. Chronic exposure amplifies these effects and can result in the formation of asthma-like symptoms and immunopathology. Asthmatic patients who respond to ozone (responders) induce a greater number of genes in bronchoalveolar (BAL) macrophages than healthy responders with up-regulation of inflammatory and immune pathways under the control of cytokines and chemokines and the enhanced expression of remodeling and repair programmes including those associated with protease imbalances and cell-cell adhesion. These pathways are under the control of several key transcription regulatory factors including nuclear factor (NF)-κB, anti-oxidant factors such as nuclear factor (erythroid-derived 2)-like 2 NRF2, the p38 mitogen activated protein kinase (MAPK), and priming of the immune system by up-regulating toll-like receptor (TLR) expression. Murine and cellular models of acute and chronic ozone exposure recapitulate the inflammatory effects seen in humans and enable the elucidation of key transcriptional pathways. These studies emphasize the importance of distinct transcriptional networks in driving the detrimental effects of ozone. Studies indicate the critical role of mediators including IL-1, IL-17, and IL-33 in driving ozone effects on airway inflammation, remodeling and hyperresponsiveness. Transcription analysis and proof of mechanisms studies will enable the development of drugs to ameliorate the effects of ozone exposure in susceptible individuals.
Collapse
Affiliation(s)
- Sharon Mumby
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ian M Adcock
- Respiratory Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
20
|
Effects of Air Pollution on Lung Innate Lymphoid Cells: Review of In Vitro and In Vivo Experimental Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132347. [PMID: 31269777 PMCID: PMC6650824 DOI: 10.3390/ijerph16132347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/21/2022]
Abstract
Outdoor air pollution is associated with respiratory infections and allergies, yet the role of innate lymphoid cells (ILCs) in pathogen containment and airway hyperresponsiveness relevant to effects of air pollutants on ILCs is poorly understood. We conducted a systematic review to evaluate the available evidence on the effect of outdoor air pollutants on the lung type 1 (ILC1) and type 2 ILCs (ILC2) subsets. We searched five electronic databases (up to Dec 2018) for studies on the effect of carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), diesel exhaust particles (DEP), ozone (O3), and particulate matter (PM) on respiratory ILCs. Of 2209 identified citations, 22 full-text papers were assessed for eligibility, and 12 articles describing experimental studies performed in murine strains (9) and on human blood cells (3) were finally selected. Overall, these studies showed that exposure to PM, DEP, and high doses of O3 resulted in a reduction of interferon gamma (IFN-γ) production and cytotoxicity of ILC1. These pollutants and carbon nanotubes stimulate lung ILC2s, produce high levels of interleukin (IL)-5 and IL-13, and induce airway hyperresponsiveness. These findings highlight potential mechanisms by which human ILCs react to air pollution that increase the susceptibility to infections and allergies.
Collapse
|
21
|
Epithelial Cells Attenuate Toll-Like Receptor-Mediated Inflammatory Responses in Monocyte-Derived Macrophage-Like Cells to Mycobacterium tuberculosis by Modulating the PI3K/Akt/mTOR Signaling Pathway. Mediators Inflamm 2018; 2018:3685948. [PMID: 30356420 PMCID: PMC6178170 DOI: 10.1155/2018/3685948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 08/12/2018] [Indexed: 12/11/2022] Open
Abstract
Both alveolar macrophages (AMs) and alveolar epithelial cells (AECs) are main targets of Mycobacterium tuberculosis (M. tuberculosis (Mtb)). Intercellular communications between mucosal AECs and AMs have important implications in cellular responses to exogenous insults. However, molecular mechanisms underpinning interactions responding to Mtb remain largely unknown. In this study, impacts of AECs on Toll-like receptor- (TLR-) mediated inflammatory responses of AMs to Mtb virulent strain H37Rv were interrogated using an air-liquid interface (ALI) coculture model of epithelial A549 cells and U937 monocyte-derived macrophage-like cells. Results showed that Mtb-activated TLR-mediated inflammatory responses in U937 cells were significantly alleviated when A549 cells were coinfected with H37Rv, in comparison with the infection of U937 cells alone. Mechanistically, PI3K/Akt/mTOR signaling was involved in the epithelial cell-modulated Mtb-activated TLR signaling. The epithelial cell-attenuated TLR signaling in U937s could be reversed by PI3K inhibitor LY294002 and mTOR inhibitor rapamycin, but not glycogen synthase kinase 3β inhibitor LiCl, suggesting that the epithelially modulated-TLR signaling in macrophages was in part caused by inhibiting the TLR-triggered PI3K/Akt/mTOR signaling pathway. Together, this study demonstrates that mucosal AEC-derived signals play an important role in modulating inflammatory responses of AMs to Mtb, which thus also offers an insight into cellular communications between AECs and AMs to Mtb infections.
Collapse
|
22
|
Ji J, Upadhyay S, Xiong X, Malmlöf M, Sandström T, Gerde P, Palmberg L. Multi-cellular human bronchial models exposed to diesel exhaust particles: assessment of inflammation, oxidative stress and macrophage polarization. Part Fibre Toxicol 2018; 15:19. [PMID: 29716632 PMCID: PMC5930819 DOI: 10.1186/s12989-018-0256-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/20/2018] [Indexed: 02/08/2023] Open
Abstract
Background Diesel exhaust particles (DEP) are a major component of outdoor air pollution. DEP mediated pulmonary effects are plausibly linked to inflammatory and oxidative stress response in which macrophages (MQ), epithelial cells and their cell-cell interaction plays a crucial role. Therefore, in this study we aimed at studying the cellular crosstalk between airway epithelial cells with MQ and MQ polarization following exposure to aerosolized DEP by assessing inflammation, oxidative stress, and MQ polarization response markers. Method Lung mucosa models including primary bronchial epithelial cells (PBEC) cultured at air-liquid interface (ALI) were co-cultured without (PBEC-ALI) and with MQ (PBEC-ALI/MQ). Cells were exposed to 12.7 μg/cm2 aerosolized DEP using XposeALI®. Control (sham) models were exposed to clean air. Cell viability was assessed. CXCL8 and IL-6 were measured in the basal medium by ELISA. The mRNA expression of inflammatory markers (CXCL8, IL6, TNFα), oxidative stress (NFKB, HMOX1, GPx) and MQ polarization markers (IL10, IL4, IL13, MRC1, MRC2 RETNLA, IL12 andIL23) were measured by qRT-PCR. The surface/mRNA expression of TLR2/TLR4 was detected by FACS and qRT-PCR. Results In PBEC-ALI exposure to DEP significantly increased the secretion of CXCL8, mRNA expression of inflammatory markers (CXCL8, TNFα) and oxidative stress markers (NFKB, HMOX1, GPx). However, mRNA expressions of these markers (CXCL8, IL6, NFKB, and HMOX1) were reduced in PBEC-ALI/MQ models after DEP exposure. TLR2 and TLR4 mRNA expression increased after DEP exposure in PBEC-ALI. The surface expression of TLR2 and TLR4 on PBEC was significantly reduced in sham-exposed PBEC-ALI/MQ compared to PBEC-ALI. After DEP exposure surface expression of TLR2 was increased on PBEC of PBEC-ALI/MQ, while TLR4 was decreased in both models. DEP exposure resulted in similar expression pattern of TLR2/TLR4 on MQ as in PBEC. In PBEC-ALI/MQ, DEP exposure increased the mRNA expression of anti-inflammatory M2 macrophage markers (IL10, IL4, IL13, MRC1, MRC2). Conclusion The cellular interaction of PBEC with MQ in response to DEP plays a pivotal role for MQ phenotypic alteration towards M2-subtypes, thereby promoting an efficient resolution of the inflammation. Furthermore, this study highlighted the fact that cell–cell interaction using multicellular ALI-models combined with an in vivo-like inhalation exposure system is critical in better mimicking the airway physiology compared with traditional cell culture systems. Electronic supplementary material The online version of this article (10.1186/s12989-018-0256-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden.
| | - Swapna Upadhyay
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden.
| | - Xiaomiao Xiong
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden
| | - Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, University Hospital, Umeå, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institute, Box 210, SE-171 77, Stockholm, Sweden
| |
Collapse
|
23
|
Gasoline particle filter reduces oxidative DNA damage in bronchial epithelial cells after whole gasoline exhaust exposure in vitro. Sci Rep 2018; 8:2297. [PMID: 29396482 PMCID: PMC5797118 DOI: 10.1038/s41598-018-20736-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/23/2018] [Indexed: 01/03/2023] Open
Abstract
A substantial amount of traffic-related particle emissions is released by gasoline cars, since most diesel cars are now equipped with particle filters that reduce particle emissions. Little is known about adverse health effects of gasoline particles, and particularly, whether a gasoline particle filter (GPF) influences the toxicity of gasoline exhaust emissions. We drove a dynamic test cycle with a gasoline car and studied the effect of a GPF on exhaust composition and airway toxicity. We exposed human bronchial epithelial cells (ECs) for 6 hours, and compared results with and without GPF. Two hours later, primary human natural killer cells (NKs) were added to ECs to form cocultures, while some ECs were grown as monocultures. The following day, cells were analyzed for cytotoxicity, cell surface receptor expression, intracellular markers, oxidative DNA damage, gene expression, and oxidative stress. The particle amount was significantly reduced due to GPF application. While most biological endpoints did not differ, oxidative DNA damage was significantly reduced in EC monocultures exposed to GPF compared to reference exhaust. Our findings indicate that a GPF has beneficial effects on exhaust composition and airway toxicity. Further studies are needed to assess long-term effects, also in other cell types of the lung.
Collapse
|
24
|
Mirowsky JE, Dailey LA, Devlin RB. Differential expression of pro-inflammatory and oxidative stress mediators induced by nitrogen dioxide and ozone in primary human bronchial epithelial cells. Inhal Toxicol 2017; 28:374-82. [PMID: 27206323 DOI: 10.1080/08958378.2016.1185199] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT NO2 and O3 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activated. OBJECTIVE This work will test the premise that NO2 and O3 induce toxicity by activating similar cellular pathways. METHODS Primary human bronchial epithelial cells (HBECs, n = 3 donors) were exposed for 2 h at an air-liquid interface to 3 ppm NO2, 0.75 ppm O3, or filtered air and harvested 1 h post-exposure. To give an overview of pathways that may be influenced by each exposure, gene expression was measured using PCR arrays for toxicity and oxidative stress. Based on the results, genes were selected to quantify whether expression changes were changed in a dose- and time-response manner using NO2 (1, 2, 3, or 5 ppm), O3 (0.25, 0.50, 0.75, or 1.00 ppm), or filtered air and harvesting 0, 1, 4 and 24 h post-exposure. RESULTS Using the arrays, genes related to oxidative stress were highly induced with NO2 while expression of pro-inflammatory and vascular function genes was found subsequent to O3. NO2 elicited the greatest HMOX1 response, whereas O3 more greatly induced IL-6, IL-8 and PTGS2 expression. Additionally, O3 elicited a greater response 1 h post-exposure and NO2 produced a maximal response after 4 h. CONCLUSION We have demonstrated that these two oxidant gases stimulate differing mechanistic responses in vitro and these responses occur at dissimilar times.
Collapse
Affiliation(s)
- Jaime E Mirowsky
- a Curriculum in Toxicology, University of North Carolina School of Medicine , Chapel Hill , NC , USA .,b Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina School of Medicine , Chapel Hill , NC , USA
| | - Lisa A Dailey
- c Environmental Public Health Division, National Health and Environmental Effects Laboratory, US Environmental Protection Agency , Chapel Hill , NC , USA
| | - Robert B Devlin
- c Environmental Public Health Division, National Health and Environmental Effects Laboratory, US Environmental Protection Agency , Chapel Hill , NC , USA
| |
Collapse
|
25
|
Roth M, Usemann J, Bisig C, Comte P, Czerwinski J, Mayer AC, Beier K, Rothen-Rutishauser B, Latzin P, Müller L. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro. Toxicol In Vitro 2017; 45:101-110. [DOI: 10.1016/j.tiv.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/16/2022]
|
26
|
Oczypok EA, Perkins TN, Oury TD. Alveolar Epithelial Cell-Derived Mediators: Potential Direct Regulators of Large Airway and Vascular Responses. Am J Respir Cell Mol Biol 2017; 56:694-699. [PMID: 28080134 DOI: 10.1165/rcmb.2016-0151ps] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bronchial epithelial cells and pulmonary endothelial cells are thought to be the primary modulators of conducting airways and vessels, respectively. However, histological examination of both mouse and human lung tissue reveals that alveolar epithelial cells (AECs) line the adventitia of large airways and vessels and thus are also in a position to directly regulate these structures. The primary purpose of this perspective is to highlight the fact that AECs coat the adventitial surface of every vessel and airway in the lung parenchyma. This localization is ideal for transmitting signals that can contribute to physiologic and pathologic responses in vessels and airways. A few examples of mediators produced by AECs that may contribute to vascular and airway responses are provided to illustrate some of the potential effects that AECs may modulate.
Collapse
Affiliation(s)
- Elizabeth A Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
27
|
Speen AM, Kim HYH, Bauer RN, Meyer M, Gowdy KM, Fessler MB, Duncan KE, Liu W, Porter NA, Jaspers I. Ozone-derived Oxysterols Affect Liver X Receptor (LXR) Signaling: A POTENTIAL ROLE FOR LIPID-PROTEIN ADDUCTS. J Biol Chem 2016; 291:25192-25206. [PMID: 27703007 DOI: 10.1074/jbc.m116.732362] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 09/14/2016] [Indexed: 12/25/2022] Open
Abstract
When inhaled, ozone (O3) interacts with cholesterols of airway epithelial cell membranes or the lung-lining fluid, generating chemically reactive oxysterols. The mechanism by which O3-derived oxysterols affect molecular function is unknown. Our data show that in vitro exposure of human bronchial epithelial cells to O3 results in the formation of oxysterols, epoxycholesterol-α and -β and secosterol A and B (Seco A and Seco B), in cell lysates and apical washes. Similarly, bronchoalveolar lavage fluid obtained from human volunteers exposed to O3 contained elevated levels of these oxysterol species. As expected, O3-derived oxysterols have a pro-inflammatory effect and increase NF-κB activity. Interestingly, expression of the cholesterol efflux pump ATP-binding cassette transporter 1 (ABCA1), which is regulated by activation of the liver X receptor (LXR), was suppressed in epithelial cells exposed to O3 Additionally, exposure of LXR knock-out mice to O3 enhanced pro-inflammatory cytokine production in the lung, suggesting LXR inhibits O3-induced inflammation. Using alkynyl surrogates of O3-derived oxysterols, our data demonstrate adduction of LXR with Seco A. Similarly, supplementation of epithelial cells with alkynyl-tagged cholesterol followed by O3 exposure causes observable lipid-LXR adduct formation. Experiments using Seco A and the LXR agonist T0901317 (T09) showed reduced expression of ABCA1 as compared with stimulation with T0901317 alone, indicating that Seco A-LXR protein adduct formation inhibits LXR activation by traditional agonists. Overall, these data demonstrate that O3-derived oxysterols have pro-inflammatory functions and form lipid-protein adducts with LXR, thus leading to suppressed cholesterol regulatory gene expression and providing a biochemical mechanism mediating O3-derived formation of oxidized lipids in the airways and subsequent adverse health effects.
Collapse
Affiliation(s)
- Adam M Speen
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hye-Young H Kim
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Rebecca N Bauer
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Megan Meyer
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kymberly M Gowdy
- the Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, and
| | - Michael B Fessler
- the Immunity, Inflammation, and Disease Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kelly E Duncan
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Wei Liu
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ned A Porter
- the Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee 37235
| | - Ilona Jaspers
- From the Curriculum in Toxicology, Departments of Pediatrics and Microbiology and Immunology, Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
28
|
Garantziotis S, Li Z, Potts EN, Kimata K, Zhuo L, Morgan DL, Savani RC, Noble PW, Foster WM, Schwartz DA, Hollingsworth JW. Hyaluronan mediates ozone-induced airway hyperresponsiveness in mice. J Biol Chem 2016; 291:19257-8. [PMID: 27613954 DOI: 10.1074/jbc.a116.802400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Bromberg PA. Mechanisms of the acute effects of inhaled ozone in humans. Biochim Biophys Acta Gen Subj 2016; 1860:2771-81. [PMID: 27451958 DOI: 10.1016/j.bbagen.2016.07.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Ambient air ozone (O3) is generated photochemically from oxides of nitrogen and volatile hydrocarbons. Inhaled O3 causes remarkably reversible acute lung function changes and inflammation. Approximately 80% of inhaled O3 is deposited on the airways. O3 reacts rapidly with CC double bonds in hydrophobic airway and alveolar surfactant-associated phospholipids and cholesterol. Resultant primary ozonides further react to generate bioactive hydrophilic products that also initiate lipid peroxidation leading to eicosanoids and isoprostanes of varying electrophilicity. Airway surface liquid ascorbate and urate also scavenge O3. Thus, inhaled O3 may not interact directly with epithelial cells. Acute O3-induced lung function changes are dominated by involuntary inhibition of inspiration (rather than bronchoconstriction), mediated by stimulation of intraepithelial nociceptive vagal C-fibers via activation of transient receptor potential (TRP) A1 cation channels by electrophile (e.g., 4-oxo-nonenal) adduction of TRPA1 thiolates enhanced by PGE2-stimulated sensitization. Acute O3-induced neutrophilic airways inflammation develops more slowly than the lung function changes. Surface macrophages and epithelial cells are involved in the activation of epithelial NFkB and generation of proinflammatory mediators such as IL-6, IL-8, TNFa, IL-1b, ICAM-1, E-selectin and PGE2. O3-induced partial depolymerization of hyaluronic acid and the release of peroxiredoxin-1 activate macrophage TLR4 while oxidative epithelial cell release of EGFR ligands such as TGFa or EGFR transactivation by activated Src may also be involved. The ability of lipid ozonation to generate potent electrophiles also provides pathways for Nrf2 activation and inhibition of canonical NFkB activation. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu.
Collapse
Affiliation(s)
- Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, and Division of Pulmonary and Critical Care Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|