1
|
Jiang W, Luo W, Zhang Z, He L, Qian Y, Zhou T. Hla protein expression and artesunate prevented mice from further damage caused by Staphylococcus aureus pneumonia. Int J Biol Macromol 2024; 277:134099. [PMID: 39048008 DOI: 10.1016/j.ijbiomac.2024.134099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The laboratory standard MRSA strain WHO-2 and clinical isolate S1 were used to establish a pneumonia infection model. The results showed that methicillin increased the expression of Hla and PVL protein at subminimum inhibitory concentration, while artesunate decreased the secretion of Hla and PVL protein. Artesunate alone reduced hemolysin expression and reversed methicillin-induced increases in Hla and PVL proteins. In addition, the study found that the combination of artesunate and methicillin had the best therapeutic effect, with survival rates of 70 % and 40 % at seven days, respectively (corresponding to the WHO-2 and S1 strains). The combination treatment was able to reduce cell mortality, showing a 65 % and 46 % reduction in cell mortality, respectively. The study also found that the combination therapy decreased the expression of alpha-hemolysin and pantone valentin leukin in the culture medium and significantly reduced the activation of NF-kB. This is caused by a significant decrease in the expression of inflammatory factors.
Collapse
Affiliation(s)
- Weiwei Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Wen Luo
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Zimin Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lu He
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yan Qian
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| | - Ting Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Cai X, Yang S, Peng Y, Tan K, Xu P, Wu Z, Kwan KY, Jian J. Regulation of PhoB on biofilm formation and hemolysin gene hlyA and ciaR of Streptococcus agalactiae. Vet Microbiol 2024; 289:109961. [PMID: 38147806 DOI: 10.1016/j.vetmic.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
PhoB is a response regulator protein that plays a key role in the PhoBR two-component signal transduction system. In this study, we used transcriptome and proteomics techniques to evaluate the detect the gene network regulated by PhoB of Streptococcus agalactiae. The results showed that expression of biofilm formation and virulence-related genes were changed after phoB deficiency. Crystal violet and CLSM assay confirmed that the deletion of the phoB increased the thickness of S. agalactiae biofilm. The results of lacZ reporter and the bacterial one-hybridization method showed that PhoB could directly bind to the promoter regions of hemolysin A and ciaR genes but not to the promoter regions of cylE and hemolysin III. Through the construction of an 18-base pair deoxyribose nucleic acid (DNA) random fragment library and the bacterial one-hybridization system, it was found that the conservative sequence of PhoB binding was TTGGAGAA(G/T). Our research has uncovered the virulence potential of the PhoBR two-component system of S. agalactiae. The findings of this study provide the theoretical foundation for in-depth research on the pathogenic mechanism of S. agalactiae.
Collapse
Affiliation(s)
- Xiaohui Cai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Shaoyu Yang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yinhui Peng
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China; College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kianann Tan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Peng Xu
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Zaohe Wu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China
| | - Kit Yue Kwan
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Ocean College, Beibu Gulf University, Qinzhou 535011, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China.
| |
Collapse
|
3
|
Xu Z, Yan J, Wen W, Zhang N, Bachert C. Pathophysiology and management of Staphylococcus aureus in nasal polyp disease. Expert Rev Clin Immunol 2023; 19:981-992. [PMID: 37409375 DOI: 10.1080/1744666x.2023.2233700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Staphylococcus aureus (S. aureus) is a common pathogen that frequently colonizes the sinonasal cavity. Recent studies demonstrated the essential role of Staphylococcus aureus in the pathophysiology of uncontrolled severe chronic rhinosinusitis with nasal polyps (NP) by initiating an immune response to the germ and its products, resulting in type 2 inflammation. AREAS COVERED This review aims to summarize the evidence for the role of S. aureus in the development of NP disease including S. aureus-related virulence factors, the pathophysiologic mechanisms used by S. aureus, and the synergistic effects of S. aureus and other pathogens. It also describes the current management of S. aureus associated with NPs as well as potential therapeutic strategies that are used in clinical practice. EXPERT OPINION S. aureus is able to damage the nasal mucosal epithelial barrier, impair the clearance of the host immune system, and trigger adaptive and innate immune reactions which lead to the formation of inflammation and nasal polyp growth. Further studies should focus on the development of novel therapeutic strategies, such as biologics, bacteriophages, probiotics, and nanomedicine, which could be used to treat S. aureus and its immunological consequences in the future.
Collapse
Affiliation(s)
- Zhaofeng Xu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
| | - Jieying Yan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Weiping Wen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Nan Zhang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
| | - Claus Bachert
- Department of Otorhinolaryngology, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, China
- Upper Airway Research Laboratory, Ghent University, Ghent, Belgium
- Division of ENT Diseases, Stockholm, Sweden
- Clinic for ENT Diseases and Head and Neck Surgery, University Clinic Münster, Münster, Germany
| |
Collapse
|
4
|
Ziesemer S, Kuhn SO, Hahnenkamp A, Gerber M, Lutjanov E, Gruendling M, Hildebrandt JP. Staphylococcus aureus Alpha-Toxin in Deep Tracheal Aspirates—Preliminary Evidence for Its Presence in the Lungs of Sepsis Patients. Toxins (Basel) 2022; 14:toxins14070450. [PMID: 35878188 PMCID: PMC9320683 DOI: 10.3390/toxins14070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The pore forming alpha-toxin (hemolysin A, Hla) of Staphylococcus aureus (S. aureus) is a major virulence factor with relevance for the pathogenicity of this bacterium, which is involved in many cases of pneumonia and sepsis in humans. Until now, the presence of Hla in the body fluids of potentially infected humans could only be shown indirectly, e.g., by the presence of antibodies against Hla in serum samples or by hemolysis testing on blood agar plates of bacterial culture supernatants of the clinical isolates. In addition, nothing was known about the concentrations of Hla actually reached in the body fluids of the infected hosts. Western blot analyses on 36 samples of deep tracheal aspirates (DTA) isolated from 22 hospitalized sepsis patients using primary antibodies against different epitopes of the Hla molecule resulted in the identification of six samples from five patients containing monomeric Hla (approx. 33 kDa). Two of these samples showed also signals at the molecular mass of heptameric Hla (232 kDa). Semiquantitative analyses of the samples revealed that the concentrations of monomeric Hla ranged from 16 to 3200 ng/mL. This is, to our knowledge, the first study directly showing the presence of S. aureus Hla in samples of airway surface liquid in human patients.
Collapse
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
| | - Sven-Olaf Kuhn
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Anke Hahnenkamp
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Manuela Gerber
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Elvira Lutjanov
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
| | - Matthias Gruendling
- Department of Anesthesiology, University Hospital Greifswald, Ferdinand Sauerbruch-Strasse, D-17475 Greifswald, Germany; (S.-O.K.); (A.H.); (M.G.); (M.G.)
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany; (S.Z.); (E.L.)
- Correspondence: ; Tel.: +49-(0)3834-4204295
| |
Collapse
|
5
|
Nicolas A, Deplanche M, Commere PH, Diot A, Genthon C, Marques da Silva W, Azevedo V, Germon P, Jamme H, Guédon E, Le Loir Y, Laurent F, Bierne H, Berkova N. Transcriptome Architecture of Osteoblastic Cells Infected With Staphylococcus aureus Reveals Strong Inflammatory Responses and Signatures of Metabolic and Epigenetic Dysregulation. Front Cell Infect Microbiol 2022; 12:854242. [PMID: 35531332 PMCID: PMC9067450 DOI: 10.3389/fcimb.2022.854242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a range of devastating diseases including chronic osteomyelitis, which partially relies on the internalization and persistence of S. aureus in osteoblasts. The identification of the mechanisms of the osteoblast response to intracellular S. aureus is thus crucial to improve the knowledge of this infectious pathology. Since the signal from specifically infected bacteria-bearing cells is diluted and the results are confounded by bystander effects of uninfected cells, we developed a novel model of long-term infection. Using a flow cytometric approach we isolated only S. aureus-bearing cells from mixed populations that allows to identify signals specific to intracellular infection. Here we present an in-depth analysis of the effect of long-term S. aureus infection on the transcriptional program of human osteoblast-like cells. After RNA-seq and KEGG and Reactome pathway enrichment analysis, the remodeled transcriptomic profile of infected cells revealed exacerbated immune and inflammatory responses, as well as metabolic dysregulations that likely influence the intracellular life of bacteria. Numerous genes encoding epigenetic regulators were downregulated. The later included genes coding for components of chromatin-repressive complexes (e.g., NuRD, BAHD1 and PRC1) and epifactors involved in DNA methylation. Sets of genes encoding proteins of cell adhesion or neurotransmission were also deregulated. Our results suggest that intracellular S. aureus infection has a long-term impact on the genome and epigenome of host cells, which may exert patho-physiological dysfunctions additionally to the defense response during the infection process. Overall, these results not only improve our conceptual understanding of biological processes involved in the long-term S. aureus infections of osteoblast-like cells, but also provide an atlas of deregulated host genes and biological pathways and identify novel markers and potential candidates for prophylactic and therapeutic approaches.
Collapse
Affiliation(s)
- Aurélie Nicolas
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Martine Deplanche
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Pierre-Henri Commere
- Cytometry and Biomarkers Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Alan Diot
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Clemence Genthon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Unité Service 1426 (US1426), Transcriptome Plateforme Technologique (GeT-PlaGe), Genotoul, Castanet-Tolosan, France
| | - Wanderson Marques da Silva
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Pierre Germon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Université François Rabelais, Infectiologie et Santé Publique (ISP), Tours, France
| | - Hélène Jamme
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Jouy-en-Josas, France
- Ecole Nationale Vétérinaire d’Alfort, Biologie de la Reproduction, Environnement, Epigénétique et Développement (BREED), Maisons-Alfort, France
| | - Eric Guédon
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Yves Le Loir
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
| | - Fréderic Laurent
- Centre International de Recherche en Infectiologie, CIRI, Inserm U1111, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5308 (UMR5308), Ecole Normale Supérieure (ENS) de Lyon, Universit´ Claude Bernard Lyon 1 (UCBL1), Lyon, France
- Hospices Civils de Lyon, French National Reference Centre for Staphylococci, Lyon, France
| | - Hélène Bierne
- Université Paris-Saclay, Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Nadia Berkova
- Institut National de Recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, Science et Technologie du Lait et de l’OEuf (STLO), Rennes, France
- *Correspondence: Nadia Berkova,
| |
Collapse
|
6
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Broad-spectrum and powerful neutralization of bacterial toxins by erythroliposomes with the help of macrophage uptake and degradation. Acta Pharm Sin B 2022; 12:4235-4248. [DOI: 10.1016/j.apsb.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
|
8
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
9
|
Chen L, Liu Q, Liu Z, Li H, Liu X, Yu H. EGF Protects Epithelial Cells from Barrier Damage in Chronic Rhinosinusitis with Nasal Polyps. J Inflamm Res 2022; 15:439-450. [PMID: 35082512 PMCID: PMC8784255 DOI: 10.2147/jir.s345664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Le Chen
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
| | - Quan Liu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
| | - Zhuofu Liu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
| | - Han Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
| | - Xiang Liu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumour, Chinese Academy of Medical Sciences, 2018RU003, Shanghai, People's Republlc of China
- Correspondence: Hongmeng Yu; Xiang Liu Email ;
| |
Collapse
|
10
|
Major Determinants of Airway Epithelial Cell Sensitivity to S. aureus Alpha-Toxin: Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation. Toxins (Basel) 2021; 13:toxins13030173. [PMID: 33668237 PMCID: PMC7996177 DOI: 10.3390/toxins13030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates under inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer degradation, at least in S9 cells, seems to be the lysosomal pathway, while proteasomal degradation appears to be irrelevant. Exosomes prepared from culture supernatants of toxin-exposed S9 cells contained alpha-toxin as well as low amounts of exosome and micro-vesicle markers. These results indicate that lysosomal degradation of internalized toxin heptamers may be the most important determinant of toxin-resistance of some types of airway epithelial cells.
Collapse
|
11
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
12
|
Möller N, Ziesemer S, Hildebrandt P, Assenheimer N, Völker U, Hildebrandt JP. S. aureus alpha-toxin monomer binding and heptamer formation in host cell membranes - Do they determine sensitivity of airway epithelial cells toward the toxin? PLoS One 2020; 15:e0233854. [PMID: 32470006 PMCID: PMC7259691 DOI: 10.1371/journal.pone.0233854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/13/2020] [Indexed: 11/18/2022] Open
Abstract
Alpha-toxin (Hla) is a major virulence factor of Staphylococcus aureus (S. aureus) and plays an important role in S. aureus-induced pneumonia. It binds as a monomer to the cell surface of eukaryotic host cells and forms heptameric transmembrane pores. Sensitivities toward the toxin of various types of potential host cells have been shown to vary substantially, and the reasons for these differences are unclear. We used three human model airway epithelial cell lines (16HBE14o-, S9, A549) to correlate cell sensitivity (measured as rate of paracellular gap formation in the cell layers) with Hla monomer binding, presence of the potential Hla receptors ADAM10 or α5β1 integrin, presence of the toxin-stabilizing factor caveolin-1 as well as plasma membrane lipid composition (phosphatidylserine/choline, sphingomyelin). The abundance of ADAM10 correlated best with gap formation or cell sensitivities, respectively, when the three cell types were compared. Caveolin-1 or α5β1 integrin did not correlate with toxin sensitivity. The relative abundance of sphingomyelin in plasma membranes may also be used as a proxi for cellular sensitivity against alpha-toxin as sphingomyelin abundances correlated well with the intensities of alpha-toxin mediated gap formation in the cell layers.
Collapse
Affiliation(s)
- Nils Möller
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Nadine Assenheimer
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Greifswald, Germany
- * E-mail:
| |
Collapse
|
13
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
14
|
Kaya Z, Yayla M, Cinar I, Celebi D, Toktay E, Bayraktutan Z, Bilici D. Effect of Montelukast, a Cysteinyl Leukotriene Receptor-1 Antagonist, on a Rat Model of Acute Bacterial Sinonasal Inflammation. Am J Rhinol Allergy 2019; 33:559-566. [PMID: 31129976 DOI: 10.1177/1945892419852576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aim This study aimed to investigate montelukast (MONT), a leukotriene receptor antagonist, as a potential treatment protocol and/or supportive therapy against acute bacterial sinonasal inflammation by histopathological and molecular analyses. Material and Methods A total of 30 rats were used in the study. The nasal dorsum was sterilized, and gelatin sponges were inserted into the right nasal cavities. The nostrils were then inoculated with Staphylococcus aureus (SA) for rhinosinusitis (RS) induction. Rats were treated once daily for 7 days with an injection of saline, either cefazolin sodium (CEFA) or MONT. Tissue samples were collected for examination. Results To evaluate whether CEFA and MONT were able to attenuate the SA-induced nasal inflammation, we analyzed the proinflammatory cytokine levels in the nasal tissue of rats by real-time polymerase chain reaction (PCR). The inflammatory cytokines tumor necrosis factor-α ( P ≤ .05) and interleukin-1α (IL-1α) ( P ≤ .05) increased in the SA-induced group, when compared with the healthy control. MONT treatment significantly reversed these elevations, especially IL-1α messenger RNA expression levels induced by SA. Also, CEFA administration significantly changed the proinflammatory cytokine levels when compared to the SA group, but this effect was not as strong as MONT. Also, histopathological findings supported the beneficial effects of MONT. Conclusion This study histopathologically and molecularly showed that MONT significantly ameliorated the SA-associated sinonasal inflammatory reaction, both alone and in combination with CEFA. These results may suggest that MONT may block the inflammatory reaction underlying RS even more significantly by antioxidative or anti-inflammatory effects. This study suggests MONT as a future potential therapeutic agent for RS treatment.
Collapse
Affiliation(s)
- Zülküf Kaya
- 1 Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Muhammed Yayla
- 2 Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Irfan Cinar
- 2 Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Demet Celebi
- 3 Department of Microbiology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Erdem Toktay
- 4 Department of Histology and Embryology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Zafer Bayraktutan
- 5 Department of Biochemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| | - Dilek Bilici
- 6 Department of Microbiology, Erzurum Training and Research Hospital, Erzurum, Turkey
| |
Collapse
|
15
|
Ziesemer S, Möller N, Nitsch A, Müller C, Beule AG, Hildebrandt JP. Sphingomyelin Depletion from Plasma Membranes of Human Airway Epithelial Cells Completely Abrogates the Deleterious Actions of S. aureus Alpha-Toxin. Toxins (Basel) 2019; 11:toxins11020126. [PMID: 30791542 PMCID: PMC6409578 DOI: 10.3390/toxins11020126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Interaction of Staphylococcus aureus alpha-toxin (hemolysin A, Hla) with eukaryotic cell membranes is mediated by proteinaceous receptors and certain lipid domains in host cell plasma membranes. Hla is secreted as a 33 kDa monomer that forms heptameric transmembrane pores whose action compromises maintenance of cell shape and epithelial tightness. It is not exactly known whether certain membrane lipid domains of host cells facilitate adhesion of Ha monomers, oligomerization, or pore formation. We used sphingomyelinase (hemolysin B, Hlb) expressed by some strains of staphylococci to pre-treat airway epithelial model cells in order to specifically decrease the sphingomyelin (SM) abundance in their plasma membranes. Such a pre-incubation exclusively removed SM from the plasma membrane lipid fraction. It abrogated the formation of heptamers and prevented the formation of functional transmembrane pores. Hla exposure of rHlb pre-treated cells did not result in increases in [Ca2+]i, did not induce any microscopically visible changes in cell shape or formation of paracellular gaps, and did not induce hypo-phosphorylation of the actin depolymerizing factor cofilin as usual. Removal of sphingomyelin from the plasma membranes of human airway epithelial cells completely abrogates the deleterious actions of Staphylococcus aureus alpha-toxin.
Collapse
Affiliation(s)
- Sabine Ziesemer
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Nils Möller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Andreas Nitsch
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Christian Müller
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| | - Achim G Beule
- Department of Otorhinolaryngology, University Hospital, Münster, Germany and Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- University of Greifswald, Animal Physiology and Biochemistry, Felix Hausdorff-Straße 1, D-17489 Greifswald, Germany.
| |
Collapse
|
16
|
Staphylococcus aureus, epithelial disruption, and nasal polyps: Are we one step ahead in combatting this foe? J Allergy Clin Immunol 2019; 143:563-564. [DOI: 10.1016/j.jaci.2018.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
|
17
|
Murphy J, Ramezanpour M, Drilling A, Roscioli E, Psaltis AJ, Wormald PJ, Vreugde S. In vitro characteristics of an airway barrier-disrupting factor secreted by Staphylococcus aureus. Int Forum Allergy Rhinol 2018; 9:187-196. [PMID: 30431711 DOI: 10.1002/alr.22232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Staphylococcus aureus is a major contributor to the pathophysiology of chronic rhinosinusitis (CRS). Previous research has shown that S. aureus-secreted products disrupt the airway barrier. METHODS S. aureus ATCC 13565 and 25923 strains were grown at exponential, postexponential, and stationary phases. Microbial conditioned media (CM) was collected from the cultures and ultrafiltered (UF). Liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was performed on the UF-CM. UF-CM was subjected to heat and protease treatment, size fractionation, and ultracentrifugation (UC) separation. Human nasal epithelial cells grown at air-liquid interface (HNEC-ALI) cultures were exposed to purified alpha hemolysin (Hla), staphylococcal enterotoxin A (SEA), lipoteichoic acid (LTA), and UF-CM. Barrier function outcomes were measured by transepithelial electrical resistance (TEER) and apparent permeability (Papp). UC fraction exposed cultures were subjected to immunofluorescence microscopy for tight junction (TJ) protein zonula occludens-1 (ZO-1). RESULTS LC-ESI-MS/MS identified 107 proteins, with Hla being most abundant. Hla, SEA, and LTA did not alter the HNEC-ALI barrier as measured by TEER or Papp. Barrier disruption caused by UF-CM peaked in the postexponential phase, was sensitive to heat and protease treatment, >30-kDa in size, and enriched in the UC fraction. HNEC-ALI exposed to UF-CM and UC demonstrated loss of ZO-1 localization. CONCLUSION These results suggest that the S. aureus factor responsible for TJ disruption in HNEC-ALI cultures is either a protein-macromolecule or a combination of secreted factors. The product is enriched in the UC fraction, suggesting it is associated with large structures such as membrane components or vesicles.
Collapse
Affiliation(s)
- Jae Murphy
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Amanda Drilling
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Alkis James Psaltis
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Otolaryngology-Head and Neck Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
18
|
Validation of a simplified in vitro Transwell ® model of the alveolar surface to assess host immunity induced by different morphotypes of Aspergillus fumigatus. Int J Med Microbiol 2018; 308:1009-1017. [PMID: 30197238 DOI: 10.1016/j.ijmm.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 09/02/2018] [Indexed: 12/21/2022] Open
Abstract
Interactions between fungal pathogens such as Aspergillus fumigatus with host alveolar epithelium and innate immune cells are crucial in the defense against opportunistic fungal infections. In this study a simplified Transwell® system with a confluent layer of A549 cells acted as a model for the alveolar surface. A. fumigatus and dendritic cells were added to simulate the spatial and cellular complexity in the alveolus. Fungal growth into the lower chamber was validated by galactomannan assays. Addition of moDCs to the upper chamber led to a reduced GM signal and fungal growth, indicating moDC antifungal activity. Minimal cell death was documented by analyses of lactate dehydrogenase concentrations and pro-apoptotic gene expression. Measurement of trans-epithelial dextran blue movement confirmed tightness of the epithelial barrier even in presence of A. fumigatus. Cytokine measurements in supernatants from both chambers of the Transwell® system documented distinct response patterns during early and late stages of epithelial invasion, with A549 cells appearing to make a minimal contribution to cytokine release. Concentrations of cytokines in the lower chamber varied distinctly from the upper chamber, depending on the molecular weight of the cytokines. Low inter-assay variability of fungal biomarkers and cytokines was confirmed, highlighting that in vitro models closely mimicking conditions in the human lung can facilitate reproducible measurement of the dynamics of cytokine release and fungal penetration of host epithelia.
Collapse
|
19
|
Valera FCP, Ruffin M, Adam D, Maillé É, Ibrahim B, Berube J, Rousseau S, Brochiero E, Desrosiers MY. Staphylococcus aureus impairs sinonasal epithelial repair: Effects in patients with chronic rhinosinusitis with nasal polyps and control subjects. J Allergy Clin Immunol 2018; 143:591-603.e3. [PMID: 29935218 DOI: 10.1016/j.jaci.2018.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The effect of Staphylococcus aureus on nasal epithelial repair has never been assessed in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). OBJECTIVE This study aimed to determine whether (1) nasal epithelial cell cultures from patients with CRSwNP and control subjects repair differently; (2) S aureus exoproducts compromise nasal epithelial repair; (3) S aureus alters lamellipodial dynamics; and (4) deleterious effects could be counteracted by the Rho-associated coiled-coil kinase inhibitor Y-27632. METHODS Primary nasal epithelial cells (pNECs) collected during surgeries were cultured and injured under 3 conditions: (1) basal conditions, (2) exposed to S aureus exoproducts, and (3) exposed to S aureus exoproducts and Y-27632. Epithelial repair, lamellipodial dynamics, and cytoskeletal organization were assessed. RESULTS Under basal conditions, pNEC cultures from patients with CRSwNP presented significantly lower repair rates and reduced lamellipodial protrusion length and velocity than those from control subjects. S aureus exoproducts significantly decreased repair rates and protrusion dynamics in both control subjects and patients with CRSwNP; however, the effect of S aureus on cell protrusions was more sustained over time in patients with CRSwNP. Under basal conditions, immunofluorescence assays showed significantly reduced percentages of cells with lamellipodia at the wound edge in patients with CRSwNP compared with control subjects. S aureus altered cell polarity and decreased the percentage of cells with lamellipodia in both groups. Finally, Y-27632 prevented the deleterious effects of S aureus exoproducts on CRSwNP repair rates, as well as on lamellipodial dynamics and formation. CONCLUSIONS S aureus exoproducts significantly alter epithelial repair and lamellipodial dynamics on pNECs, and this impairment was more pronounced in patients with CRSwNP. Importantly, Y-27632 restored epithelial repair and lamellipodial dynamics in the presence of S aureus exoproducts.
Collapse
Affiliation(s)
- Fabiana C P Valera
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Division of Otorhinolaryngology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Manon Ruffin
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Émilie Maillé
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Badr Ibrahim
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Martin Y Desrosiers
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada; Department of Otolaryngology, Centre Hospitalier de l'Université de Montréal (CHUM), Montreal, Quebec, Canada.
| |
Collapse
|
20
|
Ziesemer S, Eiffler I, Schönberg A, Müller C, Hochgräfe F, Beule AG, Hildebrandt JP. Staphylococcus aureusα-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol 2018; 58:482-491. [DOI: 10.1165/rcmb.2016-0207oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, Zoological Institute, and
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Zoological Institute, and
| | | | | | - Falko Hochgräfe
- Junior Research Group Pathoproteomics, Competence Center Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Achim G. Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, Greifswald, Germany; and
- Department of Otorhinolaryngology, University Hospital, Münster, Germany
| | | |
Collapse
|
21
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
22
|
Baaske R, Richter M, Möller N, Ziesemer S, Eiffler I, Müller C, Hildebrandt JP. ATP Release from Human Airway Epithelial Cells Exposed to Staphylococcus aureus Alpha-Toxin. Toxins (Basel) 2016; 8:toxins8120365. [PMID: 27929417 PMCID: PMC5198559 DOI: 10.3390/toxins8120365] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/20/2022] Open
Abstract
Airway epithelial cells reduce cytosolic ATP content in response to treatment with S. aureus alpha-toxin (hemolysin A, Hla). This study was undertaken to investigate whether this is due to attenuated ATP generation or to release of ATP from the cytosol and extracellular ATP degradation by ecto-enzymes. Exposure of cells to rHla did result in mitochondrial calcium uptake and a moderate decline in mitochondrial membrane potential, indicating that ATP regeneration may have been attenuated. In addition, ATP may have left the cells through transmembrane pores formed by the toxin or through endogenous release channels (e.g., pannexins) activated by cellular stress imposed on the cells by toxin exposure. Exposure of cells to an alpha-toxin mutant (H35L), which attaches to the host cell membrane but does not form transmembrane pores, did not induce ATP release from the cells. The Hla-mediated ATP-release was completely blocked by IB201, a cyclodextrin-inhibitor of the alpha-toxin pore, but was not at all affected by inhibitors of pannexin channels. These results indicate that, while exposure of cells to rHla may somewhat reduce ATP production and cellular ATP content, a portion of the remaining ATP is released to the extracellular space and degraded by ecto-enzymes. The release of ATP from the cells may occur directly through the transmembrane pores formed by alpha-toxin.
Collapse
Affiliation(s)
- Romina Baaske
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Mandy Richter
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Nils Möller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Felix Hausdorff-Strasse 1, B.10.06, D-17489 Greifswald, Germany.
| |
Collapse
|
23
|
Eiffler I, Behnke J, Ziesemer S, Müller C, Hildebrandt JP. Staphylococcus aureus α-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L676-85. [PMID: 27496896 DOI: 10.1152/ajplung.00090.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/29/2016] [Indexed: 11/22/2022] Open
Abstract
Membrane potential (Vm)-, Na(+)-, or Ca(2+)-sensitive fluorescent dyes were used to analyze changes in Vm or intracellular ion concentrations in airway epithelial cells treated with Staphylococcus aureus α-toxin (Hla), a major virulence factor of pathogenic strains of these bacteria. Gramicidin, a channel-forming peptide causing membrane permeability to monovalent cations, a mutated form of Hla, rHla-H35L, which forms oligomers in the plasma membranes of eukaryotic cells but fails to form functional transmembrane pores, or the cyclodextrin-derivative IB201, a blocker of the Hla pore, were used to investigate the permeability of the pore. Na(+) as well as Ca(2+) ions were able to pass the Hla pore and accumulated in the cytosol. The pore-mediated influx of calcium ions was blocked by IB201. Treatment of cells with recombinant Hla resulted in plasma membrane depolarization as well as in increases in the phosphorylation levels of paxillin (signaling pathway mediating disruption of the actin cytoskeleton) and p38 MAP kinase (signaling pathway resulting in defensive actions). p38 MAP kinase phosphorylation, but not paxillin phosphorylation, was elicited by treatment of cells with gramicidin. Although treatment of cells with rHla-H35L resulted in the formation of membrane-associated heptamers, none of these cellular effects were observed in our experiments. This indicates that formation of functional Hla-transmembrane pores is required to induce the cell physiological changes mediated by α-toxin. Specifically, the changes in ion equilibria and plasma membrane potential are important activators of p38 MAP kinase, a signal transduction module involved in host cell defense.
Collapse
Affiliation(s)
- Ina Eiffler
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jane Behnke
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Sabine Ziesemer
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Ernst Moritz Arndt-University, Greifswald, Germany
| |
Collapse
|
24
|
Blume C, David J, Bell RE, Laver JR, Read RC, Clark GC, Davies DE, Swindle EJ. Modulation of Human Airway Barrier Functions during Burkholderia thailandensis and Francisella tularensis Infection Running Title: Airway Barrier Functions during Bacterial Infections. Pathogens 2016; 5:pathogens5030053. [PMID: 27527221 PMCID: PMC5039433 DOI: 10.3390/pathogens5030053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
The bronchial epithelium provides protection against pathogens from the inhaled environment through the formation of a highly-regulated barrier. In order to understand the pulmonary diseases melioidosis and tularemia caused by Burkholderia thailandensis and Fransicella tularensis, respectively, the barrier function of the human bronchial epithelium were analysed. Polarised 16HBE14o- or differentiated primary human bronchial epithelial cells (BECs) were exposed to increasing multiplicities of infection (MOI) of B. thailandensis or F. tularensis Live Vaccine Strain and barrier responses monitored over 24-72 h. Challenge of polarized BECs with either bacterial species caused an MOI- and time-dependent increase in ionic permeability, disruption of tight junctions, and bacterial passage from the apical to the basolateral compartment. B. thailandensis was found to be more invasive than F. tularensis. Both bacterial species induced an MOI-dependent increase in TNF-α release. An increase in ionic permeability and TNF-α release was induced by B. thailandensis in differentiated BECs. Pretreatment of polarised BECs with the corticosteroid fluticasone propionate reduced bacterial-dependent increases in ionic permeability, bacterial passage, and TNF-α release. TNF blocking antibody Enbrel(®) reduced bacterial passage only. BEC barrier properties are disrupted during respiratory bacterial infections and targeting with corticosteroids or anti-TNF compounds may represent a therapeutic option.
Collapse
Affiliation(s)
- Cornelia Blume
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK.
| | - Jonathan David
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK.
| | - Rachel E Bell
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK.
- Centre for Molecular and Cellular Biology of Inflammation, Guy's Campus, King's College London, London SE1 1UL, UK.
| | - Jay R Laver
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK.
| | - Robert C Read
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Graeme C Clark
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury SP4 0JQ, UK.
| | - Donna E Davies
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Emily J Swindle
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, University Hospital Southampton, Tremona Road, Southampton SO16 6YD, UK.
- Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton SO16 6YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
25
|
Dissecting the role of ADAM10 as a mediator of Staphylococcus aureus α-toxin action. Biochem J 2016; 473:1929-40. [DOI: 10.1042/bcj20160062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023]
Abstract
This work elucidates the role of the transmembrane protease ADAM10 (a disintegrin and metalloprotease 10) for the action of Staphylococcus aureus α-toxin, by showing that the cytotoxicity of α-toxin does not depend on ADAM10’s catalytic activity but on the chaperone function of its prodomain.
Collapse
|
26
|
Chen TC, Tsai TY, Chang SW. Molecular mechanism of fluoroquinolones modulation on corneal fibroblast motility. Exp Eye Res 2016; 145:10-16. [DOI: 10.1016/j.exer.2015.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 11/26/2022]
|
27
|
Immunomodulation and Disease Tolerance to Staphylococcus aureus. Pathogens 2015; 4:793-815. [PMID: 26580658 PMCID: PMC4693165 DOI: 10.3390/pathogens4040793] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The Gram-positive bacterium Staphylococcus aureus is one of the most frequent pathogens that causes severe morbidity and mortality throughout the world. S. aureus can infect skin and soft tissues or become invasive leading to diseases such as pneumonia, endocarditis, sepsis or toxic shock syndrome. In contrast, S. aureus is also a common commensal microbe and is often part of the human nasal microbiome without causing any apparent disease. In this review, we explore the immunomodulation and disease tolerance mechanisms that promote commensalism to S. aureus.
Collapse
|
28
|
Mairpady Shambat S, Chen P, Nguyen Hoang AT, Bergsten H, Vandenesch F, Siemens N, Lina G, Monk IR, Foster TJ, Arakere G, Svensson M, Norrby-Teglund A. Modelling staphylococcal pneumonia in a human 3D lung tissue model system delineates toxin-mediated pathology. Dis Model Mech 2015; 8:1413-25. [PMID: 26398950 PMCID: PMC4631791 DOI: 10.1242/dmm.021923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/27/2015] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus necrotizing pneumonia is recognized as a toxin-mediated disease, yet the tissue-destructive events remain elusive, partly as a result of lack of mechanistic studies in human lung tissue. In this study, a three-dimensional (3D) tissue model composed of human lung epithelial cells and fibroblasts was used to delineate the role of specific staphylococcal exotoxins in tissue pathology associated with severe pneumonia. To this end, the models were exposed to the mixture of exotoxins produced by S. aureus strains isolated from patients with varying severity of lung infection, namely necrotizing pneumonia or lung empyema, or to purified toxins. The necrotizing pneumonia strains secreted high levels of α-toxin and Panton-Valentine leukocidin (PVL), and triggered high cytotoxicity, inflammation, necrosis and loss of E-cadherin from the lung epithelium. In contrast, the lung empyema strain produced moderate levels of PVL, but negligible amounts of α-toxin, and triggered limited tissue damage. α-toxin had a direct damaging effect on the epithelium, as verified using toxin-deficient mutants and pure α-toxin. Moreover, PVL contributed to pathology through the lysis of neutrophils. A combination of α-toxin and PVL resulted in the most severe epithelial injury. In addition, toxin-induced release of pro-inflammatory mediators from lung tissue models resulted in enhanced neutrophil migration. Using a collection of 31 strains from patients with staphylococcal pneumonia revealed that strains producing high levels of α-toxin and PVL were cytotoxic and associated with fatal outcome. Also, the strains that produced the highest toxin levels induced significantly greater epithelial disruption. Of importance, toxin-mediated lung epithelium destruction could be inhibited by polyspecific intravenous immunoglobulin containing antibodies against α-toxin and PVL. This study introduces a novel model system for study of staphylococcal pneumonia in a human setting. The results reveal that the combination and levels of α-toxin and PVL correlate with tissue pathology and clinical outcome associated with pneumonia.
Collapse
Affiliation(s)
- Srikanth Mairpady Shambat
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Puran Chen
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Anh Thu Nguyen Hoang
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Helena Bergsten
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Francois Vandenesch
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS UMR5308, Université Lyon 1, École Normale Supérieure de Lyon, 69008 Lyon, France French National Reference Center for Staphylococci, Hospices Civils de Lyon, 69677 Bron Cedex, France
| | - Nikolai Siemens
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Gerard Lina
- CIRI, International Center for Infectiology Research, Inserm, U1111, CNRS UMR5308, Université Lyon 1, École Normale Supérieure de Lyon, 69008 Lyon, France French National Reference Center for Staphylococci, Hospices Civils de Lyon, 69677 Bron Cedex, France
| | - Ian R Monk
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Gayathri Arakere
- Society for Innovation and Development, Indian Institute of Science Campus, Bangalore 560012, India
| | - Mattias Svensson
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| | - Anna Norrby-Teglund
- Department of Medicine Huddinge, Karolinska Institutet, Centre for Infectious Medicine, S-141 86 Stockholm, Sweden
| |
Collapse
|
29
|
Davis AS, Chertow DS, Moyer JE, Suzich J, Sandouk A, Dorward DW, Logun C, Shelhamer JH, Taubenberger JK. Validation of normal human bronchial epithelial cells as a model for influenza A infections in human distal trachea. J Histochem Cytochem 2015; 63:312-28. [PMID: 25604814 PMCID: PMC4409941 DOI: 10.1369/0022155415570968] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/05/2015] [Indexed: 11/22/2022] Open
Abstract
Primary normal human bronchial/tracheal epithelial (NHBE) cells, derived from the distal-most aspect of the trachea at the bifurcation, have been used for a number of studies in respiratory disease research. Differences between the source tissue and the differentiated primary cells may impact infection studies based on this model. Therefore, we examined how well-differentiated NHBE cells compared with their source tissue, the human distal trachea, as well as the ramifications of these differences on influenza A viral pathogenesis research using this model. We employed a histological analysis including morphological measurements, electron microscopy, multi-label immunofluorescence confocal microscopy, lectin histochemistry, and microarray expression analysis to compare differentiated NHBEs to human distal tracheal epithelium. Pseudostratified epithelial height, cell type variety and distribution varied significantly. Electron microscopy confirmed differences in cellular attachment and paracellular junctions. Influenza receptor lectin histochemistry revealed that α2,3 sialic acids were rarely present on the apical aspect of the differentiated NHBE cells, but were present in low numbers in the distal trachea. We bound fluorochrome bioconjugated virus to respiratory tissue and NHBE cells and infected NHBE cells with human influenza A viruses. Both indicated that the pattern of infection progression in these cells correlated with autopsy studies of fatal cases from the 2009 pandemic.
Collapse
Affiliation(s)
- A Sally Davis
- Viral Pathogenesis and Evolution Section, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland (ASD, DSC, JEM, AS, JKT)
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas (ASD)
| | - Daniel S Chertow
- Viral Pathogenesis and Evolution Section, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland (ASD, DSC, JEM, AS, JKT)
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland (DSC, JS, CL, JHS)
| | - Jenna E Moyer
- Viral Pathogenesis and Evolution Section, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland (ASD, DSC, JEM, AS, JKT)
| | - Jon Suzich
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland (DSC, JS, CL, JHS)
| | - Aline Sandouk
- Viral Pathogenesis and Evolution Section, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland (ASD, DSC, JEM, AS, JKT)
| | - David W Dorward
- Electron Microscopy Unit, Research Technology Branch, NIAID, Hamilton, Montana (DWD)
| | - Carolea Logun
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland (DSC, JS, CL, JHS)
| | - James H Shelhamer
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, Maryland (DSC, JS, CL, JHS)
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland (ASD, DSC, JEM, AS, JKT)
| |
Collapse
|
30
|
Richter E, Harms M, Ventz K, Gierok P, Chilukoti RK, Hildebrandt JP, Mostertz J, Hochgräfe F. A multi-omics approach identifies key hubs associated with cell type-specific responses of airway epithelial cells to staphylococcal alpha-toxin. PLoS One 2015; 10:e0122089. [PMID: 25816343 PMCID: PMC4376684 DOI: 10.1371/journal.pone.0122089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/17/2015] [Indexed: 12/18/2022] Open
Abstract
Responsiveness of cells to alpha-toxin (Hla) from Staphylococcus aureus appears to occur in a cell-type dependent manner. Here, we compare two human bronchial epithelial cell lines, i.e. Hla-susceptible 16HBE14o- and Hla-resistant S9 cells, by a quantitative multi-omics strategy for a better understanding of Hla-induced cellular programs. Phosphoproteomics revealed a substantial impact on phosphorylation-dependent signaling in both cell models and highlights alterations in signaling pathways associated with cell-cell and cell-matrix contacts as well as the actin cytoskeleton as key features of early rHla-induced effects. Along comparable changes in down-stream activity of major protein kinases significant differences between both models were found upon rHla-treatment including activation of the epidermal growth factor receptor EGFR and mitogen-activated protein kinases MAPK1/3 signaling in S9 and repression in 16HBE14o- cells. System-wide transcript and protein expression profiling indicate induction of an immediate early response in either model. In addition, EGFR and MAPK1/3-mediated changes in gene expression suggest cellular recovery and survival in S9 cells but cell death in 16HBE14o- cells. Strikingly, inhibition of the EGFR sensitized S9 cells to Hla indicating that the cellular capacity of activation of the EGFR is a major protective determinant against Hla-mediated cytotoxic effects.
Collapse
Affiliation(s)
- Erik Richter
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Manuela Harms
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Katharina Ventz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Philipp Gierok
- Department of Biochemistry, University of Greifswald, 17487, Greifswald, Germany
| | - Ravi Kumar Chilukoti
- Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University of Greifswald, 17489, Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute, University of Greifswald, 17487, Greifswald, Germany
| | - Jörg Mostertz
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
| | - Falko Hochgräfe
- Competence Center Functional Genomics, Junior Research Group Pathoproteomics, University of Greifswald, 17489, Greifswald, Germany
- * E-mail:
| |
Collapse
|
31
|
Hildebrandt JP. Pore-forming virulence factors of Staphylococcus aureus destabilize epithelial barriers-effects of alpha-toxin in the early phases of airway infection. AIMS Microbiol 2015. [DOI: 10.3934/microbiol.2015.1.11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Surmann K, Michalik S, Hildebrandt P, Gierok P, Depke M, Brinkmann L, Bernhardt J, Salazar MG, Sun Z, Shteynberg D, Kusebauch U, Moritz RL, Wollscheid B, Lalk M, Völker U, Schmidt F. Comparative proteome analysis reveals conserved and specific adaptation patterns of Staphylococcus aureus after internalization by different types of human non-professional phagocytic host cells. Front Microbiol 2014; 5:392. [PMID: 25136337 PMCID: PMC4117987 DOI: 10.3389/fmicb.2014.00392] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/13/2014] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a human pathogen that can cause a wide range of diseases. Although formerly regarded as extracellular pathogen, it has been shown that S. aureus can also be internalized by host cells and persist within these cells. In the present study, we comparatively analyzed survival and physiological adaptation of S. aureus HG001 after internalization by two human lung epithelial cell lines (S9 and A549), and human embryonic kidney cells (HEK 293). Combining enrichment of bacteria from host-pathogen assays by cell sorting and quantitation of the pathogen's proteome by mass spectrometry we characterized S. aureus adaptation during the initial phase between 2.5 h and 6.5 h post-infection. Starting with about 2 × 106 bacteria, roughly 1450 S. aureus proteins, including virulence factors and metabolic enzymes were identified by spectral comparison and classical database searches. Most of the bacterial adaptation reactions, such as decreased levels of ribosomal proteins and metabolic enzymes or increased amounts of proteins involved in arginine and lysine biosynthesis, enzymes coding for terminal oxidases and stress responsive proteins or activation of the sigma factor SigB were observed after internalization into any of the three cell lines studied. However, differences were noted in central carbon metabolism including regulation of fermentation and threonine degradation. Since these differences coincided with different intracellular growth behavior, complementary profiling of the metabolome of the different non-infected host cell types was performed. This revealed similar levels of intracellular glucose but host cell specific differences in the amounts of amino acids such as glycine, threonine or glutamate. With this comparative study we provide an impression of the common and specific features of the adaptation of S. aureus HG001 to specific host cell environments as a starting point for follow-up studies with different strain isolates and regulatory mutants.
Collapse
Affiliation(s)
- Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Stephan Michalik
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Petra Hildebrandt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Philipp Gierok
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Maren Depke
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Lars Brinkmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Manuela G Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Zhi Sun
- Institute for Systems Biology Seattle, WA USA
| | | | | | | | - Bernd Wollscheid
- Institute of Molecular Systems Biology, ETH Zurich Zurich, Switzerland
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University Greifswald Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| | - Frank Schmidt
- ZIK-FunGene Junior Research Group Applied Proteomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald Greifswald, Germany
| |
Collapse
|